首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Zhang XS  Wang J  Hill WG 《Genetics》2002,161(1):419-433
A pleiotropic model of maintenance of quantitative genetic variation at mutation-selection balance is investigated. Mutations have effects on a metric trait and deleterious effects on fitness, for which a bivariate gamma distribution is assumed. Equations for calculating the strength of apparent stabilizing selection (V(s)) and the genetic variance maintained in segregating populations (V(G)) were derived. A large population can hold a high genetic variance but the apparent stabilizing selection may or may not be relatively strong, depending on other properties such as the distribution of mutation effects. If the distribution of mutation effects on fitness is continuous such that there are few nearly neutral mutants, or a minimum fitness effect is assumed if most mutations are nearly neutral, V(G) increases to an asymptote as the population size increases. Both V(G) and V(s) are strongly affected by the shape of the distribution of mutation effects. Compared with mutants of equal effect, allowing their effects on fitness to vary across loci can produce a much higher V(G) but also a high V(s) (V(s) in phenotypic standard deviation units, which is always larger than the ratio V(P)/V(m)), implying weak apparent stabilizing selection. If the mutational variance V(m) is approximately 10(-3)V(e) (V(e), environmental variance), the model can explain typical values of heritability and also apparent stabilizing selection, provided the latter is quite weak as suggested by a recent review.  相似文献   

2.
Zhang XS  Hill WG 《Genetics》2002,162(1):459-471
In quantitative genetics, there are two basic "conflicting" observations: abundant polygenic variation and strong stabilizing selection that should rapidly deplete that variation. This conflict, although having attracted much theoretical attention, still stands open. Two classes of model have been proposed: real stabilizing selection directly on the metric trait under study and apparent stabilizing selection caused solely by the deleterious pleiotropic side effects of mutations on fitness. Here these models are combined and the total stabilizing selection observed is assumed to derive simultaneously through these two different mechanisms. Mutations have effects on a metric trait and on fitness, and both effects vary continuously. The genetic variance (V(G)) and the observed strength of total stabilizing selection (V(s,t)) are analyzed with a rare-alleles model. Both kinds of selection reduce V(G) but their roles in depleting it are not independent: The magnitude of pleiotropic selection depends on real stabilizing selection and such dependence is subject to the shape of the distributions of mutational effects. The genetic variation maintained thus depends on the kurtosis as well as the variance of mutational effects: All else being equal, V(G) increases with increasing leptokurtosis of mutational effects on fitness, while for a given distribution of mutational effects on fitness, V(G) decreases with increasing leptokurtosis of mutational effects on the trait. The V(G) and V(s,t) are determined primarily by real stabilizing selection while pleiotropic effects, which can be large, have only a limited impact. This finding provides some promise that a high heritability can be explained under strong total stabilizing selection for what are regarded as typical values of mutation and selection parameters.  相似文献   

3.
We investigate the impact of antagonistic pleiotropy on the most widely used methods of estimation of the average coefficient of dominance of deleterious mutations from segregating populations. A proportion of the deleterious mutations affecting a given studied fitness component are assumed to have an advantageous effect on another one, generating overdominance on global fitness. Using diffusion approximations and transition matrix methods, we obtain the distribution of gene frequencies for nonpleiotropic and pleiotropic mutations in populations at the mutation-selection-drift balance. From these distributions we build homozygous and heterozygous chromosomes and assess the behavior of the estimators of dominance. A very small number of deleterious mutations with antagonistic pleiotropy produces substantial increases on the estimate of the average degree of dominance of mutations affecting the fitness component under study. For example, estimates are increased three- to fivefold when 2% of segregating loci are over-dominant for fitness. In contrast, strengthening pleiotropy, where pleiotropic effects are assumed to be also deleterious, has little effect on the estimates of the average degree of dominance, supporting previous results. The antagonistic pleiotropy model considered, applied under mutational parameters described in the literature, produces patterns for the distribution of chromosomal viabilities, levels of genetic variance, and homozygous mutation load generally consistent with those observed empirically for viability in Drosophila melanogaster.  相似文献   

4.
Abstract. We investigate maintenance of quantitative genetic variation at mutation-selection balance for multiple traits. The intrinsic strength of real stabilizing selection on one of these traits denoted the "target trait" and the observed strength of apparent stabilizing selection on the target trait can be quite different: the latter, which is estimable, is much smaller (i.e., implying stronger selection) than the former. Distinguishing them may enable the mutation load to be relaxed when considering multivariate stabilizing selection. It is shown that both correlations among mutational effects and among strengths of real stabilizing selection on the traits are not important unless they are high. The analysis for independent situations thus provides a good approximation to the case where mutant and stabilizing selection effects are correlated. Multivariate stabilizing selection can be regarded as a combination of stabilizing selection on the target trait and the pleiotropic direct selection on fitness that is solely due to the effects of real stabilizing selection on the hidden traits. As the overall fitness approaches a constant value as the number of traits increases, multivariate stabilizing selection can maintain abundant genetic variance only under quite weak selection. The common observations of high polygenic variance and strong stabilizing selection thus imply that if the mutation-selection balance is the true mechanism of maintenance of genetic variation, the apparent stabilizing selection cannot arise solely by real stabilizing selection simultaneously on many metric traits.  相似文献   

5.
Indirect estimates of the genomic rate of deleterious mutations (lambda), their average homozygous effect (s) and their degree of dominance (h) can be obtained from genetic parameters of natural populations, assuming that the frequencies of the loci controlling a given fitness trait are at mutation-selection equilibrium. In 1996, H.-W. Deng and M. Lynch developed a general methodology for obtaining these estimates from inbreeding/outbreeding experiments. The prediction of the sign and magnitude of the biases incurred by these estimators is essential for a correct interpretation of the empirical results. However, the assessment of these biases has been tested so far under a rather limited model of the distribution of dominance effects. In this paper, the application of this method to outbred populations is evaluated, focusing on the level of variation in h values (sigma(h)(2) and the magnitude of the negative correlation (rs,h) between s and h. It is shown that the method produces upwardly biased estimates of lambda and downwardly biased estimates of the average s in the reference situation where rs,h=0, particularly for large values of sigma(h)(2), and biases of different sign depending on the magnitude of the correlation. A modification of the method, substituting the estimates of the average h for alternative ones, allows estimates to be obtained with little or no bias for the case of rs,h=0, but is otherwise biased. Information on rs,h and sigma(h)(2), gathered from mutation-accumulation experiments, suggests that sigma(h)(2) may be rather large and rs,h is usually negative but not higher than about -0.2, although the data are scarce and noisy, and should be used with caution.  相似文献   

6.
Most quantitative traits in most populations exhibit heritable genetic variation. Lande proposed that high levels of heritable variation may be maintained by mutation in the face of stabilizing selection. Several analyses have appeared of two distinct models with n additive polygenic loci subject to mutation and stabilizing selection. Each is reviewed and a new analysis and model are presented. Lande and Fleming analyzed extensions of a model originally treated by Kimura which assumes a continuum of possible allelic effects at each locus. Latter and Bulmer analyzed a model with diallelic loci. The published analyses of these models lead to qualitatively different predictions concerning the dependence of the equilibrium genetic variance on the underlying biological parameters. A new asymptotic analysis of the Kimura model shows that the different predictions are not consequences of the number of alleles assumed but rather are attributable to assumptions concerning the relative magnitudes of per locus mutation rates, the phenotypic effects of mutation, and the intensity of selection. This conclusion is reinforced by analysis of a model with triallelic loci. None of the approximate analyses presented are mathematically rigorous. To quantify their accuracy and display the domains of validity for alternative approximations, numerically determined equilibria are presented. In addition, empirical estimates of mutation rates and selection intensity are reviewed, revealing weaknesses in both the data and its connection to the models. Although the mathematical results and underlying biological requirements of my analyses are quite different from those of Lande, the results do not refute his hypothesis that considerable additive genetic variance may be maintained by mutation-selection balance. However, I argue that the validity of this hypothesis can only be determined with additional data and mathematics.  相似文献   

7.
García-Dorado A  Caballero A 《Genetics》2000,155(4):1991-2001
T. Mukai and co-workers in the late 1960s and O. Ohnishi in the 1970s carried out a series of experiments to obtain direct estimates of the average coefficient of dominance (h) of minor viability mutations in Drosophila melanogaster. The results of these experiments, although inconsistent, have been interpreted as indicating slight recessivity of deleterious mutations, with h approximately 0.4. Mukai obtained conflicting results depending on the type of heterozygotes used, some estimates suggesting overdominance and others partial dominance. Ohnishi's estimates, based on the ratio of heterozygous to homozygous viability declines, were more consistent, pointing to the above value. However, we have reanalyzed Ohnishi's data, estimating h by the regression method, and obtained a much smaller estimate of approximately 0.1. This significant difference can be due partly to the different weighting implicit in the estimates, but we suggest that this is not the only explanation. We propose as a plausible hypothesis that a putative nonmutational decline in viability occurring in the first half of Ohnishi's experiment (affecting both homozygotes and heterozygotes) has biased upward the estimates from the ratio, while it would not bias the regression estimates. This hypothesis also explains the very high h approximately 0.7 observed in Ohnishi's high-viability chromosomes. By constructing a model of spontaneous mutations using parameters in the literature, we investigate the above possibility. The results indicate that a model of few mutations with moderately large effects and h approximately 0.2 is able to explain the observed estimates and the distributions of homozygous and heterozygous viabilities. Accounting for an expression of mutations in genotypes with the balancer chromosome Cy does not alter the conclusions qualitatively.  相似文献   

8.
Unconditionally deleterious mutations could be an important source of variation in quantitative traits. Deleterious mutations should be rare (segregating at low frequency in the population) and at least partially recessive. In this paper, I suggest that the contribution of rare, partially recessive alleles to quantitative trait variation can be assessed by comparing the relative magnitudes of two genetic variance components: the covariance of additive and homozygous dominance effects (Cad) and the additive genetic variance (Va). If genetic variation is due to rare recessives, then the ratio of Cad to Va should be equal to or greater than 1. In contrast, Cad/Va should be close to zero or even negative if variation is caused by alleles at intermediate frequencies. The ratio of Cad to Va can be estimated from phenotypic comparisons between inbred and outbred relatives, but such estimates are likely to be highly imprecise. Selection experiments provide an alternative estimator for Cad/Va, one with favourable statistical properties. When combined with other biometrical analyses, the ratio test can provide an incisive test of the deleterious mutation model.  相似文献   

9.
Biallelic models which ignore linkage disequilibrium have been used to study variability maintained by mutation in the presence of Gaussian stabilizing selection. Recent work of Barton (1986) showed that these models have stable equilibria at which the mean phenotype differed from the optimum, and that the variability maintained at such equilibria would be higher than at the symmetric equilibria calculated by Bulmer (1980) and others. Here I determine the bifurcation structure of this model, and confirm and extend Barton's results. The form of the bifurcations gives information about the domains of attraction of various equilibria, and shows why the nonsymmetric equilibria may not be observed. The techniques may prove useful in the analysis of other population genetic models.  相似文献   

10.
S Pálsson  P Pamilo 《Genetics》1999,153(1):475-483
The effects of recessive, deleterious mutations on genetic variation at linked neutral loci can be heterozygosity-decreasing because of reduced effective population sizes or heterozygosity-increasing because of associative overdominance. Here we examine the balance between these effects by simulating individual diploid genotypes in small panmictic populations. The haploid genome consists of one linkage group with 1000 loci that can have deleterious mutations and a neutral marker. Combinations of the following parameters are studied: gametic mutation rate to harmful alleles (U), population size (N), recombination rate (r), selection coefficient (s), and dominance (h). Tight linkage (r 相似文献   

11.
We investigate the sources of bias that affect the most commonly used methods of estimation of the average degree of dominance (h) of deleterious mutations, focusing on estimates from segregating populations. The main emphasis is on the effect of the finite size of the populations, but other sources of bias are also considered. Using diffusion approximations to the distribution of gene frequencies in finite populations as well as stochastic simulations, we assess the behavior of the estimators obtained from populations at mutation-selection-drift balance under different mutational scenarios and compare averages of h for newly arisen and segregating mutations. Because of genetic drift, the inferences concerning newly arisen mutations based on the mutation-selection balance theory can have substantial upward bias depending upon the distribution of h. In addition, estimates usually refer to h weighted by the homozygous deleterious effect in different ways, so that inferences are complicated when these two variables are negatively correlated. Due to both sources of bias, the widely used regression of heterozygous on homozygous means underestimates the arithmetic mean of h for segregating mutations, in contrast to their repeatedly assumed equality in the literature. We conclude that none of the estimators from segregating populations provides, under general conditions, a useful tool to ascertain the properties of the degree of dominance, either for segregating or for newly arisen deleterious mutations. Direct estimates of the average h from mutation-accumulation experiments are shown to suffer some bias caused by purging selection but, because they do not require assumptions on the causes maintaining segregating variation, they appear to give a more reliable average dominance for newly arisen mutations.  相似文献   

12.
The failure of maternal imprinting at the insulin-like growth factor II (Igf-2) locus predisposes individuals to several clinical conditions, including Wilms tumor. Having two functional Igf-2 genes, therefore, is selectively disadvantageous, and the condition is probably maintained in human populations by recurrent mutation. We propose two models that predict the expected frequency of functionally diploid individuals in a large population, in terms of a mutation rate, mu, and the selection coefficient against functionally diploid individuals, s. In the first model a mutant Igf-2 allele that cannot be imprinted arises from the standard, imprintable allele at a rate mu. Our second model hypothesizes a second modifier locus at which a recessive allele arises at rate mu. Mothers who are homozygous for this recessive modifier allele fail to imprint their eggs. Both models predict the expected frequency of affecteds to be 2 mu/s(1 + mu), approximately twice that predicted by the standard one-locus model of a recessive allele in mutation-selection balance. This frequency suggests that < or = 25% of the cases of Wilms tumor are due to the failure to imprint the maternal Igf-2 gene.  相似文献   

13.
14.
15.
Charlesworth B 《Genetics》2012,190(1):5-22
The process of evolution at a given site in the genome can be influenced by the action of selection at other sites, especially when these are closely linked to it. Such selection reduces the effective population size experienced by the site in question (the Hill-Robertson effect), reducing the level of variability and the efficacy of selection. In particular, deleterious variants are continually being produced by mutation and then eliminated by selection at sites throughout the genome. The resulting reduction in variability at linked neutral or nearly neutral sites can be predicted from the theory of background selection, which assumes that deleterious mutations have such large effects that their behavior in the population is effectively deterministic. More weakly selected mutations can accumulate by Muller's ratchet after a shutdown of recombination, as in an evolving Y chromosome. Many functionally significant sites are probably so weakly selected that Hill-Robertson interference undermines the effective strength of selection upon them, when recombination is rare or absent. This leads to large departures from deterministic equilibrium and smaller effects on linked neutral sites than under background selection or Muller's ratchet. Evidence is discussed that is consistent with the action of these processes in shaping genome-wide patterns of variation and evolution.  相似文献   

16.
Female mate choice influences the maintenance of genetic variation by altering the mating success of males with different genotypes. The evolution of preferences themselves, on the other hand, depends on genetic variation present in the population. Few models have tracked this feedback between a choice gene and its effects on genetic variation, in particular when genes that determine offspring viability and attractiveness have dominance effects. Here we build a population genetic model that allows comparing the evolution of various choice rules in a single framework. We first consider preferences for good genes and show that focused preferences for homozygotes evolve more easily than broad preferences, which allow heterozygous males high mating success too. This occurs despite better maintenance of genetic diversity in the latter scenario, and we discuss why empirical findings of superior mating success of heterozygous males consequently do not immediately lead to a better understanding of the lek paradox. Our results thus suggest that the mechanisms that help maintain genetic diversity also have a flipside of making female choice an inaccurate means of producing the desired kind of offspring. We then consider preferences for heterozygosity per se, and show that these evolve only under very special conditions. Choice for compatible genotypes can evolve but its selective advantage diminishes quickly due to frequency-dependent selection. Finally, we show that our model reproduces earlier results on selfing, when the female choice strategy produces assortative mating. Overall, our model indicates that various forms of heterozygote-favouring (or variable) female choice pose a problem for the theory of sexual ornamentation based on indirect benefits, rather than a solution.  相似文献   

17.
One of the assumptions underlying many theoretical predictions in evolutionary biology concerns the distribution of the fitness effect of mutations. Approximations to this distribution have been derived using various theoretical approaches, of which Fisher's geometrical model is among the most popular ones. Two key concepts in this model are complexity and pleiotropy. Recent studies have proposed different methods for estimating how complexity varies across species, but their results have been contradictory. Here, we show that contradictory results are to be expected when the assumption of universal pleiotropy is violated. We develop a model in which the two key parameters are the total number of traits and the mean number of traits affected by a single mutation. We derive approximations for the distribution of the fitness effect of mutations when populations are either well-adapted or away from the optimum. We also consider drift load in a well-adapted population and show that it is independent of the distribution of the fitness effect of mutations. We show that mutation accumulation experiments can only measure the effect of the mean number of traits affected by mutations, whereas drift load only provides information about the total number of traits. We discuss the plausibility of the model.  相似文献   

18.
The frozen niche variation hypothesis proposes that asexual clones exploit a fraction of a total resource niche available to the sexual population from which they arise. Differences in niche breadth may allow a period of coexistence between a sexual population and the faster reproducing asexual clones. Here, we model the longer term threat to the persistence of the sexual population from an accumulation of clonal diversity, balanced by the cost to the asexual population resulting from a faster rate of accumulation of deleterious mutations. We use Monte-Carlo simulations to quantify the interaction of niche breadth with accumulating deleterious mutations. These two mechanisms may act synergistically to prevent the extinction of the sexual population, given: (1) sufficient genetic variation, and consequently niche breadth, in the sexual population; (2) a relatively slow rate of accumulation of genetic diversity in the clonal population; (3) synergistic epistasis in the accumulation of deleterious mutations.  相似文献   

19.
Quantitative genetics, or the genetics of complex traits, is the study of those characters which are not affected by the action of just a few major genes. Its basis is in statistical models and methodology, albeit based on many strong assumptions. While these are formally unrealistic, methods work. Analyses using dense molecular markers are greatly increasing information about the architecture of these traits, but while some genes of large effect are found, even many dozens of genes do not explain all the variation. Hence, new methods of prediction of merit in breeding programmes are again based on essentially numerical methods, but incorporating genomic information. Long-term selection responses are revealed in laboratory selection experiments, and prospects for continued genetic improvement are high. There is extensive genetic variation in natural populations, but better estimates of covariances among multiple traits and their relation to fitness are needed. Methods based on summary statistics and predictions rather than at the individual gene level seem likely to prevail for some time yet.  相似文献   

20.
Itan E  Tannenbaum E 《PloS one》2012,7(5):e26513
This paper develops a mathematical model describing the evolutionary dynamics of a unicellular, asexually replicating population exhibiting chromosomal instability. Chromosomal instability is a form of genetic instability characterized by the gain or loss of entire chromosomes during cell division. We assume that the cellular genome is divided into several homologous groups of chromosomes, and that a single functional chromosome per homologous group is required for the cell to have the wild-type fitness. If the fitness is unaffected by the total number of chromosomes in the cell, our model is analytically solvable, and yields a mean fitness at mutation-selection balance that is identical to the mean fitness when there is no chromosomal instability. If this assumption is relaxed and the total number of chromosomes in the cell is not allowed to increase without bound, then chromosomal instability leads to a reduction in mean fitness. The results of this paper provide a useful baseline that can inform both future theoretial and experimental studies of chromosomal instability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号