首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The compartmentation of solutes in suspension cells of Saccharum sp. during different growth phases in batch culture was determined using CuCl2 to permeabilize the plasma membrane of the cells. The efflux of cytosolic and vacuolar pools of sugars, cations and phosphate was monitored, and the efflux data for phosphate were compared and corrected using data from compartmentation analysis of phosphate as determined by 31P-nuclear magnetic resonance spectroscopy. The results show that sucrose is not accumulated in the vacuoles at any phase of the growth cycle. On the other hand, glucose and fructose are usually accumulated in the vacuole, except at the end of the cell-culture cycle when equal distribution of glucose and fructose between the cytosol and the vacuole is found. Both Na+ and Mg2+ are preferentially located in the vacuoles, but follow the same tendency as glucose and fructose with almost complete location in the vacuole in the early culture phases and increasing cytosolic concentration with increasing age of the cell culture. Potassium ions are always clearly accumulated in the cytosol at a concentration of about 80 mM; only about 20% of the cellular K+ is located inside the vacuole. Cytosolic phosphate is little changed during the cell cycle, whereas the vacuolar phosphate pool changes according to total cellular phosphate. In general there are two different modes of solute compartmentation in sugarcane cells. Some solutes, fructose, glucose, Mg2+ and Na+, show high vacuolar compartmentation when the total cellular content of the respective solute is low, whereas in the case of ample supply the cytosolic pools increase. For other solutes, phosphate and K+, the cytosolic concentration tends to be kept constant, and only excess solute is stored in the vacuole and remobilized under starvation conditions. The behaviour of sucrose is somewhat intermediate and it appears to equilibrate easily between cytosol and vacuole.Abbreviation NMR nuclear magnetic resonance The very cooperative help by Dr. J. Reiner with the 31P-NMR measurements and the technical assistance by D. Keis are gratefully acknowledged. This research was supported by the Deutsche Forschungsgemeinschaft and by Fonds der Chemischen Industrie.  相似文献   

2.
Treatment ofNeurospora crassamycelia with cupric ion has been shown to permeabilize the plasma and mitochondrial membranes. Permeabilized mycelia were shown to take up arginine into the vacuoles. Uptake was ATP-independent and appeared to be driven by an existing K+-gradient. The kinetic characteristics of the observed uptake were similar to those observed using vacuolar membrane vesicles: theKmfor arginine uptake was found to be 4.2–4.5 mM. Permeabilized mycelia were used to study the regulation of arginine uptake into vacuoles. The results suggest that uptake is relatively indifferent to the contents of the vacuoles and is not affected by growth of mycelia in amino acid-supplemented medium. Efflux of arginine, lysine, and ornithine from vacuoles was also measured using mycelia permeabilized with cupric ion. Arginine release was shown to be specifically enhanced by cytosolic ornithine and/or increases in the vacuolar pool of arginine or ornithine. Lysine efflux was shown be indifferent to the presence of other amino acids. These observations emphasize the importance of vacuolar compartmentation in controlling arginine and ornithine metabolism and suggest that vacuolar compartmentation may play an important role in nitrogen homeostasis of filamentous fungi.  相似文献   

3.
The chemical composition of rainwater is altered upon its passage through tree canopies. In order to investigate how rainwater chemistry is affected by canopy-dependent processes in characteristic forest types of Northwest German sandy lowland regions – oak–birch-forests, Betula pubescens Ehrh. swamp forests, and stands of Pinus sylvestris L. – comparative studies on the chemical composition of throughfall were carried out at seven forest sites, situated in close proximity within a nature reserve. Additionally, rainwater was sampled at three heathland sites for analysis of open-field precipitation and at three sites along an oak–birch-forest edge. Throughfall concentrations of most of the parameters analysed were significantly higher than open-field concentrations, especially with regard to electric conductivity, NH4-N, K+, and KMnO4-index. Ion concentrations in throughfall were the lowest in a 10-year-old stand of Betula pendula Roth. and Pinus sylvestris and in a Betula pubescens swamp forest and were highest beneath a stand of Pinus sylvestris. Except for Na+, Cl, and NO3, ion concentrations in both throughfall and open-field precipitation increased during the growing season (May–October). In throughfall, Ca2+, Mg2+, K+, and Mn2+ were strongly correlated. Enrichment ratios between throughfall and open-field deposition varied among sites and elements and were the highest for K‰+, Mg2‰+, and Mn2‰+. Estimates of canopy leaching indicated high leaching rates of K‰+ and Mn2‰+ and moderate leaching of Mg2‰+. The contribution of foliar leaching to throughfall deposition was higher at the deciduous than at the coniferous stands.  相似文献   

4.
Inorganic pyrophosphatase (E.C. 3.6.1.1) of Acinetobacter johnsonii210A was purified 200-fold to apparent homogeneity. The enzyme catalyzedthe hydrolysis of inorganic pyrophosphate and triphosphate to orthophosphate.No activity was observed with other polyphosphates and a wide variety oforganic phosphate esters. The molecular mass of the enzyme was estimatedto be 141 kDa by gelfiltration. Sodium dodecyl sulfate-polyacrylamide gelelectrophoresis indicated a subunit composition of six identical polypeptideswith a molecular mass of 23 kDa. The cation Mg2 was required foractivity, the activity with Mn2, Co2 and Zn2 was 48, 48 and 182% of the activity observed with Mg2, respectively. The enzyme was heat-stable and inhibited by fluoride and iodoacetamide. The analysis of the kinetic properties of the enzyme revealed an apparent Km for pyrophosphate of 0.26 mM. In A. johnsonii 210A, pyrophosphatase may be involved in the degradation of high-molecular polyphosphates under anaerobic conditions: (i) it catalyses the further hydrolysis of pyrophosphate and triphosphate formed from high-molecular weight polyphosphates by the action of exopolyphosphatase, and (ii) it abolishes the inhibition of polyphosphate: AMP phosphotransferase-mediated degradation by pyrophosphate and triphosphate.  相似文献   

5.
Wang X  Chi Z  Yue L  Li J 《Current microbiology》2007,55(5):396-401
The molecular mass of the purified killer toxin from the marine killer yeast YF07b was estimated to be 47.0 kDa. The optimal pH and temperature of the purified killer toxin were 4.5 and 40°C, respectively. The toxin was activated by Ca2+, K+, Na+, Mg2+, Na+, and Co2+. However, Fe2+, Fe3+, Hg2+, Cu2+, Mn2+, Zn2+, and Ag+ acted as inhibitors in decreasing activity of the toxin. The toxin was strongly inhibited by phenylmethanesulphonyl fluoride (PMSF), iodoacetic acid, ethylenediaminetetraacetic acid, and 1,10-phenanthroline. The Km of the toxin for laminarin was 1.17 g L−1. The toxin also actively hydrolyzed laminarin and killed the whole cells of the pathogenic yeast in crab.  相似文献   

6.
Quantitative ion localization within Suaeda maritima leaf mesophyll cells   总被引:2,自引:0,他引:2  
Grown under saline conditions, Suaeda maritima accumulates Na+ and Cl- into its leaves, where individual mesophyll cells behave differently in their compartmentation of these ions. Measurements of ion concentrations within selected subcellular compartments show that freeze-substitution with dry sectioning is a valuable preparative technique for analytical electron microscopy of highly vacuolate plant material. Using this approach, absolute estimates were made of Na+, K+ and Cl- concentrations in the cytoplasm, cell walls, chloroplasts and vacuoles of leaf mesophyll cells.Abbreviation TAEM transmission analytical electron microscopy  相似文献   

7.
Phosphatase activity of a kidney (Na + K)-ATPase preparation was optimally active with Mg2+ plus K+. Mn2+ was less effective and Ca2+ could not substitute for Mg2+. However, adding Ca2+ with Mg2+ or substituting Mn2+ for Mg2+ activated it appreciably in the absence of added K+, and all three divalent cations decreased apparent affinity for K+. Inhibition by Na+ decreased with higher Mg2+ concentrations, when Ca2+ was added, and when Mn2+ was substituted for Mg2+. Dimethyl sulfoxide, which favorsE 2 conformations of the enzyme, increased apparent affinity for K+, whereas oligomycin, which favorsE 1 conformations, decreased it. These observations are interpretable in terms of activation through two classes of cation sites. (i) At divalent cation sites, Mg2+ and Mn2+, favoring (under these conditions)E 2 conformations, are effective, whereas Ca2+, favoringE 1, is not, and monovalent cations complete. (ii) At monovalent cation sites divalent cations compete with K+, and although Ca2+ and Mn2+ are fairly effective, Mg2+ is a poor substitute for K+, while Na+ at these sites favorsE 1 conformations. K+ increases theK m for substrate, but both Ca2+ and Mn2+ decrease it, perhaps by competing with K+. On the other hand, phosphatase activity in the presence of Na+ plus K+ is stimulated by dimethyl sulfoxide, by higher concentrations of Mg2+ and Mn2+, but not by adding Ca2+; this is consistent with stimulation occurring through facilitation of an E1 to E2 transition, perhaps an E1-P to E2-P step like that in the (Na + K)-ATPase reaction sequence. However, oligomycin stimulates phosphatase activity with Mg2+ plus Na+ alone or Mg2+ plus Na+ plus low K+: this effect of oligomycin may reflect acceleration, in the absence of adequate K+, of an alternative E2-P to E1 pathway bypassing the monovalent cation-activated steps in the hydrolytic sequence.  相似文献   

8.
The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K+, Na+, Ca2+, Mg2+, Fe2+, Cu2+, Co2+, Cd2+, Mn2+, Ba2+, Ni2+, Zn2+, and Li+) were analyzed. AtCCX5 expression was found to affect the response to K+ and Na+ in yeast. The AtCCX5 transformant also showed a little better growth to Zn2+. The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K+ (0.5 mM), and also suppressed its Na+ sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K+ uptake and was also involved in Na+ transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K+ uptake and Na+ transport in yeast.  相似文献   

9.
Summary The composition of the vacuolar sap of Chara vulgaris growing in a brackish water lake was estimated weekly over 2 years (1984–1985). The ionic concentrations of the main cations Na+, K+, Ca2+, and Mg2+ and the anion Cl- varied depending on cell age, developmental state, and season. The average of all measurements (in mM) was Na+: 35, K+: 106, Ca2+: 7, Mg2+: 23, Cl-: 101, SO 2- 4 : 20, and PO 3- 4 : 5. At the onset of growth in May/June the ionic content was lower compared to the mean value for the year, steadily increasing until it reached its maximum above the annual mean in winter. During the period of fructification (sexual reproduction: formation of antheridia and oogonia), when up to 100 mM sucrose was accumulated in the vacuolar sap, ionic content was lowest. This resulted in a fairly constant osmotic potential throughout the year. Mg2+ and Ca2+ concentrations were correlated with the physiological age of the cells.  相似文献   

10.
11.
A highly selective alkaloid uptake system in vacuoles of higher plants   总被引:6,自引:0,他引:6  
B. Deus-Neumann  M. H. Zenk 《Planta》1984,162(3):250-260
Vacuoles were isolated from different plant cell cultures and the transport mechanism for alkaloid uptake at the tonoplast membrane, as well as the compartmentation of enzymes and products inside the cells were investigated. While serpentine, the major alkaloid of Catharanthus roseus cells, is definitely located inside the vacuole, two key enzymes of the indole-alkaloid pathway, strictosidine synthase and a specific glucosidase, are located in the cytosol. Transport of alkaloids across the tonoplast into the vacuolar space has been characterized as an active, engergy-requiring mechanism, which is sensitive to the temperature and pH of the surrounding medium, stimulated by K+ and Mg2+, and inhibited by N,N-dicyclohexylcarbodiimid and Cu2+. The alkaloids accumulate inside the vacuoles against a concentration gradient, and the uptake system is specific for alkaloids indigenous to the plant from which the vacuoles have been isolated.Abbreviation DCCD N,N-dicyclohexylcarbodiimid Dedicated to Professor Dr. Hubert Ziegler on the occasion of his 60th birthday  相似文献   

12.
1. Pyruvate kinase (ATP–pyruvate phosphotransferase, EC 2.7.1.40) from Ehrlich ascites-tumour cells was purified approximately fivefold by chromatography on DEAE-cellulose. The enzyme was shown to have an absolute requirement for one univalent and for one bivalent metal ion. 2. The univalent metal ion requirements were satisfied by K+, Rb+ or NH4+; Na+ and Cs+ were weak activators but Li+ was inactive. 3. Ca2+ exhibited `non-competitive' and `apparent competitive' effects in relation to the K+ activation. 4. The bivalent metal ion requirements were satisfied by Mg2+, Mn2+ or Co2+; Ba2+, Sr2+, Ca2+, Ni2+, Be2+ and Cu2+ were inactive. Mn2+ and Co2+ were better activators than Mg2+. 5. The bivalent metal ion requirements of purified pyruvate kinase from rabbit muscle were satisfied by Mg2+, Mn2+, Co2+ and to a smaller extent by Ni2+. Mn2+ and Co2+ were better activators than Mg2+. 6. Ca2+ competitively inhibited the activation by Mg2+, Mn2+ and Co2+ for both the tumour and rabbit enzymes. 7. It is concluded that there are no significant differences in metal ion specificity between the tumour and rabbit enzymes. 8. The possible role of metal ions in regulating enzymic and metabolic activities is considered further.  相似文献   

13.
为探明大果沙枣树体矿质离子渗透调节机制,比较分析了盐渍化生境中1~12a生树的根、枝和叶部主要矿质阳离子的吸收、分配特征。结果表明:(1)大果沙枣树体内Ca~(2+)的积累量最高(13.79 g/kg),K~+次之(5.92 g/kg),Na~+最低(1.00 g/kg);随着树龄的增大,大果沙枣根部的Na~+以及枝和叶部的K~+、Ca~(2+)、Mg~(2+)的积累量均逐渐增大,而根部的K~+含量则逐渐减少;高龄段(10~12a)树体根部的Na~+累积量显著(P0.05)高于中低龄(1~9a)段。(2)大果沙枣树体内K~+/Na~+最大(15.36),Mg~(2+)/Na~+次之(12.25),Ca~(2+)/Na~+最小(10.51),根和枝部的K~+/Na~+均随着树龄的增大而降低,叶部则表现相反。(3)土壤中的K~+和Mg~(2+)向根方向、根部K~+、Mg~(2+)和Ca~(2+)向枝方向以及根部的K~+和Mg~(2+)向叶方向的选择运移系数均随着树龄的增大呈直线上升趋势。(4)土壤中Na~+与根部Na~+含量呈极显著正相关关系(0.687,P0.01),与叶部的K~+含量呈显著正相关(0.605,P0.05);土壤中K~+含量与根部的Na~+、叶部的K~+分别呈显著和极显著正相关(0.544,0.676),与根部的Mg~(2+)呈显著负相关关系(-0.499)。研究发现,大果沙枣树生长过程中主要通过根部对Na~+的聚积作用,以及K~+、Mg~(2+)和Ca~(2+)在枝、叶部的吸收积累来维持植物体离子平衡,以适应盐渍土壤环境。  相似文献   

14.
Vacuoles isolated from storage root tissue of red beet (Beta vulgaris L.) do not leak significant quantities of betanin, sucrose, Na+ or K+ during isolation. This indicates that analysis of vacuoles in vitro gives meanigful information about the compartmentation of solutes in vivo. Preparations of vacouoles were used to determine the distribution of glycinebetaine and proline between vacuole and cytoplasm in beet cells. Both compounds were detected in preparations of isolated beet vacuoles. In the case of glycinebetaine it was shown that this solute was associated with the vacuoles, not with the small number of other organelles which contaminated the preparations. The vacuolar pool accounted for 26 to 84% of the total tissue glycinebetaine and 17 to 57% of the proline. Concentrations of these compounds in vacuole and cytoplasm were calculated and were always higher in the cytoplasm than in the vacuole. The concentration gradient across the tonoplast varied considerably. The significance of these results is discussed in relation to the hypothesis that glycinebetaine and proline function as benign cytoplasmic osmotica.Abbreviations A537 absorbance at 537 nm - MES 2-(N-morpholino)-ethanesulphonic acid - Na2EDTA ethylenediaminetetraacetic acid, disodium salt - SDS sodium dodecyl sulphate - Tris tris(hydroxymethyl)methylamine  相似文献   

15.
Vacuoles were isolated from leaves of Kalanchoë daigremontiana Hamet et Perrier de la Bathie, and the ionic sensitivity of the vacuolar ATPase was studied in vacuole homogenates desalted on Sephadex G-25. The ATPase activity was dependent on the presence of divalent cations (Mg2+≥ Mn2+≥ Ca2+, Co2+; Zn2+ had no effect). Mg2+-dependent ATPase activity was stimulated by anions (Cl? > malate2+, HCO?3), with maximal stimulation at concentrations above 50 mM. Mg2+-Dependent activity was inhibited by NO?3 above 2 mM, but no saturation was observed up to 100 mM. No stimulation by K+ or Na+ was detected; stimulation by NH+4 was abolished by 0.01% (w/v) Triton X-100, suggesting that the NH+4 effect was due to the permeability of vacuolar membrane vesicles to NH3. Trans-tonoplast electrical potentials (Δψ) and intra-vacuolar pH were measured with glass microelectrodes and antimony covered glass micro-pH-electrodes, respectively. Free vacuofes isolated from Kalanchoë tubiflora (Harv.) Hamet were slightly positive with respect to the suspension medium. This Δψ was insensitive to the protonophore FCCP and depolarized by about 4 mV on addition of 50 mM KCl, still remaining about +5 mV. Upon addition of 7 mM Mg-ATP, vacuoles showed an FCCP-sensitive increase of Δψ from +9.2 ± 2.8 (13) to +17.8 ± 3.7 (12) mV [given as x?± sd (n)] and an internal acidification from pH 5.4 ± 0.2 (11) to pH 4.3 ± 0.4 (12). Mg-ADP and ATP without Mg2+ had no effect on Δψ. It is concluded that the H4 pumping at the tonoplast is due to the functioning of the anion-sensitive vacuolar ATPase and that this is an essential part of the mechanism of nocturnal acid accumulation in CAM.  相似文献   

16.
Polyphosphatase, an enzyme which hydrolyses highly polymeric polyphosphates to Pi, was purified 77-fold fromAcinetobacter johnsonii 210A by Q-Sepharose, hydroxylapatite and Mono-Q column chromatography. The native molecular mass estimated by gel filtration and native gel electrophoresis was 55 kDa. SDS-polyacrylamide gel electrophoresis indicated that polyphosphatase ofAcinetobacter johnsonii 210A is a monomer. The enzyme was specific for highly polymeric polyphosphates and showed no activity towards pyrophosphate and organic phosphate esters. The enzyme was inhibited by iodoacetamide and in the presence of 10 mM Mg2+ by pyro- and triphosphate. The apparent Km-value for polyphosphate with an average chain length of 64 residues was 5.9 µM and for tetraphosphate 1.2 mM. Polyphosphate chains were degraded to short chain polymers by a processive mechanism. Polyphosphatase activity was maximal in the presence of Mg2+ and K+.  相似文献   

17.
Gerke  I.  Zierold  K.  Weber  J.  Tardent  P. 《Hydrobiologia》1991,216(1):661-669
The spatial distribution of cations was assayed qualitatively and quantitatively in tentacular nematocytes of Hydra vulgaris in a scanning transmission electron microscope by means of x-ray microanalysis performed on 100 nm thick freeze-dried cryosections. The matrix of undischarged cysts (stenoteles, desmonemes and isorhizas) was found to contain mainly K+. In isolated nematocysts of Hydra the intracapsular potassium can be readily substituted by practically any other mono- and divalent cation (Na+, NH4 +, Mn2+, Co2+, Mg2+, Ca2+, Fe2+) all, except Fe2+, without impairing the ability of the cyst to respond to the chemical triggering with dithioerythritol or proteases. Monovalent cations increase the osmotically generated intracapsular pressure compared to divalent ions.  相似文献   

18.
Azadirachtin (Az), as a botanical insecticide, is relatively safe and biodegradable. It affects a wide vaariety of biological processes, including the reduction of feeding, suspension of molting, death of larvae and pupae, and sterility of emerged adults in a dose-dependent manner. However, the mode of action of this toxin remains obscure. By using ion chromatography, we analyzed changes in six inorganic cation (Li+, Na+, NH4 +, K+, Mg2+, and Ca2+) distributions of the whole body and hemolymph in Ostrinia furnacalis (G.) after exposure to sublethal doses of Az. The results showed that Az dramatically interfered with Na+, NH4 +, K+, Mg2+, and Ca2+ distributions in hemolymph of O. furnacalis (G.) and concentrations of these five cations dramatically increased. However, in the whole body, the levels of K+, Mg2+, and Ca2+ significantly, decreased after exposure to Az, except that Na+ and NH4 + remained constant. Li+ was undetected in both the control and treated groups in the whole body and hemolymph. It is suggested that Az exerts its insecticidal effects on O. furnacalis (G.) by interfering with the inorganic cation distributions related to ion channels.  相似文献   

19.
The interactions of divalent cations with the adenosine triphosphatase (ATPase) and para-nitrophenyl phosphatase (pNPPase) activity of the purified dog kidney Na pump and the fluorescence of fluorescein isothiocyanate (FITC)-labeled pump were determined. Sr2+ and Ba2+ did not compete with K+ for ATPase (an extracellular K+ effect). Sr2+ and Ba2+ did compete with Na+ for ATPase (an intracellular Na+ effect) and with K+ for pNPPase (an intracellular K+ effect). These results suggest that Ba2+ or Sr2+ can bind to the intracellular transport site, yet neither Ba2+ nor Sr2+ was able to activate pNPPase activity; we confirmed that Ca2+ and Mn2+ did activate. As another measure of cation binding, we observed that Ca2+ and Mn2+, but not Ba2+, decreased the fluorescence of the FITC-labeled pump; we confirmed that K+ substantially decreased the fluorescence. Interestingly, Ba2+ did shift the K+ dose-response curve. Ethane diamine inhibited Mn2+ stimulation of pNPPase (as well as K+ and Mg2+ stimulation) but did not shift the 50% inhibitory concentration (IC50) for the Mn2+-induced fluorescence change of FITC, though it did shift the IC50 for the K+-induced change. These results suggest that the Mn2+-induced fluorescence change is not due to Mn2+ binding at the transport site. The drawbacks of models in which Mn2+ stimulates pNPPase by binding solely to the catalytic site vs. those in which Mn2+ stimulates by binding to both the catalytic and transport sites are presented. Our results provide new insights into the pNPPase kinetic mechanism as well as how divalent cations interact with the Na pump.  相似文献   

20.
5-Iodoacetamidofluorescein (5-IAF) covalently labels dog kidney (Na+ + K+)-ATPase with approximately 2 moles incorporated per mole of enzyme. ATPase and K+-phosphatase activities are fully retained after reaction, and the kinetic parameters for Na+, K+, Mg2+, ATP and p-nitrophenyl phosphate are likewise not significantly affected. The fluorescence of the bound 5-IAF is increased by ATP, Na+, and Mg2+, and decreased by K+. These fluorescence changes likely reflect ligand-induced stabilization of the E1 or E2 states of the enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号