首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Structural analysis of recombinant fibrinogen fragment D revealed that the calcium-binding site (beta2-site) composed of residues BbetaAsp261, BbetaAsp398, BbetaGly263, and gammaGlu132 is modulated by the "B:b" interaction. To determine the beta2-site's role in polymerization, we engineered variant fibrinogen gammaE132A in which calcium binding to the beta2-site was disrupted by replacing glutamic acid at gamma132 with alanine. We compared polymerization of gammaE132A to normal fibrinogen as a function of calcium concentration. Polymerization of gammaE132A at concentrations of calcium 相似文献   

2.
We synthesized three fibrinogen variants, BbetaE397A, BbetaD398A, and BbetaD432A, with substitutions at positions identified in crystallographic studies as critical for binding the "B" peptide, Gly-His-Arg-Pro-amide (GHRPam), to the "b" polymerization site. We examined thrombin- and batroxobin-catalyzed polymerization by turbidity measurements and found that BbetaE397A and BbetaD398A were impaired while BbetaD432A was normal. Changes in polymerization as a function of calcium were similar for variant and normal fibrinogens. We determined crystal structures of fragment D from the variant BbetaD398A in the absence and presence of GHRPam. In the absence of peptide, the structure showed that the alanine substitution altered only specific local interactions, as alignment of the variant structure with the analogous normal structure resulted in an RMSD of 0.53 A over all atoms. The structure also showed reduced occupancy of the beta2 calcium-binding site that includes the side chain carbonyl of BbetaD398, suggesting that calcium was not bound at this site in our polymerization studies. In the presence of peptide, the structure showed that GHRPam was not bound in the "b" site and the conformational changes associated with peptide binding to normal fragment D did not occur. This structure also showed GHRPam bound in the "a" polymerization site, although in two different conformations. Calcium binding was associated with only one of these conformations, suggesting that calcium binding to the gamma2-site and an alternative peptide conformation were induced by crystal packing. We conclude that BbetaE397 and BbetaD398 are essential for the "B:b" interaction, while BbetaD432 is not.  相似文献   

3.
To determine the significance of the gamma2 calcium-binding site in fibrin polymerization, we synthesized the fibrinogen variant, gammaD298,301A. We expected these two alanine substitutions to prevent calcium binding in the gamma2 site. We examined the influence of calcium on the polymerization of gammaD298,301A fibrinogen, evaluated its plasmin susceptibility, and solved 2.7 and 2.4 A crystal structures of the variant with the peptide ligands Gly-Pro-Arg-Pro-amide (GPRP) and Gly-His-Arg-Pro-amide (GHRP), respectively. We found that thrombin-catalyzed polymerization of gammaD298,301A fibrinogen was modestly impaired, whereas batroxobin-catalyzed polymerization was significantly impaired relative to normal fibrinogen. Notably, the influence of calcium on polymerization was the same for the variant and for normal fibrinogen. Fibrinogen gammaD298,301A was more susceptible to plasmin proteolysis in the presence of GPRP. This finding suggests structural changes in the near-by "a" polymerization site. Comparisons of the structures revealed minor conformational changes in the gamma294-301 loop that are likely responsible for the weakened "a" site. When considered altogether, the data suggest that the gamma2 calcium-binding site does not significantly modulate polymerization. We cannot, however, rule out the possibility that the weakened "a" polymerization site masks an important role for the gamma2 calcium-binding site in normal polymerization. Somewhat unexpectedly, the structure data showed that GPRP bound to the "b" site and induced the same local conformational changes as GHRP to this site. This structure shows that "A:b" interactions can occur and suggests that these may participate in normal polymerization.  相似文献   

4.
Lishko VK  Kudryk B  Yakubenko VP  Yee VC  Ugarova TP 《Biochemistry》2002,41(43):12942-12951
Fibrinogen is a ligand for leukocyte integrin alpha(M)beta2 (CD11b/CD18, Mac-1) and mediates adhesion and migration of leukocytes during the immune-inflammatory responses. The binding site for alpha(M)beta2 resides in gammaC, a constituent subdomain in the D-domain of fibrinogen. The sequence gamma383-395 (P2-C) in gammaC was implicated as the major binding site for alpha(M)beta2. It is unknown why alpha(M)beta2 on leukocytes can bind to immobilized fibrinogen in the presence of high concentrations of soluble fibrinogen in plasma. In this study, we have investigated the accessibility of the binding site in fibrinogen for alpha(M)beta2. We found that the alpha(M)beta2-binding site in gammaC is cryptic and identified the mechanism that regulates its unmasking. Proteolytic removal of the small COOH-terminal segment(s) of gammaC, gamma397/405-411, converted the D100 fragment of fibrinogen, which contains intact gammaC and is not able to inhibit adhesion of the alpha(M)beta2-expressing cells, into the fragment D98, which effectively inhibited cell adhesion. D98, but not D100, bound to the recombinant alpha(M)I-domain, and the alpha(M)I-domain recognition peptide, alpha(M)(Glu253-Arg261). Exposure of the P2-C sequence in fibrinogen, D100, and D98 was probed with a site-specific mAb. P2-C is not accessible in soluble fibrinogen and D100 but becomes exposed in D98. P2-C is also unmasked by immobilization of fibrinogen onto a plastic and by deposition of fibrinogen in the extracellular matrix. Thus, exposure of P2-C by immobilization and by proteolysis correlates with unmasking of the alpha(M)beta2-binding site in the D-domain. These results demonstrate that conformational alterations regulate the alpha(M)beta2-binding site in gammaC and suggest that processes relevant to tissue injury and inflammation are likely to be involved in the activation of the alpha(M)beta2-binding site in fibrinogen.  相似文献   

5.
The structure of fragment double-D from human fibrin has been solved in the presence and absence of the peptide ligands that simulate the two knobs exposed by the removal of fibrinopeptides A and B, respectively. All told, six crystal structures have been determined, three of which are reported here for the first time: namely, fragments D and double-D with the peptide GHRPam alone and double-D in the absence of any peptide ligand. Comparison of the structures has revealed a series of conformational changes that are brought about by the various knob-hole interactions. Of greatest interest is a moveable "flap" of two negatively charged amino acids (Glubeta397 and Aspbeta398) whose side chains are pinned back to the coiled coil with a calcium atom bridge until GHRPam occupies the beta-chain pocket. Additionally, in the absence of the peptide ligand GPRPam, GHRPam binds to the gamma-chain pocket, a new calcium-binding site being formed concomitantly.  相似文献   

6.
Calcium is required for effective fibrin polymerization. The high affinity Ca2+ binding capacity of fibrinogen was directly localized to the gamma-chain by autoradiography of nitrocellulose membrane blots of fibrinogen subunits incubated with 45Ca2+. Terbium (Tb3+) competitively inhibited 45Ca2+ binding to fibrinogen during equilibrium dialysis, accelerated fibrin polymerization, and limited fibrinogen fragment D digestion by plasmin. The intrinsic fluorescence of Ca2+-depleted fibrinogen was maximally enhanced by Ca2+ and Tb3+, but not by Mg2+, at about 3 mol of cation/mol of fibrinogen. Protein-bound Tb3+ fluorescence at 545 nm was maximally enhanced by resonance energy transfer from tryptophan (excitation at 290 nm) at about 2 mol of Tb3+mol of fibrinogen and about 1 mol of Tb3+/mol of plasmic fragment D94 (Mr 94,000). Fibrinogen fragments D78 (Mr 78,000) and E did not show effective enhancement of Tb3+ fluorescence, suggesting that the Ca2+ site is located within gamma 303 to gamma 411, the peptide which is absent in fragment D78 but present in D94. When CNBr fragments of the carboxyamidated gamma-subunit were assayed for enhancement of Tb3+ fluorescence, peptide CBi (gamma 311-336) bound 1 mol of Tb3+/mol of CBi. Thus, the Ca2+ site is located within this peptide. The sequence between gamma 315 and gamma 329 is homologous to the calmodulin and parvalbumin Ca2+ binding sites.  相似文献   

7.
Yang Z  Spraggon G  Pandi L  Everse SJ  Riley M  Doolittle RF 《Biochemistry》2002,41(32):10218-10224
The crystal structure of fragment D from lamprey fibrinogen has been determined at 2.8 A resolution. The 89 kDa protein was cocrystallized with the peptide Gly-His-Arg-Pro-amide, which in many fibrinogens-but not lamprey-corresponds to the B knob exposed by thrombin. Because lamprey fragment D is more than 50% identical in sequence with human fragment D, the structure of which has been reported previously, it was possible to use the method of molecular replacement. The space group of the lamprey crystals is P1; there are four molecules in the unit cell. Although the fragments are packed head to head by the same D:D interface as is observed in other related preparations containing fragments D, the tails are uniquely joined by an unnatural association of the terminal sections of the residual coiled coils from adjacent molecules. Some features of the lamprey structure are clearer than have been observed in previous fragment D structures, including the beta-chain carbohydrate cluster, for one, and the important gamma-chain carboxyl-terminal segment, for another. The most significant differences between the lamprey and human structures occur in connecting loops at the entryways to the beta-chain and gamma-chain binding pockets.  相似文献   

8.
The fibronectin-binding proteins FnBPA and FnBPB are multifunctional adhesins than can also bind to fibrinogen and elastin. In this study, the N2N3 subdomains of region A of FnBPB were shown to bind fibrinogen with a similar affinity to those of FnBPA (2 μM). The binding site for FnBPB in fibrinogen was localized to the C-terminus of the γ-chain. Like clumping factor A, region A of FnBPB bound to the γ-chain of fibrinogen in a Ca(2+)-inhibitable manner. The deletion of 17 residues from the C-terminus of domain N3 and the substitution of two residues in equivalent positions for crucial residues for fibrinogen binding in clumping factor A and FnBPA eliminated fibrinogen binding by FnBPB. This indicates that FnBPB binds fibrinogen by the dock-lock-latch mechanism. In contrast, the A domain of FnBPB bound fibronectin with K(D) = 2.5 μM despite lacking any of the known fibronectin-binding tandem repeats. A truncate lacking the C-terminal 17 residues (latching peptide) bound fibronectin with the same affinity, suggesting that the FnBPB A domain binds fibronectin by a novel mechanism. The substitution of the two residues required for fibrinogen binding also resulted in a loss of fibronectin binding. This, combined with the observation that purified subdomain N3 bound fibronectin with a measurable, but reduced, K(D) of 20 μM, indicates that the type I modules of fibronectin bind to both the N2 and N3 subdomains. The fibronectin-binding ability of the FnBPB A domain was also functional when the protein was expressed on and anchored to the surface of staphylococcal cells, showing that it is not an artifact of recombinant protein expression.  相似文献   

9.
Z Vali  H A Scheraga 《Biochemistry》1988,27(6):1956-1963
Affinity chromatography of active site inhibited thrombin on immobilized fragments derived from the central (desAB-NDSK) and terminal (D1) globular domains of fibrinogen revealed that the site responsible for the binding of thrombin at its secondary fibrin binding site is located in the central domain. Chromatography of various domains of the central nodule (desAB-NDSK, fibrinogen E, and fibrin E) having nonidentical amino acid sequences showed that all of these fragments are capable of binding to PMSF-thrombin-Sepharose, suggesting that the thrombin binding site resides within the peptide regions common to all of these fragments: alpha(Gly17-Met51), beta(Val55-Met118), and gamma(Tyr1-Lys53). Competitive affinity chromatography of the same binding domains revealed that there is no detectable difference in their binding constants to PMSF-thrombin-Sepharose, indicating that the alpha(Lys52-Lys78), beta(Gly15-Lys54)/(Tyr119-Lys122), and gamma(Thr54-Met78) peptide segments do not contribute significantly to the binding of thrombin. Chromatography of the isolated chains of fibrinogen E showed that the alpha(Gly17-Lys78) peptide region itself contains a strong binding site for PMSF-thrombin-Sepharose. The location of the binding site suggests that the secondary site interaction may play an important role in determining the cleavage specificity of thrombin on fibrinogen and can affect the rate of release of the fibrinopeptides. Affinity chromatography of fragments prepared from polymerized fibrin showed that cross-linked DD (D x D) itself does not bind to thrombin, whereas the D x DE complex remained attached to the column, suggesting that the binding site on fragment E for thrombin is distinct from its binding site for D x D.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Staphylococcus epidermidis is an important opportunistic pathogen and is a major cause of foreign body infections. We have characterized the ligand binding activity of SdrG, a fibrinogen-binding microbial surface component recognizing adhesive matrix molecules from S. epidermidis. Western ligand blot analysis showed that a recombinant form of the N-terminal A region of SdrG bound to the native Bbeta chain of fibrinogen (Fg) and to a recombinant form of the Bbeta chain expressed in Escherichia coli. By analyzing recombinant truncates and synthetic peptide mimetics of the Fg Bbeta chain, the binding site for SdrG was localized to residues 6-20 of this polypeptide. Recombinant SdrG bound to a synthetic 25-amino acid peptide (beta1-25) representing the N terminus of the Fg Bbeta chain with a KD of 1.4 x 10(-7) m as determined by fluorescence polarization experiments. This was similar to the apparent K(D) (0.9 x 10(-7) m) calculated from an enzyme-linked immunosorbent assay where SdrG bound immobilized Fg in a concentration-dependent manner. SdrG could recognize fibrinopeptide B (residues 1-14), but with a substantially lower affinity than that observed for SdrG binding to synthetic peptides beta1-25 and beta6-20. However, SdrG does not bind to thrombin-digested Fg. Thus, SdrG appears to target the thrombin cleavage site in the Fg Bbeta chain. In fact, SdrG was found to inhibit thrombin-induced fibrinogen clotting by interfering with fibrinopeptide B release.  相似文献   

11.
Localization of a fibrin polymerization site   总被引:6,自引:0,他引:6  
The formation of a fibrin clot is initiated after the proteolytic cleavage of fibrinogen by thrombin. The enzyme removes fibrinopeptides A and B and generates fibrin monomer which spontaneously polymerizes. Polymerization appears to occur though the interaction of complementary binding sites on the NH2-terminal and COOH-terminal (Fragment D) regions of the molecule. A peptide has been isolated from the gamma chain remnant of fibrinogen Fragment D1 which has the ability to bind to the NH2-terminal region of fibrinogen as well as to inhibit fibrin monomer polymerization. The peptide reduces the maximum rate and extent of the polymerization of thrombin or batroxobin fibrin monomer and increases the lag time. The D1 peptide does not interact with disulfide knot, fibrinogen, or Fragment D1, but it binds to thrombin-treated disulfide knot with a Kd of 1.45 X 10(-6) M at approximately two binding sites per molecule of disulfide knot. Fibrin monomer formed either by thrombin or batroxobin binds approximately two molecules of D1 peptide per molecule of fibrin monomer, indicating that the complementary site is revealed by the loss of fibrinopeptide A. The NH2-terminal sequence (Thr-Arg-Trp) and COOH-terminal sequence (Ala-Gly-Asp-Val) of the D1 peptide were determined. Therefore the gamma 373-410 region of fibrinogen contains a polymerization site which is complementary to the thrombin-activated site on the NH2-terminal region of fibrinogen.  相似文献   

12.
The interaction of fibronectin with fibrin and its incorporation into fibrin clots are thought to be important for the formation of a provisional matrix that promotes cell adhesion and migration during wound healing. However, it is still unclear whether fibronectin interacts with both fibrin and fibrinogen or fibrin only and whether fibronectin binds exclusively to the fibrin(ogen) alphaC domains. To address these questions, we studied the interaction of fibronectin with fibrinogen, fibrin, and their proteolytic and recombinant fragments. In both ELISA and surface plasmon resonance (SPR) experiments, immobilized fibrinogen did not bind fibronectin at all, but after conversion to fibrin, it bound fibronectin with high affinity. To test which regions of fibrin are involved in this binding, we studied the interaction of fibronectin with the fibrin-derived D-D:E(1) complex and a recombinant alphaC fragment (residues Aalpha221-610) corresponding to the alphaC domain that together encompass the whole fibrin(ogen) molecule. In ELISA, when fibronectin was added to the immobilized D-D:E(1) complex or the immobilized alphaC fragment, only the latter exhibited binding. Likewise, when fibronectin was immobilized and the complex or the alphaC fragment was added, only the latter was observed to bind. The selective interaction between fibronectin and the alphaC fragment was confirmed by SPR. The fibronectin-binding site was further localized to the NH(2) terminal connector region of the alphaC domain since in ELISA, the immobilized recombinant Aalpha221-391 sub-fragment bound fibronectin well while the immobilized recombinant Aalpha392-610 sub-fragment exhibited no binding. This finding was confirmed by ligand blotting analysis. Thus, the results provide direct evidence for the existence of a cryptic high-affinity fibronectin-binding site in the Aalpha221-391 region of the fibrinogen alphaC domain that is not accessible in fibrinogen but becomes exposed in fibrin.  相似文献   

13.
We have isolated an intermediate plasmic degradation product, D2, of fibrinogen that does not inhibit the polymerization of fibrin monomer but does bind Ca2+. Fibrinogen was digested to a limited extent with plasmin in the presence of Ca2+, and a "large" fragment D (fragment D1A) was isolated with a gamma-chain remnant consisting of residues 63-411. Fragment D1A was digested further in the presence of Ca2+, yielding fragment D1 (with its gamma-chain containing residues 86-411). The digestion of fragment D1 [in the presence of ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) to complex Ca2+] led to a gradual shortening of the carboxyl-terminal portion of the gamma-chain. Fragment D2 (with its gamma-chain containing residues 86-335/356) was isolated from an intermediate digest in the presence of EGTA. The Lys-338-Cys-339 peptide bond of the gamma-chain is intact in this preparation of D2, even though it is split in the isolated peptide gamma303-355 (with an intact disulfide bond at Cys-326-Cys-339). Fragment D2 does not interfere with the polymerization of fibrin monomer, whereas fragment D1 is a potent inhibitor of this polymerization. We conclude that the gamma-chain segment 356/357-411, present in fragment D1 but absent from fragment D2, is essential for maintenance of a polymerization site located in the outer (D) nodule of fibrinogen. This segment (356/357-411) is longer than two shorter ones reported earlier [Olexa, S.A., & Budzynski, A. Z. (1981) J. Biol. Chem. 256, 3544-3549; Horwitz, B.H., Váradi, A., & Scheraga, H.A. (1984) Proc. Natl. Acad. Sci. U.S.A. 81, 5980-5984]; the data for the earlier reports are reinterpreted here. Finally, fragment D2 possesses a single Ca2+ binding site, as revealed by equilibrium dialysis binding studies. Since fragment D3 (with its gamma-chain containing residues 86-302) fails to bind Ca2+, we conclude that segment gamma 303-355/356 plays a crucial role in Ca2+ binding.  相似文献   

14.
Yang Z  Pandi L  Doolittle RF 《Biochemistry》2002,41(52):15610-15617
The crystal structure of fragment double-D from factor XIII-cross-linked lamprey fibrin has been determined at 2.9 A resolution. The 180 kDa covalent dimer was cocrystallized with the peptide Gly-His-Arg-Pro-amide, which in many fibrinogens, but not that of lamprey, corresponds to the B-knob exposed by thrombin. The structure was determined by molecular replacement, a recently determined structure of lamprey fragment D being used as a search model. GHRPam was found in both the gamma- and beta-chain holes. Unlike the situation with fragment D, the crystal packing of the cross-linked double-D structure exhibits two different D-D interfaces, each gamma-chain facing gamma-chains on two other molecules. One of these (interface I) involves the asymmetric interface observed in all other D fragments and related structures. The other (interface II) encompasses a completely different set of residues. The two abutments differ in that interface I results in an "in line" arrangement of abutting molecules and the interface II in a "zigzag" arrangement. So far as can be determined (the electron density could only be traced on one side of the cross-links), it is the gamma-chains of the newly observed zigzag units (interface II) that are joined by the reciprocal epsilon-amino-gamma-glutamyl cross-links. Auspiciously, the same novel D-D interface was observed in two lower-resolution crystal structures of human double-D preparations that had been crystallized under unusual circumstances. These observations show that double-D structures are linked in a way that is sufficiently flexible to accommodate different D-D interfaces under different circumstances.  相似文献   

15.
Lounes KC  Ping L  Gorkun OV  Lord ST 《Biochemistry》2002,41(16):5291-5299
The C-terminal domain of the fibrinogen gamma-chain includes multiple functional sites that have been defined in high-resolution structures and biochemical assays. Calcium binds to this domain through the side chains of gammaD318 and gammaD320 and the backbone carbonyls of gammaF322 and gammaG324. We have examined variant fibrinogens with alanine at position gamma318 and/or gamma320 and found that calcium binding, fibrin polymerization, and fibrinogen-mediated platelet aggregation, but not FXIIIa-catalyzed cross-linking, were abnormal. When measured by turbidity, thrombin-catalyzed polymerization was severely reduced, and batroxobin-catalyzed polymerization was completely obliterated. Moreover, thrombin-catalyzed polymerization was abolished by the peptide GHRP, which binds to the polymerization site in the beta-chain but does not inhibit polymerization of normal fibrinogen. ADP-induced platelet aggregation was also severely impaired. In contrast, as measured by SDS-PAGE, FXIIIa introduced cross-links between gamma-chains for all three variants, as expected if the gamma-chain C-terminal sites were normal. In addition, binding of the monoclonal antibody 4A5, which recognizes the C-terminal residues, was not different from normal. These data suggest two specific conclusions: (1) a site in the gamma-module other than the C-terminus is critical for platelet aggregation and (2) "B-b" interactions have a role in protofibril formation.  相似文献   

16.
The spatial relationship between the binding sites for two cyclic peptides, cyclo(S,S)KYGCRGDWPC (cRGD) and cyclo(S,S)KYGCHarGDWPC (cHarGD), high affinity analogs for the RGD and HLGGAKQAGDV peptide ligands, in integrin alphaIIbbeta3 (GPIIb-IIIa) has been characterized. For this purpose, cRGD and cHarGD were labeled with fluorescein isothiocyanate and tetramethylrhodamine 5-isothiocyanate, respectively. Both cyclic peptides were potent inhibitors of fibrinogen binding to alphaIIbbeta3, particularly in the presence of Mn2+; IC50 values for cRGD and cHarGD were 1 and <0.1 nM in the presence of Mn2+. Direct binding experiments and fluorescence resonance energy transfer analysis using the purified receptor showed that both peptides interacted simultaneously with distinct sites in alphaIIbbeta3. The distance between these sites was estimated to be 6.1 +/- 0.5 nm. Although cRGD bound preferentially to one site and cHarGD to the other, the sites were not fully specific, and each cyclic peptide or its linear counterpart could displace the other to some extent. The binding affinity of the cHarGD site was dramatically affected by Mn2+. cRGD, but not cHarGD, bound to recombinant beta3-(95-373) in a cation-dependent manner, indicating that the cRGD site is located entirely within this fragment. With intact platelets, binding of c-RGD and cHarGD to alphaIIbbeta3 resulted in distinct conformational alterations in the receptor as indicated by the differential exposure of ligand-induced binding site epitopes and also induced the opposite on membrane fluidity as shown by electron paramagnetic resonance analyses using 5-doxylstearic acid as a spin probe. These data support the concept the two peptide ligands bind to distinct sites in alphaIIbbeta3 and initiate different functional consequences within the receptor itself and within platelets.  相似文献   

17.
Mihalyi E 《Biophysical chemistry》2004,112(2-3):131-140
Calcium binding curves of human and bovine fibrinogen were obtained by using a calcium sensitive electrode. The two were identical and showed 2 high, 2-3 medium and more than 15 low affinity sites. Differential scanning calorimetry at neutral pH demonstrated the presence of the D and E domains of fibrinogen; however, at pH 3.5 the D-domain was split into two. The presence of the subdomains was demonstrated also by digestion by pepsin at this pH. Combination of digestion of fibrinogen and of its fragments with different enzymes and temperatures identified up to 12 subdomains in the original molecule. Clotting of fibrinogen by thrombin at pH 7.0 was investigated also by differential scanning calorimetry. In the absence of Ca2+ clotting elicited a 40% increase in the enthalpy of thermal denaturation of the D domain of fibrinogen, but the position of the peak increased only by 0.4 degrees C. However, with clotting in the presence of 10(-3) M calcium the former increased by 70-75% and the latter by 11.0 degrees C, while these parameters of the E-domain remained unchanged. Changes of bound calcium during clotting were also measured with the calcium sensitive electrode. These had to be corrected, because the drop in free calcium was partly compensated by release of some calcium that was already bound to fibrinogen. Log of the half time of calcium uptake plotted against log thrombin concentration indicated a first order process with respect to thrombin concentration, moreover, the rate determined corresponded to that of the conformation change measured by calorimetry. The calcium uptake was correlated with release of the fibrinopeptides. Release of fibrinopeptide B follows parallel to binding of calcium and that of fibrinopeptide A is about fourfold faster. Polymerization and formation of thick bundles of fibrin is connected with release of fibrinopeptide A. Clotting with Ancrod, an enzyme that releases only fibrinopeptide A, showed only minimal binding of calcium. The polymerization inhibiting tetrapeptide Gly-Pro-Arg-Pro also depressed binding of calcium. These data suggest that a calcium-binding site must be in the proximity of the site of release of fibrinopeptide B and of a polymerization site.  相似文献   

18.
In an abnormal fibrinogen with impaired fibrin monomer polymerization designed as fibrinogen Osaka II, we have identified substitution of Arg by Cys at position 275 of the gamma chain. This Cys is linked to a free cysteine molecule by a disulfide link as evidenced by fast atom bombardment mass spectrometry. This finding was supported by identification of a single cysteine released from isolated abnormal fragment D1 upon reduction. This unique cystine structure at the mutation site has not been reported heretofore in any abnormal protein including fibrinogen. The substitution may well perturb the structure required for fibrin monomer polymerization, specifically that assigned to the carboxyl-terminal D domain of fibrinogen. Indeed, isolated fragment D1 with the Cys substitution failed to inhibit thrombin-mediated clotting of normal fibrinogen and normal fibrin monomer polymerization, while normal fragment D1 inhibited them markedly. Our data seem to provide supporting evidence that the putative polymerization site(s) assigned to the D domain of fibrinogen may be structure-dependent, including the carboxyl-terminal segment of the gamma chain as well as a contiguous region that contains the gamma 275 residue.  相似文献   

19.
We report that the 27-residue carboxy-terminal cyanogen bromide fragment of human fibrinogen γ chain inhibits binding of [125I]fibrinogen to human platelet receptors and blocks fibrinogen-mediated aggregation of ADP-treated human platelets. The blocking activity of the peptide was preserved after proteolysis of the isolated peptide with staphylococcal protease to generate a mixture of a dodecapeptide and a pentadecapeptide. Trypsin treatment destroyed blocking activity of the isolated peptide. These results indicate that the site responsible for the interaction of human fibrinogen with the platelet receptor resides in the 27-residue carboxy-terminal region of the γ chain.  相似文献   

20.
Tobacco etch virus (TEV) protease is a cysteine protease exhibiting stringent sequence specificity. The enzyme is widely used in biotechnology for the removal of the affinity tags from recombinant fusion proteins. Crystal structures of two TEV protease mutants as complexes with a substrate and a product peptide provided the first insight into the mechanism of substrate specificity of this enzyme. We now report a 2.7A crystal structure of a full-length inactive C151A mutant protein crystallised in the absence of peptide. The structure reveals the C terminus of the protease bound to the active site. In addition, we determined dissociation constants of TEV protease substrate and product peptides using isothermal titration calorimetry for various forms of this enzyme. Data suggest that TEV protease could be inhibited by the peptide product of autolysis. Separate modes of recognition for native substrates and the site of TEV protease self-cleavage are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号