首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phospholipase C (PLC) pathway is the major signaling mechanism of photoactivation in invertebrate photoreceptors. Here we report the cloning of a cDNA encoding a 140-kDa retinal PLC that is uniquely expressed in squid photoreceptors. This cDNA encodes a protein with multiple distinct modular domains: PH, X and Y catalytic, and C2 domains, as well as G- and P-box motifs and two GTP/ATP binding motifs. The PLC was stimulated by activated squid Gq alpha but not by squid Gq beta gamma or mammalian beta gamma subunits. The PLC was inhibited by monophosphate, diphosphate and triphosphate nucleotides but not cyclic nucleosides. We also tested the ability of PLC-140 to regulate the GTPase activity of Gq alpha in the rhabdomeric membranes. Depletion of PLC-140 from the rhabdomeric membranes decreased the GTP hydrolysis but not GTP gamma S binding to the membranes. Reconstitution of purified PLC-140 with membranes accelerated Gq alpha GTPase activity by fivefold at a concentration of 2.5 microM. Our data suggest that PLC-140 plays an important role in both the activation and inactivation pathways of invertebrate visual transduction.  相似文献   

2.
Heterotrimeric GTP-binding proteins (G proteins) play an important role in phototransduction. The presence of G-protein subclasses has been reported in photoreceptive membranes, e.g., the Gi subgroup (transducin) in vertebrate rods, and the Gq subgroup in the eyes of the Arthropoda and the Mollusca. We examined the immunoreactivity and distribution of a Gq homologue in the cerebral ocelli of Perinereis brevicirris (Polychaeta, Annelida) using an anti-GqC antibody raised against a conserved sequence at the C-terminal of the alpha-subunit of Gq (Gq-alpha). The anti-GqC antibody labeled a 48-kDa band on the Western blot of proteins from the Perinereis ocelli. The anti-GtC antibody, which is raised against the C-terminal sequence of bovine transducin alpha-subunit (Gt-alpha), did not cross-react to the ocellar proteins of Perinereis. The rhabdomeric layers of the anterior and posterior ocelli were strongly labeled by anti-GqC on light-microscopic immunohistology. Immunoelectron microscopy showed that the Gq molecules were specifically localized in the photoreceptive membrane of the rhabdomeric microvilli. These results suggest that the Gq protein plays a role in the phototransduction of the Perinereis ocelli.  相似文献   

3.
In crayfish photoreceptor cells, Gq-type G-protein plays a central role in the phototransduction pathway, and the translocation of Gqα has been proposed as one of the molecular mechanisms to control photoreceptor sensitivity. We here investigated β subunit of Gq and its localization profiles under various light conditions in the crayfish photoreceptor cells to understand the functional characteristic of visual Gq in the phototransduction pathway. An immunoprecipitation experiment was performed using an anti-Gqα antibody and a thiol-cleavable crosslinker. A 39 kDa protein was co-immunoprecipitated with Gqα, but not by irradiation, in the presence of GTPγS. The partial amino acid sequence of the 39 kDa protein was similar to Gβe in Drosophila photoreceptors, indicating that the crayfish Gβ which combines with Gqα is a Gβe homologue. Immunohistochemical and immunoblot analyses revealed that the amount of the Gβ decreased in the rhabdomeric membranes and increased in the cytoplasm in the light, compared with that in the dark. The profile of the translocation was similar to that reported for Gqα. Since both α and βγ subunits are necessary for G-proteins to be activated by rhodopsin in the rhabdom, the light-modulated translocation of a Gβe homologue possibly controls the amount of Gq which can be activated by light-stimulated rhodopsin. Accepted: 27 June 1998  相似文献   

4.
Photoactivation of invertebrate rhodopsin activates a GTP-binding protein, Gq, which in turn activates a phospholipase C (PLC) enzyme. Gqalpha is a membrane-associated protein that is progressively released from the membrane by washing with buffers containing increasing concentrations of beta-mercaptoethanol (beta-ME). Isolated, soluble Gqalpha showed a decreased ability to be activated by rhodopsin but was more active in stimulating PLC when compared with the membrane-associated form of Gqalpha. The calcium-activated protease, calpain, selectively cleaved the soluble but not the membrane-bound form of Gqalpha. Calpain cleaved a small peptide from the amino-terminus of Gqalpha reducing the ability of the G-protein to bind GTP. The uncoupling of Gqalpha from rhodopsin and subsequent calcium-dependent proteolysis to further inactivate the G-protein may therefore be a regulatory mechanism of light adaptation in rhabdomeric photoreceptors.  相似文献   

5.
Rhodopsin (P, lambda max 480 nm) of blowfly photoreceptors R1-6 is converted by light into a thermally stable metarhodopsin (M, lambda max 565 nm). In isolated blowfly rhabdoms photoconversion of P to M affects bacterial toxin-catalyzed ADP-ribosylation of a 41-kDa protein, activates phosphorylation of opsin and induces the binding of a 48-kDa phosphoprotein to the rhabdomeric membrane. ADP-ribosylation of the 41-kDa protein is catalyzed by cholera toxin and is inhibited by P----M conversion. The 41-kDa protein might represent the alpha-subunit of the G-protein, proposed to be part of the phototransduction mechanism [Blumenfeld, A. et al. (1985) Proc. Natl Acad. Sci. USA 82, 7116-7120]. P----M conversion leads to phosphorylation of opsin at multiple binding sites: up to 4 mol phosphate are bound/mol M formed. Dephosphorylation of the phosphate binding sites is induced by photoconversion of M to P. High levels of calcium (2 mM) inhibit phosphorylation of M and increase dephosphorylation of P. Protein patterns obtained by sodium dodecyl sulfate gel electrophoresis of irradiated retina membranes show an increased incorporation of label from [gamma-32P]ATP also into protein bands of 48 kDa, 68 kDa and 200 kDa. Binding studies reveal that in the case of the 48-kDa protein this effect is primarily due to a light-induced binding of the protein to the photoreceptor membrane. The binding of the 48-kDa phosphoprotein is reversible: after M----P conversion the protein becomes extractable by isotonic buffers. These data suggest that in rhabdomeric photoreceptors of invertebrates light-activation of rhodopsin is coupled to an enzyme cascade in a similar way as in the ciliary photoreceptors of vertebrates, although there may be differences, e.g. in the type of G-protein which mediates between the activated state of metarhodopsin and a signal-amplifying enzyme reaction.  相似文献   

6.
7.
K Shaw  J H Exton 《Biochemistry》1992,31(27):6347-6354
Phosphoinositide phospholipase C (PLC) activity extracted from bovine liver plasma membranes with sodium cholate was stimulated by GTP gamma S-activated G alpha q/G alpha 11, whereas the enzyme from liver cytosol was not. The membrane-associated PLC was subjected to chromatography on heparin-Sepharose, Q Sepharose, and S300HR, enabling the isolation of the G-protein stimulated activity and its resolution from PLC-gamma and PLC-delta. Following gel filtration, two proteins of 150 and 140 kDa were found to correspond to the activatable enzyme. These proteins were identified immunologically as members of the PLC-beta family and were completely resolved by chromatography on TSK Phenyl 5PW. The 150-kDa enzyme was markedly responsive to GTP gamma S-activated alpha-subunits of G alpha q/G alpha 11 or to purified Gq/G11 in the presence of GTP gamma S. The response of this PLC was of much greater magnitude than that of the 140-kDa enzyme. The partially purified 150-kDa enzyme showed specificity for PtdIns(4,5)P2 and PtdIns4P as compared to PtdIns and had an absolute dependence upon Ca2+. These characteristics were similar to those of the brain PLC-beta 1. The immunological and biochemical properties of the 150-kDa membrane-associated enzyme are consistent with its being the PLC-beta isozyme that is involved in receptor-G-protein-mediated generation of inositol 1,4,5-triphosphate in liver.  相似文献   

8.
The two fundamental types of photoreceptor cells have evolved unique structures to expand the apical membrane to accommodate the phototransduction machinery, exemplified by the cilia-based outer segment of the vertebrate photoreceptor cell and the microvilli-based rhabdomere of the invertebrate photoreceptor. The morphogenesis of these compartments is integral for photoreceptor cell integrity and function. However, little is known about the elementary cellular and molecular mechanisms required to generate these compartments. Here we investigate whether a conserved cellular mechanism exists to create the phototransduction compartments by examining the functional role of a photoreceptor protein common to both rhabdomeric and ciliated photoreceptor cells, Prominin. First and foremost we demonstrate that the physiological role of Prominin is conserved between rhabdomeric and ciliated photoreceptor cells. Human Prominin1 is not only capable of rescuing the corresponding rhabdomeric Drosophila prominin mutation but also demonstrates a conserved genetic interaction with a second photoreceptor protein Eyes Shut. Furthermore, we demonstrate the Prominin homologs in vertebrate and invertebrate photoreceptors require the same structural features and post-translational modifications for function. Moreover, expression of mutant human Prominin1, associated with autosomal dominant retinal degeneration, in rhabdomeric photoreceptor cells disrupts morphogenesis in ways paralleling retinal degeneration seen in ciliated photoreceptors. Taken together, our results suggest the existence of an ancestral Prominin-directed cellular mechanism to create and model the apical membranes of the two fundamental types of photoreceptor cells into their respective phototransduction compartments.  相似文献   

9.
10.
11.
Mice were immunized with the isolated C-terminal heat-induced fragment of human alpha 2-macroglobulin (alpha 2M) and the spleens were used to prepare hybridomas. A monoclonal antibody (Mab) designated F17D5 was selected for further characterization. The epitope defined by Mab F17D5 was not expressed on alpha 2M, on alpha 2M-methylamine, or on alpha 2M-proteinase complexes. On the other hand, the antibody reacted avidly with denatured human alpha 2M and with some types of alpha 2M from other species, including mouse, on nitrocellulose-immunoblotting. The epitope of Mab F17D5 was mapped to less than 250 residues C-terminal of the internal thiolester of human alpha 2M. This was based on CNBr fragmentation of the 60 kDa C-terminal heat-fragment and on peptide mapping of alpha 2M, derivatized at the internal thiolester GLX-residue with 125I-labeled histamine. Murine alpha 2M was confirmed to contain two types of subunit: a 185 kDa subunit and a combination of 165 kDa and 35 kDa polypeptides. By partial disulfide bond reduction, heat-fragmentation and immunoblotting with Mab F17D5, the structure of murine alpha 2M was compared to that of human alpha 2M. The F17D5-epitope was mapped to a 30 kDa heat-induced fragment, which was released by denaturation without reduction. This fragment contained an intrachain disulfide bridge. By analogy with human alpha 2M, the 35 kDa subunit would be located at the C-terminal end of murine alpha 2M, disulfide-bonded to the major 165 kDa subunit.  相似文献   

12.
A 2 kilobase pair cDNA coding for the entire C-terminal catalytic domain of rat poly(ADP-ribose)polymerase has been expressed in E. coli. The overproduced 55 kDa polypeptide is active in synthesizing poly(ADP-ribose) and the 4 kDa N-terminal region of this domain is recognized by the monoclonal antibody C I,2 directed against the calf enzyme. Also, the minor alpha-chymotrypsin cleavage site found in the human catalytic domain is not present in the rat enzyme as revealed by the absence of the 40 kDa specific degradation product in the E. coli cells expressing the rat domain. The expression of this partial rat cDNA should thus permit the rapid purification and subsequent crystallization of the catalytic domain of the enzyme.  相似文献   

13.
Song ES  Cady C  Fried MG  Hersh LB 《Biochemistry》2006,45(50):15085-15091
Treatment of an N-terminal-containing His6-tagged insulysin (His6-IDE) with proteinase K led to the initial cleavage of the His tag and linker region. This was followed by C-terminal cleavages resulting in intermediate fragments of approximately 95 and approximately 76 kDa and finally a relatively stable approximately 56 kDa fragment. The approximately 76 and approximately 56 kDa fragments exhibited a low level of catalytic activity but retained the ability to bind the substrate with a similar affinity as the native enzyme. The kinetics of the reaction of the IDE approximately 76 and approximately 56 kDa proteolytic fragments with a synthetic fluorogenic substrate produced hyperbolic substrate versus velocity curves, rather than the sigmoidal curve obtained with His6-IDE. The approximately 76 and approximately 56 kDa IDE proteolytic fragments were active toward the physiological peptides beta-endorphin, insulin, and amyloid beta peptide 1-40. Although activity was reduced by a factor of approximately 103-104 with these substrates, the relative activity and the cleavage sites were unchanged. Both the approximately 76 and approximately 56 kDa fragments retained the regulatory cationic binding site that binds ATP. Thus, the two proteinase K cleavage fragments of IDE retain the substrate- and ATP-binding sites but have low catalytic activity and lose the allosteric kinetic behavior of IDE. These data suggest a role of the C-terminal region of IDE in allosteric regulation.  相似文献   

14.
15.
Mature endothelial lipase (EL) is a 68 kDa glycoprotein. In HepG2 cells infected with adenovirus encoding human EL, the mature EL was detectable in the cell lysates and heparin-releasable fractions. In contrast, cell media of these cells contained two EL fragments: an N-terminal 40 kDa fragment and a C-terminal 28 kDa fragment. N-terminal protein sequencing of the His-tagged 28 kDa fragment revealed that EL is cleaved on the C terminus of the sequence RNKR330, the consensus cleavage sequence for mammalian proprotein convertases (pPCs). Replacement of Arg-330 with Ser by site-directed mutagenesis totally abolished EL processing. EL processing could efficiently be attenuated by specific inhibitors of pPCs, alpha1-antitrypsin Portland (alpha1-PDX) and alpha1-antitrypsin variant AVRR. Coexpression of the pPCs furin, PC6A, and PACE4 with EL resulted in a complete conversion of the full-length EL to a truncated 40 kDa fragment. Exogenously added EL was also processed by cells, and the processing could be attenuated by alpha1-PDX. The expressed N-terminal 40 kDa fragment of EL (EL-40) harboring the catalytic site failed to hydrolyze [14C]NEFA from [14C]dipalmitoyl-PC-labeled HDL. EL-40 was incapable of bridging 125I-labeled HDL to the cells and had no impact on plasma lipid concentration when overexpressed in mice. Thus, our results demonstrate that pPCs are involved in the inactivation process of EL.  相似文献   

16.
Soybean lipoxygenase 1 was studied using limited proteolysis and active-site labeling to begin the structural characterization of the enzyme in solution. The serine proteases trypsin and chymotrypsin cleaved the large monomeric protein (95 kDa) into two large polypeptides, a C-terminal fragment of about 30 kDa and an N-terminal fragment of about 60 kDa. Under conditions that led to complete cleavage of the protein as judged by SDS-polyacrylamide gel electrophoresis, the catalytic activity of the protein was either reduced slightly (chymotrypsin) or enhanced (trypsin). The characteristics of the cleaved enzymes were the same as for native lipoxygenase 1 in all aspects examined: insensitivity to cyanide, fluoride, and EDTA, regiochemical and stereochemical consequences of catalysis, and EPR spectroscopy upon oxidation by product. The two fragments apparently were tightly associated as they could not be resolved under conditions which preserved the catalytic activity. Both native and protease-cleaved lipoxygenase 1 formed covalent adducts when treated with either 14C-phenylhydrazine or 4-nitrophenylhydrazine. The label was found only in the 60-kDa fragment and following complete trypsin digestion was associated with a peptide beginning after Lys-482 in the primary sequence. Therefore labeling occurred in the vicinity of the conserved histidine cluster which has been postulated as the iron-binding site. From these observations it appears that lipoxygenase 1 exists as a pair of tightly associated domains with the iron-binding site located in the larger of the two.  相似文献   

17.
Slessareva JE  Graber SG 《Biochemistry》2003,42(24):7552-7560
The molecular basis for selectivity of M1 and M2 muscarinic receptor coupling to heterotrimeric G proteins has been studied using receptors expressed in Sf9 cell membranes and reconstituted with purified chimeric G(alpha) subunits containing different regions of Gi1alpha and Gq(alpha). The abilities of G protein heterotrimers containing chimeric alpha subunits to stabilize the high-affinity state of the receptors for agonist and to undergo receptor stimulated guanine nucleotide exchange was compared with G protein heterotrimers containing either native Gi1alpha or Gq(alpha). The data confirm the importance of the proper context of the C-terminus of Galpha by demonstrating that the C-terminus of Gi1alpha, when placed in the context of Gq(alpha), prevents coupling to muscarinic M1 receptors, while the C-terminus of Gq(alpha), when placed in the context of Gi1alpha, prevents coupling to muscarinic M2 receptors. However, C-terminal amino acids of Gq(alpha) placed in the context of Gi1alpha were not sufficient to allow M1 receptor coupling, nor were C-terminal amino acids of Gi1alpha placed in the context of Gq(alpha) sufficient for M2 receptor coupling. The unique six amino acid N-terminal extension of Gq(alpha) when added to the N-terminus of Gi1alpha neither prevented M2 receptor coupling nor permitted M1 receptor coupling. A Gi1alpha-based chimera containing both N- and C-terminal regions of Gq(alpha) gained the ability to productively couple M1 receptors suggesting that the proper context of both N- and C-termini is required for muscarinic receptor coupling.  相似文献   

18.
Mutations in the norpA gene drastically affect the phototransduction process in Drosophila. To study the biochemical characteristics of the norpA protein and its cellular and subcellular distributions, we have generated antisera against the major gene product of norpA. The antisera recognize an eye-specific protein of 130-kDa relative molecular mass that is present in wild-type head extracts but not in those of strong norpA mutants. The protein is associated with membranes and can be extracted with high salt. Immunohistochemical analysis at the light and electron microscopic levels indicates that the protein is expressed in all adult photoreceptor cells and specifically localized within the rhabdomeres, preferentially adjacent to, but not within, the rhabdomeric membranes. The results of the present study strongly support the previous suggestion that the norpA gene encodes the major phosphoinositol-specific phospholipase C in the photoreceptors. Moreover, insofar as the rhabdomeres are specialized structures for photoreception and phototransduction, specific localization of the norpA protein within these structures, in close association with the membranes, is consistent with the proposal that it has an important role in phototransduction.  相似文献   

19.
Vision is one of the most important senses for vertebrates. As a result, vertebrates have evolved a highly organized system of retinal photoreceptors. Light triggers an enzymatic cascade, called the phototransduction cascade, that leads to the hyperpolarization of photoreceptors. It is expected that a systematic comparison of phototransduction cascades of various vertebrates can provide insights into the diversity of vertebrate photoreceptors and into the evolution of vertebrate vision. However, only a few attempts have been made to compare each phototransduction protein participating in this cascade. Here, we determine phylogenetic trees of the vertebrate phototransduction proteins and compare them. It is demonstrated that vertebrate opsin sequences fall into five fundamental subfamilies. It is speculated that this is crucial for the diversity of the spectral sensitivity observed in vertebrate photoreceptors and provides the vertebrates with the molecular tools to discriminate the color of incident light. Other phototransduction proteins can be classified into only a few subfamilies. Cones generally share isoforms of phototransduction proteins that are different from those found in rods. The difference in sensitivity to light between rods and cones is likely due to the difference in the molecular properties of these isoforms. The phototransduction proteins seem to have co-evolved as a system. Switching the expression of these isoforms may characterize individual vertebrate photoreceptors.  相似文献   

20.
Two types of microvillar photoreceptors in the neural tube of amphioxus, an early chordate, sense light via melanopsin, the same photopigment as in "circadian" light detectors of higher vertebrates. Because in amphioxus melanopsin activates a G(q)/phospholipase C cascade, like phototransduction in arthropods and mollusks, possible commonalities in the photoconductance were investigated. Unlike other microvillar photoreceptors, reversal of the photocurrent can only be attained upon replacement of extracellular Na(+). In addition to Na(+), Ca(2+) is also permeant, as indicated by the fact that (a) in normal ionic conditions the photocurrent remains inward at V(m) > E(Na); (b) in Na-free solution a small residual inward photocurrent persists at V(m) near resting level, provided that Ca is present; and (c) V(rev) exhibits a modest shift with [Ca](o) manipulations. The unusual reversal is accounted for by an uncommonly low permeability of the light-dependent channels to K(+), as [K](o) only marginally affects the photocurrent amplitude and its reversal. Lanthanum and ruthenium red (RuR), two TRP channel antagonists, reversibly suppress the response to photostimulation of moderate intensity; therefore, the melanopsin-initiated cascade may recruit ion channels of the same family as those of rhabdomeric photoreceptors. With brighter lights, blockage declines, so that both La(3+) and RuR induce a right shift in the sensitivity curve without a reduction of its asymptote. Nonetheless, an effect on the transduction cascade, rather than the channels, was ruled out on the basis of the voltage dependency of the blockade and the lack of effects of intracellular application of the same substances. The mechanisms of action of these antagonists thus entail a state-dependent blockade, with a higher affinity for the channel in the closed conformation. Collectively, the results indicate a kinship of the light-sensitive channels of amphioxus with those of invertebrate rhabdomeric visual cells and support the representation of this lineage of photoreceptors among chordates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号