首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The shrub Rosa rugosa (Japanese Rose), native to East Asia, is considered one of the most troublesome invasive plant species in natural or semi-natural habitats of northern Europe and has proven very difficult to control. We aimed at disentangling the species’ invasion history in Europe, including determining the number of introductions and their geographic origin, and at investigating whether populations in the introduced and native ranges differ in genetic diversity, structure and degree of differentiation. We found that introduced (n = 16) and native (n = 16) populations had similar levels of genetic diversity at seven nuclear SSR (microsatellite) loci. European populations lack isolation by distance and are less genetically differentiated than are populations in East Asia. Multiple and at least three independent colonization events, one of which was particularly successful, gave rise to current R. rugosa populations in Europe. The geographic distribution patterns of these three genetic clusters could not be explained by natural dispersal alone, indicating that human mediated secondary dispersal is driving the expansion in Europe. One cluster representing three of the European populations was most likely derived from NW Japan, whereas the origin of the remaining thirteen populations could not clearly be resolved. The introduction and expansion in Europe occurred with no significant loss of genetic diversity. We conclude that high propagule pressure at the primary establishment phase is the most parsimonious explanation for this pattern. A potential for long distance seed dispersal, coastal habitat connectivity and an outcrossing breeding system are factors likely to have enabled populations of R. rugosa to avoid detrimental effects of genetic bottlenecks and will further increase the species’ range size and abundance in Europe. We recommend that human-mediated dispersal should be prevented in order to halt the continued expansion.  相似文献   

2.
We have investigated whether regions of the genome showing signs of positive selection in scans based on haplotype structure also show evidence of positive selection when sequence-based tests are applied, whether the target of selection can be localized more precisely, and whether such extra evidence can lead to increased biological insights. We used two tools: simulations under neutrality or selection, and experimental investigation of two regions identified by the HapMap2 project as putatively selected in human populations. Simulations suggested that neutral and selected regions should be readily distinguished and that it should be possible to localize the selected variant to within 40 kb at least half of the time. Re-sequencing of two ~300 kb regions (chr4:158Mb and chr10:22Mb) lacking known targets of selection in HapMap CHB individuals provided strong evidence for positive selection within each and suggested the micro-RNA gene hsa-miR-548c as the best candidate target in one region, and changes in regulation of the sperm protein gene SPAG6 in the other.  相似文献   

3.
The APOBEC3 gene family plays a role in innate cellular immunity inhibiting retroviral infection, hepatitis B virus propagation, and the retrotransposition of endogenous elements. We present a detailed sequence and population genetic analysis of a 29.5-kb common human deletion polymorphism that removes the APOBEC3B gene. We developed a PCR-based genotyping assay, characterized 1,277 human diversity samples, and found that the frequency of the deletion allele varies significantly among major continental groups (global FST = 0.2843). The deletion is rare in Africans and Europeans (frequency of 0.9% and 6%), more common in East Asians and Amerindians (36.9% and 57.7%), and almost fixed in Oceanic populations (92.9%). Despite a worldwide frequency of 22.5%, analysis of data from the International HapMap Project reveals that no single existing tag single nucleotide polymorphism may serve as a surrogate for the deletion variant, emphasizing that without careful analysis its phenotypic impact may be overlooked in association studies. Application of haplotype-based tests for selection revealed potential pitfalls in the direct application of existing methods to the analysis of genomic structural variation. These data emphasize the importance of directly genotyping structural variation in association studies and of accurately resolving variant breakpoints before proceeding with more detailed population-genetic analysis.  相似文献   

4.
Mutations in the gene OCA2 are responsible for oculocutaneous albinism type 2, but polymorphisms in and around OCA2 have also been associated with normal pigment variation. In Europeans, three haplotypes in the region have been shown to be associated with eye pigmentation and a missense SNP (rs1800407) has been associated with green/hazel eyes (Branicki et al. in Ann Hum Genet 73:160-170, 2009). In addition, a missense mutation (rs1800414) is a candidate for light skin pigmentation in East Asia (Yuasa et al. in Biochem Genet 45:535-542, 2007; Anno et al. in Int J Biol Sci 4, 2008). We have genotyped 3,432 individuals from 72 populations for 21 SNPs in the OCA2-HERC2 region including those previously associated with eye or skin pigmentation. We report that the blue-eye associated alleles at all three haplotypes were found at high frequencies in Europe; however, one is restricted to Europe and surrounding regions, while the other two are found at moderate to high frequencies throughout the world. We also observed that the derived allele of rs1800414 is essentially limited to East Asia where it is found at high frequencies. Long-range haplotype tests provide evidence of selection for the blue-eye allele at the three haplotyped systems but not for the green/hazel eye SNP allele. We also saw evidence of selection at the derived allele of rs1800414 in East Asia. Our data suggest that the haplotype restricted to Europe is the strongest marker for blue eyes globally and add further inferential evidence that the derived allele of rs1800414 is an East Asian skin pigmentation allele.  相似文献   

5.
Genotype-Imputation Accuracy across Worldwide Human Populations   总被引:2,自引:0,他引:2  
A current approach to mapping complex-disease-susceptibility loci in genome-wide association (GWA) studies involves leveraging the information in a reference database of dense genotype data. By modeling the patterns of linkage disequilibrium in a reference panel, genotypes not directly measured in the study samples can be imputed and tested for disease association. This imputation strategy has been successful for GWA studies in populations well represented by existing reference panels. We used genotypes at 513,008 autosomal single-nucleotide polymorphism (SNP) loci in 443 unrelated individuals from 29 worldwide populations to evaluate the “portability” of the HapMap reference panels for imputation in studies of diverse populations. When a single HapMap panel was leveraged for imputation of randomly masked genotypes, European populations had the highest imputation accuracy, followed by populations from East Asia, Central and South Asia, the Americas, Oceania, the Middle East, and Africa. For each population, we identified “optimal” mixtures of reference panels that maximized imputation accuracy, and we found that in most populations, mixtures including individuals from at least two HapMap panels produced the highest imputation accuracy. From a separate survey of additional SNPs typed in the same samples, we evaluated imputation accuracy in the scenario in which all genotypes at a given SNP position were unobserved and were imputed on the basis of data from a commercial “SNP chip,” again finding that most populations benefited from the use of combinations of two or more HapMap reference panels. Our results can serve as a guide for selecting appropriate reference panels for imputation-based GWA analysis in diverse populations.  相似文献   

6.
The Haplotype Map (HapMap) project recently generated genotype data for more than 1 million single-nucleotide polymorphisms (SNPs) in four population samples. The main application of the data is in the selection of tag single-nucleotide polymorphisms (tSNPs) to use in association studies. The usefulness of this selection process needs to be verified in populations outside those used for the HapMap project. In addition, it is not known how well the data represent the general population, as only 90–120 chromosomes were used for each population and since the genotyped SNPs were selected so as to have high frequencies. In this study, we analyzed more than 1,000 individuals from Estonia. The population of this northern European country has been influenced by many different waves of migrations from Europe and Russia. We genotyped 1,536 randomly selected SNPs from two 500-kbp ENCODE regions on Chromosome 2. We observed that the tSNPs selected from the CEPH (Centre d'Etude du Polymorphisme Humain) from Utah (CEU) HapMap samples (derived from US residents with northern and western European ancestry) captured most of the variation in the Estonia sample. (Between 90% and 95% of the SNPs with a minor allele frequency of more than 5% have an r2 of at least 0.8 with one of the CEU tSNPs.) Using the reverse approach, tags selected from the Estonia sample could almost equally well describe the CEU sample. Finally, we observed that the sample size, the allelic frequency, and the SNP density in the dataset used to select the tags each have important effects on the tagging performance. Overall, our study supports the use of HapMap data in other Caucasian populations, but the SNP density and the bias towards high-frequency SNPs have to be taken into account when designing association studies.  相似文献   

7.
Interferon lambda 4 gene (IFNL4) encodes IFN-λ4, a new member of the IFN-λ family with antiviral activity. In humans IFNL4 open reading frame is truncated by a polymorphic frame-shift insertion that eliminates IFN-λ4 and turns IFNL4 into a polymorphic pseudogene. Functional IFN-λ4 has antiviral activity but the elimination of IFN-λ4 through pseudogenization is strongly associated with improved clearance of hepatitis C virus (HCV) infection. We show that functional IFN-λ4 is conserved and evolutionarily constrained in mammals and thus functionally relevant. However, the pseudogene has reached moderately high frequency in Africa, America, and Europe, and near fixation in East Asia. In fact, the pseudogenizing variant is among the 0.8% most differentiated SNPs between Africa and East Asia genome-wide. Its raise in frequency is associated with additional evidence of positive selection, which is strongest in East Asia, where this variant falls in the 0.5% tail of SNPs with strongest signatures of recent positive selection genome-wide. Using a new Approximate Bayesian Computation (ABC) approach we infer that the pseudogenizing allele appeared just before the out-of-Africa migration and was immediately targeted by moderate positive selection; selection subsequently strengthened in European and Asian populations resulting in the high frequency observed today. This provides evidence for a changing adaptive process that, by favoring IFN-λ4 inactivation, has shaped present-day phenotypic diversity and susceptibility to disease.  相似文献   

8.
The study reports on chromosomes in several populations of social voles from south-eastern Europe and the Middle East. The standard karyotypes of individuals of Microtus hartingi and Microtus guentheri originating from both south-eastern Europe and Asia Minor comprised 54 mostly acrocentric chromosomes. However, variation between populations was found in the amount and distribution of C-heterochromatin in certain autosomes and the sex chromosomes. Furthermore, a specific pattern of argyrophilic nucleolar organizer region distribution was recorded in different geographic populations. In a population from Asia Minor, a heterozygous centric fusion of two autosomes was found. The G-banded karyotypes of M. guentheri and Microtus socialis were compared, and tandem fusions of autosomes were suggested as possible mechanism of the divergence. The karyotypes of the nine currently recognized species of social voles are reviewed, and implications of chromosomal data for systematics are evaluated.  相似文献   

9.
32-bp inactivating deletion in the β-chemokine receptor 5 (CCR5) gene, common in Nothern European populations, is associated with reduced HIV-1 transmission risk and delayed disease progression. We have studied the deletion distribution in many populations in Eurasia by polymerase chain reaction analysis of 531 DNA samples representing West and East Siberian, Central Asian, and Far Eastern parts of Russia. An unusually high frequency (11.1%) of the deleted variant in natives of West Siberia, of Finno-Ugrian descent, was observed. Furthermore, the deletion was infrequent in indigenous populations of Central Asia, East Siberia, the Russian Far East, and Canada. We conclude that the Δccr5 distribution is limited primarily to Europeans and related western Siberian Finno-Ugrian populations, with a sharp negative gradient toward the east along the territory of Russian Asia. Received: 22 December 1997 / Accepted: 24 March 1998  相似文献   

10.
MYH9 was recently identified as renal susceptibility gene (OR 3–8, p<10−8) for major forms of kidney disease disproportionately affecting individuals of African descent. The risk haplotype (E-1) occurs at much higher frequencies in African Americans (≥60%) than in European Americans (<4%), revealing a genetic basis for a major health disparity. The population distributions of MYH9 risk alleles and the E-1 risk haplotype and the demographic and selective forces acting on the MYH9 region are not well explored. We reconstructed MYH9 haplotypes from 4 tagging single nucleotide polymorphisms (SNPs) spanning introns 12–23 using available data from HapMap Phase II, and by genotyping 938 DNAs from the Human Genome Diversity Panel (HGDP). The E-1 risk haplotype followed a cline, being most frequent within sub-Saharan African populations (range 50–80%), less frequent in populations from the Middle East (9–27%) and Europe (0–9%), and rare or absent in Asia, the Americas, and Oceania. The fixation indexes (FST) for pairwise comparisons between the risk haplotypes for continental populations were calculated for MYH9 haplotypes; FST ranged from 0.27–0.40 for Africa compared to other continental populations, possibly due to selection. Uniquely in Africa, the Yoruba population showed high frequency extended haplotype length around the core risk allele (C) compared to the alternative allele (T) at the same locus (rs4821481, iHs = 2.67), as well as high population differentiation (FST(CEU vs. YRI) = 0.51) in HapMap Phase II data, also observable only in the Yoruba population from HGDP (FST = 0.49), pointing to an instance of recent selection in the genomic region. The population-specific divergence in MYH9 risk allele frequencies among the world''s populations may prove important in risk assessment and public health policies to mitigate the burden of kidney disease in vulnerable populations.  相似文献   

11.
The endosymbiotic α-proteobacteria Wolbachia is widely spread among arthropods and Filariidae nematodes. This bacterium is transmitted vertically via a transovarian route. Wolbachia is a cause of several reproductive abnormalities in the host species. We analyzed the isofemale lines created using flies collected from Drosophila melanogaster natural populations for infection with the endosymbiont Wolbachia. Wolbachia were genotyped according to five variable markers: the presence of insertion sequence IS5 in two loci, the copy number of two minisatellite repeats, and an inversion. Overall, 665 isofemale lines isolated from the populations of D. melanogaster from Ukraine, Belarus, Moldova, Caucasus, Central Asia, Ural, Udmurtia, Altai, West and East Siberia, and Far East in 1974 through 2005 were used in the work. The samples from Ukrainian, Altaian, and Middle Asian populations were largest. The infection rate of D. melanogaster populations from Middle Asia, Altaian, and Eastern Europe (Ukraine, Moldavia, and Belarus) with Wolbachia amounted to 64, 56, and 39%, respectively. The D. melanogaster population from the Caucasus displayed heterogeneity in the genotypes of this cytoplasmic infection. The Wolbachia genotype wMel, detected in all the populations studied, was the most abundant. The genotype wMelCS2 was always present in the populations from Middle Asia and Altai and was among the rare variants in the D. melanogaster populations from the Eastern Europe. Single instances of the Wolbachia genotype wMelCS occurred in a few flies from the Central Asian and Altai populations, but was not found this genotype in the other regions.  相似文献   

12.
Ayala FJ  Balakirev ES  Sáez AG 《Gene》2002,300(1-2):19-29
We have examined the patterns of polymorphism at two linked loci, Sod and Est-6, separated by nearly 1000 kb on the left arm of chromosome 3 of Drosophila melanogaster. The evidence suggests that natural selection has been involved in shaping the polymorphisms. At the Sod locus, a fairly strong (s>0.01) selective sweep, started ≥2600 years ago, increased the frequency of a rare haplotype, F(A), to about 50% frequency in populations of Europe, Asia, and the Americas. More recently, an F(A) allele mutated to an S allele, which has increased to frequencies 5–15% in populations of Europe, Asia and North America. All S alleles are identical (or very nearly) in sequence and differ by one nucleotide substitution (which accounts for the F→S electrophoretic difference) from F(A) alleles. At the Est-6 locus, the evidence indicates both directional and balancing selection impacting separately the promoter and the coding regions of the gene, with linkage disequilibrium occurring within each region. Some linkage disequilibrium also exists between the two genes.  相似文献   

13.
We investigated the frequency of different repeat-length alleles of the trinucleotide CAG microsatellite repeat in the coding sequence of the nuclear gene for the catalytic subunit of mitochondrial DNA polymerase gamma (POLG) in 12 ethnic groups from northern Eurasia. The population sample consisted of 1,330 individuals from 3 large geographic areas: Europe, Southwest Asia, and Siberia/East Asia. We found that the 10-repeat allele of the POLG gene is the most frequent in all analyzed populations, with a frequency of 88-96%. The heterozygosity level ranges from 22% in Europe to 13.6% in Southwest Asia with the lowest value of 7.4% in Siberia/East Asia. The present study provides evidence of clinal distribution of POLG gene heterozygosity in North Eurasian populations. In general, we found an extremely low variability of the trinucleotide CAG microsatellite repeat, suggesting that purifying selection acts against deleterious alleles, although low mutability of the repeated region cannot be ruled out.  相似文献   

14.
Aim  Middle East brown bears ( Ursus arctos syriacus Hemprich and Ehrenberg, 1828) are presently on the edge of extinction. However, little is known of their genetic diversity. This study investigates that question as well as that of Middle East brown bear relationships to surrounding populations of the species.
Location  Middle East region of south-western Asia.
Methods  We performed DNA analyses on 27 brown bear individuals. Twenty ancient bone samples (Late Pleistocene to 20th century) from natural populations and seven present-day samples obtained from captive individuals were analysed.
Results  Phylogenetic analyses of the mitochondrial sequences obtained from seven ancient specimens identify three distinct maternal clades, all unrelated to one recently described from North Africa. Brown bears from Iran exhibit striking diversity (three individuals, three haplotypes) and form a unique clade that cannot be linked to any extant one. Individuals from Syria belong to the Holarctic clade now observed in Eastern Europe, Turkey, Japan and North America. Specimens from Lebanon surprisingly appear as tightly linked to the clade of brown bears now in Western Europe. Moreover, we show that U. a. syriacus in captivity still harbour haplotypes closely linked to those found in ancient individuals.
Main conclusion  This study brings important new information on the genetic diversity of brown bear populations at the crossroads of Europe, Asia and Africa. It reveals a high level of diversity in Middle East brown bears and extends the historical distribution of the Western European clade to the East. Our analyses also suggest the value of a specific breeding programme for captive populations.  相似文献   

15.
Human leukocyte antigen (HLA) plays a critical role in innate and adaptive immunity and is a well-known example of genes under natural selection. However, the genetic aspect of receptors recognizing HLA molecules has not yet been fully elucidated. Leukocyte immunoglobulin (Ig)-like receptors (LILRs) are a family of HLA class I-recognizing receptors comprising activating and inhibitory forms. We previously reported that the allele frequency of the 6.7 kb LILRA3 deletion is extremely high (71%) in the Japanese population, and we identified premature termination codon (PTC)-containing alleles. In this study, we observed a wide distribution of the high deletion frequency in Northeast Asians (84% in Korean Chinese, 79% in Man Chinese, 56% in Mongolian, and 76% in Buryat populations). Genotyping of the four HapMap populations revealed that LILRA3 alleles were in strong linkage disequilibrium with LILRB2 alleles in Northeast Asians. In addition, PTC-containing LILRA3 alleles were detected in Northeast Asians but not in non-Northeast Asians. Furthermore, flow-cytometric analysis revealed that the LILRB2 allele frequent in Northeast Asians was significantly associated with low levels of expression. F(ST) and extended-haplotype-homozygosity analysis for the HapMap populations provided evidence of positive selection acting on the LILRA3 and LILRB2 loci. Taken together, our results suggest that both the nonfunctional LILRA3 alleles and the low-expressing LILRB2 alleles identified in our study have increased in Northeast Asians because of natural selection. Our findings, therefore, lead us to speculate that not only HLA class I ligands but also their receptors might be sensitive to the local environment.  相似文献   

16.
The mosquito Aedes japonicus japonicus, originally restricted to temperate East Asia, is now widespread in North America and more recently has become established in Europe. To ascertain the putative number of separate introductions to Europe and examine patterns of expansion we analyzed the genetic makeup of Ae. j. japonicus populations from five cemeteries in North Rhine-Westphalia and Rhineland-Palatinate, two western German federal states, as well as of specimens from populations in Belgium, Switzerland, and Austria/Slovenia. To do so, we genotyped individual specimens at seven pre-existing polymorphic microsatellite loci and sequenced part of the nad4 mitochondrial locus. We found evidence of two different genotypic signatures associated with different nad4 mitochondrial haplotypes, indicating at least two genetically differentiated populations of Ae. j. japonicus in Europe (i.e. two distinct genotypes). Belgian, Swiss, and Austrian/Slovenian populations all share the same genotypic signature although they have become differentiated since isolation. Contrary to expectations, the German Ae. j. japonicus are not closely related to those in Belgium which are geographically nearest but are also highly inbred. German populations have a unique genotype but also evidence of mixing between the two genotypes. Also unexpectedly, the populations closest to the center of the German infestation had the highest levels of admixture indicating that separate introductions did not expand and merge but instead their expansion was driven by punctuated human-mediated transport. Critically, the resulting admixed populations have higher genetic diversity and appear invasive as indicated by their increased abundance and recent spread across western Germany.  相似文献   

17.
VKORC1 (vitamin K epoxide reductase complex subunit 1, 16p11.2) is the main genetic determinant of human response to oral anticoagulants of antivitamin K type (AVK). This gene was recently suggested to be a putative target of positive selection in East Asian populations. In this study, we genotyped the HGDP-CEPH Panel for six VKORC1 SNPs and downloaded chromosome 16 genotypes from the HGDP-CEPH database in order to characterize the geographic distribution of footprints of positive selection within and around this locus. A unique VKORC1 haplotype carrying the promoter mutation associated with AVK sensitivity showed especially high frequencies in all the 17 HGDP-CEPH East Asian population samples. VKORC1 and 24 neighboring genes were found to lie in a 505 kb region of strong linkage disequilibrium in these populations. Patterns of allele frequency differentiation and haplotype structure suggest that this genomic region has been submitted to a near complete selective sweep in all East Asian populations and only in this geographic area. The most extreme scores of the different selection tests are found within a smaller 45 kb region that contains VKORC1 and three other genes (BCKDK, MYST1 (KAT8), and PRSS8) with different functions. Because of the strong linkage disequilibrium, it is not possible to determine if VKORC1 or one of the three other genes is the target of this strong positive selection that could explain present-day differences among human populations in AVK dose requirement. Our results show that the extended region surrounding a presumable single target of positive selection should be analyzed for genetic variation in a wide range of genetically diverse populations in order to account for other neighboring and confounding selective events and the hitchhiking effect.  相似文献   

18.
Throughout its distribution across Eurasia, domestic pig (Sus scrofa) populations have acquired differences through natural and artificial selection, and have often interbred. We resequenced 80 Eurasian pigs from nine different Asian and European breeds; we identify 42,288 reliable SNPs on the Y chromosome in a panel of 103 males, among which 96.1% are newly detected. Based on these new data, we elucidate the evolutionary history of pigs through the lens of the Y chromosome. We identify two highly divergent haplogroups: one present only in Asia and one fixed in Europe but present in some Asian populations. Analyzing the European haplotypes present in Asian populations, we find evidence of three independent waves of introgression from Europe to Asia in last 200 years, agreeing well with the literature and historical records. The diverse European lineages were brought in China by humans and left significant imprints not only on the autosomes but also on the Y chromosome of geographically and genetically distinct Chinese pig breeds. We also find a general excess of European ancestry on Y chromosomes relative to autosomes in Chinese pigs, an observation that cannot be explained solely by sex-biased migration and genetic drift. The European Y haplotype is associated with leaner meat production, and we hypothesize that the European Y chromosome increased in frequency in Chinese populations due to artificial selection. We find evidence of Y chromosomal gene flow between Sumatran wild boar and Chinese pigs. Our results demonstrate how human-mediated admixture and selection shaped the distribution of modern swine Y chromosomes.  相似文献   

19.
We carried out mutation screen experiments to understand the rate and molecular nature of spontaneous de novo mutations in Drosophila melanogaster, which are crucial for many evolutionary issues, but still poorly understood. We screened for eye-color and body-color mutations that occurred in the germline cells of the first generation offspring of wild-caught females. The offspring were from matings that had occurred in the field and therefore had a genetic composition close to that of flies in natural populations. We employed 1554 F1 individuals from 374 wild-caught females for the experiments to avoid biased contributions of any particular genotype. From ~8.6 million alleles screened, we obtained 10 independent mutants: two point mutations (one for each sex), a single deletion of ~6 kb in a male, a single transposable element insertion in a female, five large deletions ranging in size from 40 to 500 kb in females, and a single mutation of unknown nature in a male. The five large deletions were presumably generated by nonallelic homologous recombination (NAHR) between transposable elements at different locations, illustrating the mutagenic nature of recombination. The high occurrence of NAHR that we observed has important consequences for genome evolution through the production of segmental duplications.  相似文献   

20.
Multiple evolutionary forces contribute to heterogeneous genomic landscapes; however, disentangling their relative contributions is challenging. We sampled nine populations across the distribution of Quercus dentata, a dominant forest tree in East Asia, and used whole-genome sequencing data to investigate mechanisms underlying divergence. We identified two genetic groups (north and south) that diverged ~1.84 million years ago, consistent with the uplift of the Qinling Mountains during the Pleistocene. The north group experienced a bottleneck during the middle–late Pleistocene and expanded from multiple refugia. The south group experienced a more severe bottleneck and showed high population differentiation, probably due to long-term isolation and habitat fragmentation. We detected genomic islands with elevated relative differentiation (FST) scattered across the genome. Among these, 65.9% showed reduced absolute divergence (dXY) consistent with linked selection, while the remaining (34.1%) showed elevated dXY suggestive of divergent sorting of ancient polymorphisms. The recombination rate in genomic islands was lower than background, suggesting the importance of genome structure in shaping the genomic landscape. We detected 108 single nucleotide polymorphisms significantly associated with environmental factors, 12 of which clustered in a region of ~500 kb. This region showed multiple signals of positive selection in the north group, including the enrichment of XP-extended haplotype homozygosity scores, an elevated population branch statistic, and an excess of high-frequency derived alleles. In addition, we found that linkage disequilibrium was low and derived haplotypes declined rapidly in this region, indicating selection on standing variation. Our results clarify the evolutionary processes driving genomic divergence in Q. dentata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号