首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

The efficiency of DNA labeling was assessed for 2'-deoxyuridine 5'-triphosphate (dUTP) derivatives containing the Cy7 cyanine dye as a fluorophore. Two fluorescent Cy7-labeled dUTP analogs differed in the chemical structure of the linker between the fluorophore and nucleotide moieties. The efficiency of the polymerase chain reaction (PCR) and inhibition with modified nucleotides were estimated by real-time PCR. The efficiency of labeled nucleotide incorporation in PCR products was measured by quantitative electrophoresis. The efficiency of target DNA labeling was evaluated by binding the fluorescently labeled PCR products to a microarray of oligonucleotide probes immobilized in hydrogel drops (a biochip). The near-infrared hybridization signal was detected by digital luminescence microscopy. An increase in linker length was found to provide more efficient incorporation of the labeled nucleotide. Both of the compounds provided high sensitivity and high specificity of DNA testing via allele-specific hybridization on a biochip.

  相似文献   

2.
3.
Cyanine dye dUTP analogs for enzymatic labeling of DNA probes.   总被引:5,自引:2,他引:3       下载免费PDF全文
Fluorescence in situ hybridization (FISH) has become and indispensable tool in a variety of areas of research and clinical diagnostics. Many applications demand an approach for simultaneous detection of multiple target sequences that is rapid and simple, yet sensitive. In this work, we describe the synthesis of two new cyanine dye-labeled dUTP analogs, Cy3-dUTP and Cy5-dUTP. They are efficient substrates for DNA polymerases and can be incorporated into DNA probes by standard nick translation, random priming and polymerase chain reactions. Optimal labeling conditions have been identified which yield probes with 20-40 dyes per kilobase. The directly labeled DNA probes obtained with these analogs offer a simple approach for multicolor multisequence analysis that requires no secondary detection reagents and steps.  相似文献   

4.
Different labeling methods were studied to compare various approaches to the preparation of labeled target DNA for microarray experiments. The methods under investigation included a post-PCR labeling method using the Klenow fragment and a DecaLabel DNA labeling kit, the use of a Cy3-labeled forward primer in the PCR, generating either double-stranded or single-stranded PCR products, and the incorporation of Cy3-labeled dCTPs in the PCR. A microarray that had already been designed and used for the detection of microorganisms in compost was used in the study. PCR products from the organisms Burkholderia cepacia and Staphylococcus aureus were used in the comparison study, and the signals from the probes for these organisms analyzed. The highest signals were obtained when using the post-PCR labeling method, although with this method, more non-specific hybridizations were found. Single-stranded PCR products that had been labeled by the incorporation of a Cy3-labeled forward primer in the PCR were found to give the next highest signals upon hybridization for a majority of the tested probes, with less non-specific hybridizations. Hybridization with double-stranded PCR product labeled with a Cy3-labeled forward primer, or labeled by the incorporation of Cy3-labeled dCTPs resulted in acceptable signal to noise ratios for all probes except the UNIV 1389a and Burkholderia genus probes, both located toward the 3' end of the 16S rRNA gene. The comparison of the different DNA labeling methods revealed that labeling via the Cy3-forward primer approach is the most appropriate of the studied methods for the preparation of labeled target DNA for our purposes.  相似文献   

5.
Nonradioactive in situ hybridization has found widespread applications in cytogenetics. Basic requirements are DNA probes in sufficient amounts and of high specificity as well as a labeling protocol of good reproducibility. The PCR has been of fundamental importance for the amplification of DNA sequences and thus for the production of DNA probes. Meanwhile, PCR protocols for amplification of DNA have reached a high degree of automation. So far, incorporation of labeled nucleotides into these DNA probes has normally been done by nick translation. Here we show that in using the PCR, amplification of a DNA probe larger than one kilobase accompanied by simultaneous incorporation of digoxigenin-11-dUTP can be performed for in situ hybridization experiments. As an example, the DNA probe pUC 1.77 specific for the subcentromeric region q12 of chromosome number 1 was used and hybridized against metaphase chromosomes from human lymphocytes. The labeled chromosome region was detected by anti-digoxigenin-fluorescein, Fab fragments. The experiments were evaluated by digital image analysis of microphotographs.  相似文献   

6.
DNA microarrays that are used as end-point detectors for PCR assays are typically composed of short (15-25 mer) oligonucleotide probes bound to glass. When designing these detectors, we have frequently encountered situations where a probe would not hybridize to its complementary, terminally labeled PCR amplicon. To determine if failures could be explained by general phenomenon such as secondary structure, we designed a microarray to detect eight regions of the Escherichia coli 16S rDNA gene. We then amplified eight amplicons of different lengths using a biotin conjugated, antisense primer. Amplicons were then hybridized to the microarray and detected using a combination of signal amplification and fluorescence. In most cases, probe sequences complementary to the 5' region of the amplified products (sense orientation) did not hybridize to their respective amplicon. We tested for positional bias and showed that a biotin conjugated sense primer mirrored the same probe failures. Nick translated products, however, hybridized to all probes. Because nick translation generates many labeled fragments of random length, we concluded that this method disrupted secondary structure that otherwise prevented the amplicons from hybridizing to their respective probes. We also show that nick translation does not compromise detector sensitivity even when used with long PCR amplicons (ca. 1.5 kbp). Despite the increased cost of the nick translation, we concluded that this labeling strategy will reduce the time needed to design new assays as well as avoid possible false negatives during field applications. Alternative labeling strategies are also discussed.  相似文献   

7.
一种标记cDNA芯片探针的新方法   总被引:3,自引:0,他引:3  
探讨mRNA长片段反转录PCR技术(RT-LDPCR)在cDNA芯片微量探针标记和信号放大中的应用.首先提取BEP2D细胞的总RNA,然后用两种不同的方法进行标记,一种为RT-LDPCR,用荧光素Cy3-dCTP进行标记;另一种为传统的RNA反转录,用荧光素Cy5-dCTP进行标记.将两种方法标记好的探针等量混合后与含有440个点(44个基因)的cDNA芯片同时杂交,发现二者具有很高的一致性(0.5<Cy3/Cy5>2.0).由于RNA反转录法为cDNA芯片探针标记的传统方法,从而验证了RT-LDPCR用于cDNA芯片探针标记的可行性.RT-LDPCR具有对样品总RNA的需要量少和可对样品中信号进行放大的优点,特别适合于对材料来源受到限制的RNA进行标记.  相似文献   

8.
The kinetics of DNA labeling during PCR using six fluorescent derivatives of 2′-deoxyuridine 5′-triphosphate has been studied. These compounds differ in their chemical structure, total electric charge and the length of the linker between a dye and the C5 position of a pyrimidine base. The efficiency of the incorporation of the fluorescent derivatives into a growing DNA chain by four commercially available Taq DNA polymerases with 5′→3′ exonuclease and hot start activity has been determined using real-time PCR with a TaqMan probe and the subsequent electrophoretic analysis of the reaction products. Modified deoxyuridines with a total positive or negative charge of the chromophore were practically not incorporated by Taq polymerases during PCR. The modified deoxyuridines with a neutral charge of the chromophore were effectively incorporated into DNA. The extended length of the linker between the pyrimidine base and the chromophore led to a lower PCR inhibition and a more effective inclusion of modified nucleotides in the growing DNA chain. This fact can be explained by the reduced steric effects that were caused by the dye. As a result, the most promising combinations of fluorescently labeled nucleotide and Taq polymerase have been chosen for further use in fluorescent DNA labeling.  相似文献   

9.
In this work, we studied the fluorescence and hybridization of multiply-labeled DNA probes which have the hydrophilic fluorophore 1-(straightepsilon-carboxypentynyl)-1'-ethyl- 3,3,3', 3'-tetramethylindocarbocyanine-5,5'-disulfonate (Cy3) attached via either a short or long linker at the C-5 position of deoxyuridine. We describe the effects of labeling density, fluorophore charge and linker length upon five properties of the probe: fluorescence intensity, the change in fluorescence upon duplex formation, the quantum yield of fluorescence (Phif), probe-target stability and specificity. For the hydrophilic dye Cy3, we have demonstrated that the fluorescence intensity andPhifare maximized when labeling every 6th base using the long linker. With a less hydrophilic dye, a labeling density this high could not be achieved without serious quenching of the fluorescence. The target specificity of multiply-labeled DNA probes was just as high as compared to the unmodified control probe, however, a less stable probe-target duplex is formed that exhibits a lower melting temperature. A mechanism that accounts for this destabilization is proposed which is consistent with our data. It involves dye-dye and dye-nucleotide interactions which appear to stabilize a single-stranded conformation of the probe.  相似文献   

10.
The efficiency of the incorporation of fluorescently labeled derivatives of 2'-deoxycytidine in DNA synthesized de novo has been studied using PCR with Taq and Tth polymerases of family A and Vent (exo–) and Deep Vent (exo–) polymerases of family B. Four derivatives of 5'-triphosphate-2'-deoxycytidine (dCTP) have different chemical structures of the indodicarbocyanine dye and Cy5 analogue attached to position 5 of cytosine. The kinetics of the accumulation of the PCR products and the intensity of the fluorescent signals in the hybridization analysis with immobilized DNA probes depend on the modification of the fluorescently labeled dCTP counterpart, its concentration, and the type of DNA polymerase. All labeled triphosphates showed some inhibitory effects on PCR. The best balance between the efficiency of incorporating labeled cytidine derivatives and the negative effect on the PCR kinetics has been shown in the case of Hot Taq polymerase in combination with the Cy5-dCTP analogue, which contains containing electrically neutral chromophore, the axis of which is a continuation of the linker between the chromophore and the pyrimidine base.  相似文献   

11.
A microarray consisting of oligonucleotide probes targeting variable regions of the 16S rRNA gene was designed and tested for the investigation of microbial communities in compost. Probes were designed for microorganisms that have been previously reported in the composting process and for plant, animal and human pathogens. The oligonucleotide probes were between 17 and 25 bp in length and included mostly species-specific sequences. Validation of probe specificity and optimization of hybridization conditions were conducted using fluorescently labeled 16S rRNA gene PCR products of pure culture strains. A labeling method employing a Cy3 or Cy5-labeled forward primer together with a phosphate-conjugated reverse primer for the production of single stranded DNA after a digestion step was optimised and used to label target DNA. A combination of two different DNA extraction methods using both physical and chemical lysis was found to give the best DNA yields. Increased hybridization signal intensities were obtained for probes modified with a 12 mer T-spacer. The microarray was found to have a detection limit of 10(3) cells, although in compost spiking experiments, the detection limit was reduced to 10(5) cells. The application of the microarray to compost samples indicated the presence of Streptococcus, Acinetobacter lwoffii, and Clostridium tetani in various compost samples. The presence of A. lwoffii in those compost samples was confirmed by PCR using primers specific for the organism. The aim of this study was to develop a molecular tool that would allow screening for the presence or absence of different microorganisms within compost samples.  相似文献   

12.
 Detection of integrated human papillomavirus type 16 (HPV-16) DNA in SiHa and CaSki cells was used as a model system to demonstrate sensitivity and resolution of a well defined target. Using 293- to 1987-base polymerase chain reaction (PCR)-synthesized probes to the E6 and E7 open reading frames of HPV-16, several fluorescent in situ hybridization (FISH) detection methods, enhanced with tyramide signal amplification (TSA), were compared. The synthetic probes were biotin labeled by a nick translation method and the hybridized probes were detected by various fluorescent TSA methods using cyanine 3 tyramide, biotinyl tyramide and a biotin TSA Plus reagent. High sensitivity detection in SiHa cells was demonstrated using a 619-base probe to detect two single copies of integrated HPV-16 DNA. In CaSki cells, which contain up to 600 copies of HPV-16 DNA, a 293-base probe was used for detection. The results of these comparisons show that with refinement of TSA methods and reagents, increasing levels of high sensitivity detection can be achieved and that these methods allow subnuclear localization as well. Accepted: 20 June 1997  相似文献   

13.
A method for fluorescent labeling of PCR products has been developed. This method consists in a two-step procedure in which a first exponential classical PCR is followed by a "linear amplification". This second step relies on incorporation of fluorescent dNTP (dUTP or dCTP) in order to label the product on only one strand. The products can be applied without prior purification directly to a gel on a fluorescence-based automated DNA sequencer, for length and allele determination. The reliability of the results equals those of the classical 32P or fluorescent primer labeling methods, and the method is definitely less costly. Since the interpretation of the results is easier than with the method consisting in a fluorescent dNTP uptake in both strands in a single PCR, the present strategy should prove useful in mapping projects requiring analysis of a large number of microsatellites.  相似文献   

14.
A double-labeling approach was applied to nonisotopic in situ hybridization with individual cosmid and plasmid clones, using digoxigenin or biotin as label and a combination of two separate enzymatic labeling methods. Probe labeling was achieved by nick translation, followed by tailing of the probe by terminal deoxynucleotidyl transferase. The double-labeling method, in conjunction with an improved detection protocol, provides for a higher signal intensity than that obtainable with single-labeled probes.  相似文献   

15.
Nick translation is a commonly used method for labeling DNA to make DNA hybridization probes. In this approach, the use of DNase I to generate nicks in double-stranded DNA presents an inherent drawback, because the enzyme's high rate of reaction causes significant fragmentation and shortening of the hybridization probes. Based on our recent findings regarding the nucleolytic activity of the dipeptide seryl-histidine (Ser-His) and generation of free 3' hydroxyl and 5' phosphate groups at the cleavage sites of the substrate DNA by Ser-His, it was hypothesized that this disadvantage may be overcome by using Ser-His in place of DNase I as an alternative DNA nicking agent. In this study we demonstrate that like DNase I, Ser-His randomly nicks DNA, but the dipeptide has a much lower rate of reaction that enables more complete labeling of the DNA probes with less fragmentation. DNA probes labeled through nick translation using Ser-His as the DNA nicking agent were consistently larger in size and exhibited significantly higher specific activities, and enhanced hybridization signals in Southern blot analyses compared to control DNA probes that were made using DNase I as the nicking agent. Furthermore, the degree of nicking and consequently the quality of the probes could be easily controlled by adjusting the temperature and time of the Ser-His nicking reaction. These results affirm our hypothesis that Ser-His can serve as an alternative DNA nicking agent in nick translation to yield superior DNA probes and hybridization results and suggest the possible general utility of Ser-His for wide range of biological and biomedical applications that require more moderated nicking of nucleic acids. Based upon these and computer modeling results of Ser-His, a mechanism of action is proposed to explain how Ser-His may nick DNA.  相似文献   

16.
We developed a simple and rapid technique to synthesize single-stranded DNA (ssDNA) probes for fluorescent in situ hybridization (ISH) to human immunodeficiency virus 1 (HIV-1) RNA. The target HIV-1 regions were amplified by the polymerase chain reaction (PCR) and were simultaneously labeled with dUTP. This product served as template for an optimized asymmetric PCR (one-primer PCR) that incorporated digoxigenin (dig)-labeled dUTP. The input DNA was subsequently digested by uracil DNA glycosylase, leaving intact, single-stranded, digoxigenin-labeled DNA probe. A cocktail of ssDNA probes representing 55% of the HIV-1 genome was hybridized to HIV-1-infected 8E5 T-cells and uninfected H9 T-cells. For comparison, parallel hybridizations were done with a plasmid-derived RNA probe mix covering 85% of the genome and a PCR-derived RNA probe mix covering 63% of the genome. All three probe types produced bright signals, but the best signal-to-noise ratios and the highest sensitivities were obtained with the ssDNA probe. In addition, the ssDNA probe syntheses generated large amounts of probe (0.5 to 1 microg ssDNA probe per synthesis) and were easier to perform than the RNA probe syntheses. These results suggest that ssDNA probes may be preferable to RNA probes for fluorescent ISH. (J Histochem Cytochem 48:285-293, 2000)  相似文献   

17.
Liu H  Li S  Wang Z  Hou P  He Q  He N 《Biotechnology journal》2007,2(4):508-511
A novel approach for the genotyping of single nucleotide polymorphisms (SNPs) based on solidphase PCR on magnetic nanoparticles (MNPs) is described. PCR products were amplified directly on MNPs. The genotypes of a given SNP were differentiated by hybridization with a pair of allele-specific probes labeled with dual-color fluorescence (Cy3, Cy5). The results were analyzed by scanning the microarray printed with the denatured fluorescent probes on an unmodified glass slide. Electrophoresis analysis indicated that PCR could proceed successfully when MNPs-bound primers were used. Furthermore, nine different samples were genotyped and their fluorescent signals were quantified. Genotyping results showed that three genotypes for the locus were very easily discriminated. The fluorescent ratios (match probe:mismatch probe signal) of homozygous samples were over 9.3, whereas heterozygous samples had ratios near 1.0. Without any purification and concentration of PCR products, this new MNP-PCR based genotyping assay potentially provides a rapid, labor-saving method for genotyping of a large number of individuals.  相似文献   

18.
目的探讨采用单核苷酸多态性(SNP)检测方法-双色荧光正相杂交芯片技术对近交系小鼠遗传质量监测及相关影响因素。方法运用基于芯片的双色荧光正相杂交检测SNP技术,进行芯片杂交动力学研究,考察信号值(Cy3,Cy5)和ratio值(Cy5/Cy3)与PCR产物点样浓度、PCR产物长度和荧光标记探针长度之间的关系,研究PCR产物点样浓度、PCR产物长度和荧光标记探针长度对SNP分型的影响。结果采用正反标记实验后,Ratio值随着PCR产物点样浓度的增加呈稳定趋势;PCR双链产物长度对信号值影响比较大,点样时其长度不宜太长,最好不超过450 bp;随荧光标记探针长度的增加,基因分型能力明显下降,长度为15 bp最佳,长度超过20 bp时,已基本没有区分能力。结论PCR产物点样浓度、PCR产物长度和荧光标记探针长度是双色荧光正相杂交SNP分型系统的重要影响因素,采取适当的PCR产物点样浓度、PCR产物长度和荧光标记探针长度,并采用正反标记实验,可以取得稳定、准确的基因分型效果。为进一步进行近交系小鼠遗传质量监测的研究奠定基础。  相似文献   

19.
Confocal laser scanning microscopy (CLSM) is a method allowing in situ visualization of protein transport in porous chromatography resins. CLSM requires labeling a protein with a fluorescent probe. Recent work has shown that conjugation of the protein with fluorescent probes can lead to significant changes in the retention time of the protein-dye conjugate with respect to the unlabeled protein. In this study, we show that common labeling procedures result in a heterogeneous mixture of different variants and that attachment location of the fluorescent probe on the protein surface can have a strong effect on the retention of protein-dye conjugate. Lysozyme was labeled with Cy5 and BODIPY-FL succinimidyl esters, followed by chromatographic separation of the different lysozyme-dye conjugates and subsequent determination of the label position using MALDI-TOF-MS. Finally, homogenously labeled lysozyme-dye conjugates were used in CLSM experimentation and compared to published results arising from heterogeneously labeled feedstocks. The results confirm that the attachment location of the fluorescent probe has a strong effect on chromatographic retention behavior. When addressing the binding affinities of the different labeled protein fractions, it was found that native lysozyme was able to displace lysozyme-dye conjugates when the fluorescent label was attached to lysine-33, but not when attached to lysine-97. Finally, it could be shown that when superimposing the single profiles of the three major fractions obtained during a labeling procedure a qualitative picture of the net profile is obtained.  相似文献   

20.
Nonradioactive in situ hybridization techniques are becoming increasingly important tools for rapid analysis of the topological organization of DNA and RNA sequences within cells. Prerequisite for further advances with these techniques are multiple labeling and detection systems for different probes. Here we summarize our results with a recently developed labeling and detection system. The DNA probe for in situ hybridization is modified with digoxigenin-labeled deoxyuridine-triphosphate. Digoxigenin is linked to dUTP via an 11-atom linear spacer (Dig-[11]-dUTP). Labeled DNA probes were hybridized in situ to chromosome preparations. The hybridization signal was detected using digoxigenin-specific antibodies covalently coupled to enzyme markers (alkaline phosphatase or peroxidase) or to fluorescent dyes. Color reactions catalyzed by the enzymes resulted in precipitates located on the chromosomes at the site of probe hybridization. This was verified by hybridizing DNA probes of known chromosomal origin. The signals were analyzed by bright field, reflection contrast and fluorescence microscopy. The results indicate that the new technique gives strong signals and can also be used in combination with other systems (e.g., biotin) to detect differently labeled DNA probes on the same metaphase plate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号