首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Eukaryotic initiation factor 2 (eIF-2) from rabbit reticulocytes can be phosphorylated on its beta-subunit by two different protein kinases, protein kinase C and casein kinase 2. Phosphorylation by these kinases is additive, suggesting that they phosphorylate different sites (serine residues) in eIF-2 beta. Two-dimensional peptide mapping of the phosphopeptides generated from labelled eIF-2 beta by digestion with trypsin, cyanogen bromide or Staphylococcus aureus V8 proteinase showed that protein kinase C and casein kinase 2 phosphorylated distinct and different sites in this protein. This conclusion was supported by the results of analysis of the phosphopeptides on reverse-phase chromatography. Analysis of the phosphopeptides derived from eIF-2 beta labelled by both kinases together strongly suggested that the sites labelled by protein kinase C and casein kinase 2 are adjacent in the primary sequence. These data are discussed in the light of the present understanding of the sequence specificity of the kinases. Rat liver eIF-2 beta was also found to be a substrate for protein kinase C and casein kinase 2, which were again shown to label different serine residues.  相似文献   

2.
Eukaryotic initiation factor 2 (eIF-2) from rabbit reticulocytes can be phosphorylated on its β-subunit by two different protein kinases, protein kinase C and casein kinase 2. Phosphorylation by these kinases is additive, suggesting that they phosphorylate different sites (serine residues) in eIF-2β. Two-dimensional peptide mapping of the phosphopeptides generated from labelled eIF-2β by digestion with trypsin, cyanogen bromide or Staphylococcus aureus V8 proteinase showed that protein kinase C and casein kinase 2 phosphorylated distinct and different sites in this protein. This conclusion was supported by the results of analysis of the phosphopeptides on reverse-phase chromatography. Analysis of the phosphopeptides derived from eIF-2β labelled by both kinases together strongly suggested that the sites labelled by protein kinase C and casein kinase 2 are adjacent in the primary sequence. These data are discussed in the light of the present understanding of the sequence specificity of the kinases. Rat liver eIF-2β was also found to be a substrate for protein kinase C and casein kinase 2, which were again shown to label different serine residues.  相似文献   

3.
The three isozymic subunits of phosphofructo-1-kinase present in rabbit brain and designated A, B and C were phosphorylated in vitro by cyclic AMP-dependent protein kinase with 32P-labeled ATP. Limited digestion of the labeled enzymes with trypsin or with Staphylococcus aureus V8 proteinase led to the solubilization of radiolabeled peptides derived from the three isozymic subunits. Limited digestion by V8 proteinase was accompanied by a slight reduction in the apparent sizes of the subunits, indicating that the phosphorylated sites are located near either the amino or carboxyl termini of the protein. V8 proteinase digestion led to no change in the maximal activity of the enzyme but did abolish sensitivity to ATP inhibition. The phosphopeptides of the tryptic and the V8 digests were purified by chromatography and their amino acid sequences were determined and compared to the previously established sequence from rabbit muscle isozyme A. PFK-A E H I S R K R S G E A T V PFK-B H V T R R S L S M A K G F PFK-C V S A S P R G S Y R K F L In each instance, the phosphorylated serine, underlined in the above sequences, was found to be one or two residues toward the C-terminus of one or more basic residues. No other similarities in structure were noted.  相似文献   

4.
Rat liver glycogen synthase was purified to homogeneity by an improved procedure that yielded enzyme almost exclusively as a polypeptide of Mr 85,000. The phosphorylation of this enzyme by eight protein kinases was analyzed by cleavage of the enzyme subunit followed by mapping of the phosphopeptides using polyacrylamide gel electrophoresis in the presence of SDS, reverse-phase high-performance liquid chromatography and thin-layer electrophoresis. Cyclic AMP-dependent protein kinase, phosphorylase kinase, protein kinase C and the calmodulin-dependent protein kinase all phosphorylated the same small peptide (approx. 20 amino acids) located in a 14 kDa CNBr-fragment (CB-1). Calmodulin-dependent protein kinase and protein kinase C also modified second sites in CB-1. A larger CNBr-fragment (CB-2) of approx. 28 kDa was the dominant site of action for casein kinases I and II, FA/GSK-3 and the heparin-activated protein kinase. The sites modified were all localized in a 14 kDa species generated by trypsin digestion. Further proteolysis with V8 proteinase indicated that FA/GSK-3 and the heparin-activated enzyme recognized the same smaller peptide within CB-2, which may also be phosphorylated by casein kinase 1. Casein kinase 1 also modified a distinct peptide, as did casein kinase II. The results lead us to suggest homology to the muscle enzyme with regard to CB-1 phosphorylation and the region recognized by FA/GSK-3, which in rabbit muscle is characterized by a high density of proline and serine residues. A striking difference with the muscle isozyme is the apparent lack of phosphorylations corresponding to the muscle sites 1a and 1b. These results provide further evidence for the presence of liver- and muscle-specific glycogen synthase isozymes in the rat. That the isozymes differ subtly as to phosphorylation sites may provide a clue to the functional differences between the isozymes.  相似文献   

5.
To examine the phosphorylation of casein kinase II in cells, the enzyme was isolated by immunoprecipitation from metabolically labeled human epidermal carcinoma A431 cells using polyclonal antipeptide antibodies specific for either the alpha subunit or the beta subunit of the enzyme. When isolated from 32P-labeled cells, the beta subunit was found to be significantly labeled on serine residues whereas only minimal labeling was associated with the alpha subunit. In vitro, the beta subunit of purified bovine casein kinase II was autophosphorylated, also on serine residues. Cleavage of the beta subunit, that had been autophosphorylated in vitro, at tryptophan 9 and tryptophan 12 using N-chlorosuccinimide demonstrated that the autophosphorylation site is located near the amino terminus of the protein, most likely at serine 2 and serine 3. Two-dimensional maps of phosphopeptides generated by digestion of the beta subunit with endoproteinase Glu-C indicted that the majority of the phosphate that was incorporated into the protein in cells was at sites that were indistinguishable from the sites that were autophosphorylated in vitro. In addition to phosphorylation at the autophosphorylation site, the beta subunit is also phosphorylated at an additional site, serine 209, in intact cells. This residue, which is near the carboxyl terminus of the protein, can be phosphorylated in vitro by p34cdc2.  相似文献   

6.
7.
The 20-kDa light chain isolated from gizzard myosin has recently been reported to be phosphorylated by casein kinase II at a site distinct from that phosphorylated by Ca2+- and calmodulin-dependent myosin light-chain kinase. In the present study, the site phosphorylated by casein kinase II has been analyzed through procedures including tryptic digestion of the radioactively phosphorylated light chain and CNBr cleavage of the purified tryptic phosphopeptide, followed by amino acid analysis of these phosphopeptides. Comparison of the amino acid compositions of these peptides with the previously reported sequence has indicated that the phosphorylation site is threonine-134 of the light chain. The significance of the phosphorylation of the light chain by casein kinase II, as well as the substrate specificity of the protein kinase, is discussed on the basis of the result.  相似文献   

8.
The nicotinic acetylcholine receptor is a substrate for cAMP-dependent protein kinase both in vitro and in vivo. Recently, it has been demonstrated that phosphorylation of the nicotinic receptor by this kinase increases its rate of rapid desensitization. We now report the identification of the cAMP-dependent phosphorylation sites on the gamma and delta subunits. Two-dimensional phosphopeptide mapping of the phosphorylated gamma and delta subunits, after limit proteolysis with thermolysin, indicated that each subunit is phosphorylated on a single site. Phosphoamino acid analysis of the 32P-labeled subunits demonstrates that phosphorylation had occurred exclusively on serine residues. Purified phosphorylated subunits were cleaved with cyanogen bromide and the resultant phosphopeptides were purified by reverse-phase high performance liquid chromatography. Shorter phosphopeptides, obtained by secondary digestion with trypsin, were purified and subjected to both automated gas-phase sequencing and manual Edman degradation. The results demonstrate that the gamma subunit was phosphorylated at Ser-353, contained within the sequence Arg-Arg-Ser(P)-Ser-Phe-Ile and that the delta subunit was phosphorylated at Ser-361, contained within the sequence Arg-Ser-Ser(P)-Ser-Val-Gay-Tyr-Ser-Lys. Determination of the sites phosphorylated within the structure of the gamma and delta subunits should contribute to the molecular characterization of the regulation of desensitization of the nicotinic acetylcholine receptor by protein phosphorylation.  相似文献   

9.
The Ser/Thr protein kinases fall into three major subgroups, pro-directed, basophilic, and acidophilic, on the basis of the types of substrate sequences that they preferred. Despite many phosphoproteomics efforts that have been taken for global profiling of phosphopeptides, methodologies focusing on analyzing a particular type of kinase substrates have seldom been reported. Selective enrichment of phosphopeptides from basophilic kinase substrates is difficult because basophilic motifs are cleaved by trypsin during digestion. In this study, we develop a negative enrichment strategy to enhance the identification of basophilic kinase substrates. This method is based on an observation that high pH strong anion exchange (SAX) chromatography can separate tryptic phosphopeptides according to the number of acidic amino acidic residues that they have. Thus, SAX was applied to deplete acidic phosphopeptides from the phosphopeptide mixture, which improved the coverage for the detection of basophilic kinase substrates. The SAX depletion approach was further combined with online SCX-RP separation for large-scale analysis of mouse liver phosphoproteome, which resulted in the identification of 6944 phosphorylated sites. It was found that motifs associated with basophilic kinases prevail for these identified phosphorylated sites.  相似文献   

10.
The pyridine nucleotide transhydrogenase of Escherichia coli has an alpha 2 beta 2 structure (alpha: Mr, 54,000; beta: Mr, 48,700). Hydropathy analysis of the amino acid sequences suggested that the 10 kDa C-terminal portion of the alpha subunit and the N-terminal 20-25 kDa region of the beta subunit are composed of transmembranous alpha-helices. The topology of these subunits in the membrane was investigated using proteolytic enzymes. Trypsin digestion of everted cytoplasmic membrane vesicles released a 43 kDa polypeptide from the alpha subunit. The beta subunit was not susceptible to trypsin digestion. However, it was digested by proteinase K in everted vesicles. Both alpha and beta subunits were not attacked by trypsin and proteinase K in right-side out membrane vesicles. The beta subunit in the solubilized enzyme was only susceptible to digestion by trypsin if the substrates NADP(H) were present. NAD(H) did not affect digestion of the beta subunit. Digestion of the beta subunit of the membrane-bound enzyme by trypsin was not induced by NADP(H) unless the membranes had been previously stripped of extrinsic proteins by detergent. It is concluded that binding of NADP(H) induces a conformational change in the transhydrogenase. The location of the trypsin cleavage sites in the sequences of the alpha and beta subunits were determined by N- and C-terminal sequencing. A model is proposed in which the N-terminal 43 kDa region of the alpha subunit and the C-terminal 30 kDa region of the beta subunit are exposed on the cytoplasmic side of the inner membrane of E. coli. Binding sites for pyridine nucleotide coenzymes in these regions were suggested by affinity chromatography on NAD-agarose columns.  相似文献   

11.
The selectivity of immobilized metal affinity chromatography (IMAC) systems for the purification of phosphopeptides is poor. This is particularly a problem with tryptic digests of proteins where a large number of acidic peptides are produced that also bind during IMAC. The hypothesis examined in this work was that the selectivity of IMAC columns for phosphopeptides could be increased by using endoproteinase glu-C (glu-C) for protein digestion. Glu-C cleaves proteins at acidic residues and should reduce the number of acidic residues in peptides. This method was successfully applied to a mixture of model proteins and bovine milk. The percentage of phosphorylated peptides selected from proteolytic digests of the milk sample was increased from 40% with trypsin to 70% with glu-C. Additionally, this method was coupled with stable isotope coding methods to quantitatively compare the concentration of phosphoproteins between samples.  相似文献   

12.
Five protein kinases were used to study the phosphorylation pattern of the purified skeletal muscle receptor for calcium-channel blockers (CaCB). cAMP kinase, cGMP kinase, protein kinase C, calmodulin kinase II and casein kinase II phosphorylated the 165-kDa and the 55-kDa proteins of the purified CaCB receptor. The 130/28-kDa and the 32-kDa protein of the receptor are not phosphorylated by these protein kinases. Among these protein kinases only cAMP kinase phosphorylated the 165-kDa subunit with 2-3-fold higher initial rate than the 55-kDa subunit. Casein kinase II phosphorylated the 165-kDa and the 55-kDa protein of the receptor with comparable rates. cGMP kinase, protein kinase C and calmodulin kinase II phosphorylated preferentially the 55-kDa protein. The 55-kDa protein is phosphorylated 50 times faster by cGMP kinase and protein kinase C than by calmodulin kinase II or casein kinase II and about 10 times faster by these enzymes than by cAMP kinase. Two-dimensional peptide maps of the 165-kDa subunit yielded a total of 11 phosphopeptides. Four or five peptides are phosphorylated specifically by cAMP kinase, cGMP kinase, casein kinase II and protein kinase C, whereas the other peptides are modified by several kinases. The same kinases phosphorylate 11 peptides in the 55-kDa subunit. Again, some of these peptides are modified specifically by each kinase. These results suggest that the 165-kDa and the 55-kDa subunit contain specific phosphorylation sites for cAMP kinase, cGMP kinase, casein kinase II and protein kinase C. Phosphorylation of these sites may be relevant for the in vivo function of the CaCB receptor.  相似文献   

13.
Phosphoamino acid modifications on substrate proteins are critical components of protein kinase signaling pathways. Thus, diverse methodologies have been developed and applied to identify the sites of phosphorylated amino acids within proteins. Despite significant progress in the field, even the determination of phosphorylated residues in a given highly purified protein is not a matter of routine and can be difficult and time-consuming. Here we present a practicable approach that integrates into a liquid chromatography matrix-assisted laser desorption/ionization mass spectrometry (LC–MALDI MS) workflow and allows localization and quantification of phosphorylated peptides on the MALDI target plate prior to MS analysis. Tryptic digests of radiolabeled proteins are fractionated by reversed-phase LC directly onto disposable MALDI target plates, followed by autoradiographic imaging. Visualization of the radiolabel enables focused analysis of selected spots, thereby accelerating the process of phosphorylation site mapping by decreasing the number of spectra to be acquired. Moreover, absolute quantification of the phosphorylated peptides is permitted by the use of appropriate standards. Finally, the manual sample handling is minimal, and consequently the risk of adsorptive sample loss is very low. Application of the procedure allowed the targeted identification of six novel autophosphorylation sites of AMP-activated protein kinase (AMPK) and displayed additional unknown phosphorylated peptide species not amenable to detection by MS. Furthermore, autoradiography revealed topologically inhomogeneous distribution of phosphorylated peptides within individual spots. However, accurate analysis of defined areas within single spots suggests that, rather than such quantitative differences, mainly the manner of matrix crystallization significantly affects ionization of phosphopeptides.  相似文献   

14.
Gas-phase ion-electron reactions, including electron capture dissociation (ECD) and electron detachment dissociation (EDD), are advantageous for characterization of protein posttranslational modifications (PTMs), because labile modifications are not lost during the fragmentation process. However, at least two positive charges and relatively abundant precursor ions are required for ECD due to charge reduction and lower fragmentation efficiency compared to conventional gas-phase fragmentation techniques. Both these criteria are difficult to fulfill for phosphopeptides due to their acidic character. The negative ion mode operation of EDD is more compatible with phosphopeptide ionization, but EDD suffers from a fragmentation efficiency even lower than that of ECD. Recently, metal oxides such as ZrO 2 and TiO 2 have been shown to provide selective enrichment of phosphopeptides from proteolytic digests. Here, we utilize this enrichment strategy to improve ECD and EDD of phosphopeptides. This approach allowed determination of the locations of phosphorylation sites in highly acidic, multiply phosphorylated peptides from complex peptide mixtures by ECD. For singly phosphorylated peptides, EDD provided complementary sequence information compared to ECD.  相似文献   

15.
We have developed an efficient, sensitive, and specific method for the detection of phosphopeptides present in peptide mixtures by MALDI Q-TOF mass spectrometry. Use of the MALDI Q-TOF enables selection of phosphopeptides and characterization by CID of the phosphopeptides performed on the same sample spot. However, this type of experiment has been limited by low ionization efficiency of phosphopeptides in positive ion mode while selecting precursor ions of phosphopeptides. Our method entails neutralizing negative charges on acidic groups of nonphosphorylated peptides by methyl esterification before mass spectrometry in positive and negative ion modes. Methyl esterification significantly increases the relative signal intensity generated by phosphopeptides in negative ion mode compared with positive ion mode and greatly increases selectivity for phosphopeptides by suppressing the signal intensity generated by acidic peptides in negative ion mode. We used the method to identify 12 phosphopeptides containing 22 phosphorylation sites from low femtomolar amounts of a tryptic digest of beta-casein and alpha-s-casein. We also identified 10 phosphopeptides containing five phosphorylation sites from an in-gel tryptic digest of 100 fmol of an in vitro autophosphorylated fibroblast growth factor receptor kinase domain and an additional phosphopeptide containing another phosphorylation site when 500 fmol of the digest was examined. The results demonstrate that the method is a fast, robust, and sensitive means of characterizing phosphopeptides present in low abundance mixtures of phosphorylated and nonphosphorylated peptides.  相似文献   

16.
Complete coverage of all phosphorylation sites in a proteome is the ultimate goal for large-scale phosphoproteome analysis. However, only making use of one protease trypsin for protein digestion cannot cover all phosphorylation sites, because not all tryptic phosphopeptides are detectable in MS. To further increase the phosphoproteomics coverage of HeLa cells, we proposed a tandem digestion approach by using two different proteases. By combining the data set of the first Glu-C digestion and the second trypsin digestion, the tandem digestion approach resulted in the identification of 8062 unique phosphopeptides and 8507 phosphorylation sites in HeLa cells. The conventional trypsin digestion approach resulted in the identification of 3891 unique phosphopeptides and 4647 phosphorylation sites. It was found that the phosphorylation sites identified from the above two approaches were highly complementary. By combining above two data sets, in total we identified 10899 unique phosphopeptides and 11262 phosphorylation sites, corresponding to 3437 unique phosphoproteins with FDR < 1% at peptide level. We also compared the kinase motifs extracted from trypsin, Glu-C, or a second trypsin digestion data sets. It was observed that basophilic motifs were more frequently found in the trypsin and the second trypsin digestion data sets, and the acidic motifs were more frequently found in the Glu-C digestion data set. These results demonstrated that our tandem digestion approach is a good complement to the conventional trypsin digestion approach for improving the phosphoproteomics analysis coverage of HeLa cells.  相似文献   

17.
Milk caseins stabilize calcium and phosphate ions and make them available to the neonate. Tryptic digestion of the caseins yields phosphopeptides from their polar N-terminal regions that contain clusters of phosphorylated seryl residues. These phosphoseryl clusters have been hypothesized to be responsible for the interaction between the caseins and calcium phosphate that lead to the formation of casein micelles. The casein phosphopeptides stabilize calcium and phosphate ions through the formation of complexes. The calcium phosphate in these complexes is biologically available for intestinal absorption and remineralization of subsurface lesions in tooth enamel. We have studied the structure of the complexes formed by the casein phosphopeptides with calcium phosphate using a range of physicochemical techniques including x-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and equilibrium binding analyses. The amorphous nature of the calcium phosphate phase was confirmed by two independent methods: x-ray powder diffraction and selected area diffraction. In solution, the ion activity product of a basic amorphous calcium phosphate phase was the only ion product that was a function of bound phosphate independent of pH, consistent with basic amorphous calcium phosphate being the phase stabilized by the casein phosphopeptides. Detailed investigations of calcium and calcium phosphate binding using a library of synthetic homologues and analogues of the casein phosphopeptides have revealed that although the fully phosphorylated seryl-cluster motif is pivotal for the interaction with calcium and phosphate, other factors are also important. In particular, calcium binding and calcium phosphate stabilization by the peptides was influenced by peptide net charge, length, and sequence.  相似文献   

18.
Casein kinase 1 phosphorylated rabbit skeletal muscle glycogen synthase at both seryl and threonyl residues. With glycogen synthase phosphorylated up to 7.5 mol phosphate/mol subunit, about 26% of the phosphate was present in the N-terminal cyanogen bromide fragment (CB1) and 74% in the C-terminal fragment (CB2). Both fragments contained phosphothreonine (11 to 14%) in addition to phosphoserine. When 32P-labeled glycogen synthase was totally digested with trypsin and chromatographed on reversephase high-performance liquid chromatography, seven phosphopeptides were observed. Peptide I eluted in the vicinity of the peptide containing site 1a, peptide II coincided with sites 4 + 5, peptides III and IV eluted in the region corresponding to sites 3a + 3b + 3c, peptide V appeared slightly after the peptide containing site 1b and peptide VII behaved as the peptide containing site 2, whereas peptide VI did not coincide with any of the known phosphopeptides. Limited trypsinization prior to analysis by HPLC led to the disappearance of peaks V and VI without altering peaks I to IV and VII. Only peaks I and VII remained when limited chymotrypsinization was performed prior to HPLC analysis. Chromatography on HPLC of the fragments derived from complete trypsinization of CB2 showed the presence of peaks II to VI. Phosphoamino acid analysis of the different peptides demonstrated the presence of quantitative amounts of phosphothreonine in peptides V, VI, and VII. These results indicate that multiple phosphorylation sites for casein kinase 1 must exist in both the N-terminal and C-terminal regions of glycogen synthase, some of which would only be labeled by casein kinase 1.  相似文献   

19.
Chemical cross-linking combined with mass spectrometry is a rapidly developing technique for structural proteomics. Cross-linked proteins are usually digested with trypsin to generate cross-linked peptides, which are then analyzed by mass spectrometry. The most informative cross-links, the interpeptide cross-links, are often large in size, because they consist of two peptides that are connected by a cross-linker. In addition, trypsin targets the same residues as amino-reactive cross-linkers, and cleavage will not occur at these cross-linker-modified residues. This produces high molecular weight cross-linked peptides, which complicates their mass spectrometric analysis and identification. In this paper, we examine a nonspecific protease, proteinase K, as an alternative to trypsin for cross-linking studies. Initial tests on a model peptide that was digested by proteinase K resulted in a "family" of related cross-linked peptides, all of which contained the same cross-linking sites, thus providing additional verification of the cross-linking results, as was previously noted for other post-translational modification studies. The procedure was next applied to the native (PrP(C)) and oligomeric form of prion protein (PrPβ). Using proteinase K, the affinity-purifiable CID-cleavable and isotopically coded cross-linker cyanurbiotindipropionylsuccinimide and MALDI-MS cross-links were found for all of the possible cross-linking sites. After digestion with proteinase K, we obtained a mass distribution of the cross-linked peptides that is very suitable for MALDI-MS analysis. Using this new method, we were able to detect over 60 interpeptide cross-links in the native PrP(C) and PrPβ prion protein. The set of cross-links for the native form was used as distance constraints in developing a model of the native prion protein structure, which includes the 90-124-amino acid N-terminal portion of the protein. Several cross-links were unique to each form of the prion protein, including a Lys(185)-Lys(220) cross-link, which is unique to the PrPβ and thus may be indicative of the conformational change involved in the formation of prion protein oligomers.  相似文献   

20.
Nonstructural protein 3 (Nsp3) is an essential subunit of the alphavirus RNA replication complex, although its specific function(s) has yet to be well defined. Previously, it has been shown that Semliki Forest virus Nsp3 (482 amino acids) is a phosphoprotein, and, in the present study, we have mapped its major phosphorylation sites. Mass spectrometric methods utilized included precursor ion scanning, matrix-assisted laser desorption/ionization mass spectrometry used in conjunction with on-target alkaline phosphatase digestions, and tandem mass spectrometry. Two-dimensional peptide mapping was applied to separate tryptic (32)P-labeled phosphopeptides of Nsp3. Radiolabeled peptides were then subjected to Edman sequencing, and phosphoamino acid analysis. In addition, radiolabeled Nsp3 was cleaved successively with cyanogen bromide and trypsin, and microscale iron-chelate affinity chromatography was used to enrich phosphopeptides. By combining these methods, we showed that Nsp3 is phosphorylated on serine residues 320, 327, 332, 335, 356, 359, 362, and 367, and is heavily phosphorylated on peptide Gly(338)-Lys(415), which carries 7-12 phosphates distributed over its 13 potential phosphorylation sites. These analytical findings were corroborated by constructing a Nsp3 derivative devoid of phosphorylation. The results represent the first determination of phosphorylation sites of an alphavirus nonstructural protein, but the approach can be utilized in phosphoprotein analysis in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号