首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The suppressor cells that are involved in antigen-induced protection against EAE in mice were investigated with respect to their effect on the immune response. The cellular immune response to the basic encephalitogenic protein (BE) and to PPD were studied in mice with either actively induced or adoptively transferred unresponsiveness to EAE. The results demonstrate that the DTH response to BE, as assayed in the radiometric ear skin test, was suppressed in mice protected against EAE. Moreover, the passive transfer of DTH response to BE by effector lymphocytes was also inhibited by the preinjection of suppressor cells. On the other hand, the suppressor cells did not affect the response to PPD in all these experiments. The results indicate that suppressor cells that mediate unresponsiveness to EAE regulate also the cellular immune response to BE in a specific manner. These suppressor cells are probably active both at the induction and the effector phase of the immune response.  相似文献   

2.
Syngeneic normal lymphoid cells added in co-culture of immune lymphocytes and tumor cells reveal a suppressive activity inhibiting the generation of cytolytic T lymphocytes. The suppression was specific for the response directed against endogenous virus-induced or x-ray-induced tumor cells expressing endogenous C type virus antigens. Thymocytes, spleen cells, or lymph node cells from naive mice were able to express this suppressive activity. The same cells displayed no suppressive activity on killer cells directed against exogenous C type virus-induced tumor cells. The suppressor cells were Thy-1+, Lyt-1- 2+. Our results strongly suggested that the spontaneous suppressor cells exert their activity by interacting with an early step on the CTL response, probably at the level of the helper T cell function. The suppressive activity was mediated by soluble factor(s) that were antigen specific and possibly H-2 restricted. The possible implications of these spontaneous suppressor T lymphocytes in the development of endogenous virus-induced tumors and their possible implications in tolerance to self antigens are discussed.  相似文献   

3.
A murine system for local passive transfer of delayed-type hypersensitivity (DTH) has recently been described. It was determined that untreated and T-lymphocyte-enriched (nylon-wool-nonadherent) fractions of peritoneal exudate (PE) cells from immunized donors could be transferred with soluble antigen to normal recipient footpads to efficiently produce a local DTH response. Untreated spleen or lymph node (LN) cell populations were strikingly less capable in this regard. It is now reported that addition of normal untreated PE cell populations to immune T-enriched PE cells markedly enhanced the DTH response transferred by the latter. Specific swelling was dose dependent with respect to each cell type. Removal of T lymphocytes from the normal PE cell population did not affect its enhancement of DTH. By cotransfer of 1 X 10(7) normal PE cells, significant specific swelling was obtained using 1-3 X 10(5) T-enriched immune PE cells. This represented a three- to seven-fold reduction in the requirement for the latter cell type. This scheme of DTH enhancement was employed to evaluate the mechanisms for decreased capability of immune LN and spleen for DTH transfer when compared to PE. No evidence was found that either adherent or nonadherent suppressor cells are operative at the time of DTH expression. Cotransfer of a DTH-enhancing population failed to equalize DTH expression by LN and spleen with that of PE. It is concluded that DTH effector-T-cell activity is enriched in immune peritoneal exudate and that non-T-cell population(s) from that source actively enhance DTH expression.  相似文献   

4.
Ultraviolet B irradiation (280 to 320 nm) of mice at the site of intradermal infection with herpes simplex virus type 2 increased the severity of the herpes simplex virus type 2 disease and decreased delayed-type hypersensitivity (DTH) responses to viral antigen. Decrease in DTH resulted from the induction of suppressor T cells, as evidenced by the ability of spleen cells from UV-irradiated mice to inhibit DTH and proliferative responses after adoptive transfer. Lymph node cells from UV-irradiated animals did not transfer suppression. DTH was suppressed at the induction but not the expression phase. Suppressor T cells were Lyt-1+, L3T4+, and their activity was antigen-specific. However, after in vitro culture of spleen cells from UV-irradiated mice with herpes simplex virus type 2 antigen, suppressor activity was mediated by Lyt-2+ cells. Culture supernatants contained soluble nonantigen-specific suppressive factors.  相似文献   

5.
Mouse myelin basic protein (mBP)-specific T cell clones were generated from lines established from SJL/J mice immunized with mBP in complete Freund's adjuvant. These clones proliferated specifically to mBP and were propagated weekly with the same antigen for up to 8 mo. It is of particular interest that four of these phenotypic T helper clones were able to induce several T cell functions, including that of antibody production. These mBP-reactive T cell clones induced inflammatory infiltrations of the white matter of the central nervous system when transferred i.v. to irradiated (350 R) syngeneic naive recipients in concentrations as low as 0.5 X 10(6) cells/mouse. Lesions characteristic of experimental allergic encephalomyelitis (EAE) were observed as early as 5 days after transfer in the absence of clinical paralysis. Encephalitogenic clones, when added in vitro to a population of mBP-primed B cells in the presence of antigen, induced the production of anti-mBP antibodies determined by ELISA. In addition, the same clones, when transferred i.v., were found to mediate in vivo helper activity by inducing serum anti-mBP antibodies in the recipients. This response was delayed until 20 days after transfer and was abrogated by irradiation of the clones before injection. Finally, these mBP-specific specific clones were capable of mediating a specific delayed-type hypersensitivity (DTH) response. Although all four clones generated displayed the Thy-1.2+, L3T4+, Lyt-2- phenotype and proliferated specifically to mBP, only three were able to induce EAE, transfer DTH, and mediate helper activity.  相似文献   

6.
Lyt-1+2+ hapten-specific T suppressor cells (Ts) from mice injected and then painted with picryl or oxazolone derivatives produce hapten-specific T suppressor factors (TsF) in vitro. Stimulation by painting with contact sensitizer (which need not be specific) gives rise to Lyt-1-2+, I-J+, cyclophosphamide-sensitive T acceptor cells (Tacc). When the Tacc population is armed with TsF and then is exposed to specific antigen in the context of I-J-controlled determinants (antigen-presenting, haptenized spleen cells and Ts sharing the same I-J subregion), a nonspecific inhibitor of DNA synthesis (nsINH) appears in the supernatant. This inhibitor suppresses the primary DNA synthetic response to concanavalin A, lipopolysaccharide, and alloantigens in both syngeneic and allogeneic lymphocytes. The nsINH is only effective when added to lymphocyte cultures less than 8 hr after the stimulation with concanavalin A. The nsINH, however, affects neither primary nor secondary cytotoxicity in vitro. These data suggest the mouse immune system is capable of selective regulation of the response to specific antigen by the production of nonspecific soluble suppressor factor(s).  相似文献   

7.
Cryptococcosis patients frequently have high levels of cryptococcal antigen in their body fluids, and the levels of circulating antigen can generally be used to predict the patient's recovery, with high or rising antigen titers indicating a poor prognosis and low or decreasing levels a good prognosis. In a previous study, we reported on a murine model for studying the effects of cryptococcal antigen on host defense mechanisms. In that work, we demonstrated that an i.v. injection of cryptococcal antigen (CneF) into CBA/J mice, to simulate the antigenemia known to occur in human cryptococcosis, induced a population of T suppressor cells (Ts1) in the lymph nodes (LN). Upon adoptive transfer, the Ts1 cells specifically suppressed the afferent limb of the delayed-type hypersensitivity (DTH) response to cryptococcal antigen. In the present study, we show that the precursors of the Ts1 cells are sensitive to low-dose cyclophosphamide treatment and that the phenotype of the Ts1 cells is Lyt-1+, Ia+ (I-J+). LN cells from CneF-injected mice or a soluble factor derived therefrom can induce in the spleens of recipient mice a second-order suppressor cell population that suppresses the efferent limb of the DTH response. The cells that induce the second-order or efferent suppressor cells have the same phenotype as the cells that appear to suppress the afferent limb of the DTH response. The findings in this study indicate that a complex regulatory mechanism is responsible for the observed suppression of the DTH response in this infectious disease model. Furthermore, the suppressive circuit thus far defined for cryptococcal antigen is similar to the antigen-specific suppressor cell pathway outlined for certain chemically defined haptenic systems.  相似文献   

8.
We determined requirements for the induction of immunoregulatory suppressor cells in experimental allergic encephalomyelitis (EAE) in Lewis rats. Pretreatment of rats with myelin basic protein (BP) in incomplete Freund's adjuvant (IFA) stimulates the proliferation of suppressor cells that localize in lymph nodes and spleen (but not thymus) and exert control over the development of clinical EAE. Dosage studies revealed that 3 X 10(7) suppressor cells can adoptively transfer suppression to syngeneic recipients. Transferred unresponsiveness wanes within 3 weeks, indicating that the suppressor cells are short-lived lymphocytes, although actively induced unresponsiveness persists for at least 8 weeks, probably as a result of continual proliferation under the influence of antigen. No evidence was obtained to suggest that antigen carry-over or blocking antibody production accounts for adoptive transfer of unresponsiveness. Suppressor cells apparently act at the inductive phase of the immune response since they had no inhibitory effect on adoptive transfer of disease by effector lymph node cells. Other mechanisms also may play a role in unresponsiveness to EAE, since rats pretreated i.v. with high dosages of soluble BP were temporarily rendered unresponsive, although suppressor cells could not be detected in these animals.  相似文献   

9.
Murine fibrosarcomas produce a factor that activates suppressor cells to inhibit expression of delayed-type hypersensitivity (DTH) responses to dinitrochlorobenzene (DNCB). This tumor-derived suppressor factor (TDSF) was partially purified by preparative isoelectric focusing of spent medium and 3 M KCl extracts of cultured methylcholanthrene-induced and spontaneous fibrosarcomas of C3H/He mice. Incubation of 1 micrograms/ml of a fraction, isoelectric pH less than 2.9, with normal syngeneic spleen cells for 1-6 hr at 37 degrees C induced suppressor cells that inhibited the primary DTH response to DNCB upon intraperitoneal transfer to normal C3H/HeJ mice. TDSF was not present in extracts of either syngeneic embryonic fibroblasts or normal spleen cells or in medium conditioned by normal peritoneal exudate cells but was present in 3 M KCl extracts of and the spent medium from four different cultured murine fibrosarcomas. TDSF activity was not restricted at the major histocompatibility complex. The suppressor cells inhibited the efferent limb of the DTH response because (1) hyporesponsive recipients of TDSF-treated spleen cells had splenic effector T cells capable of transferring DTH to DNCB into naive secondary recipients and (2) the ability of Lyt 1+,2- effector Tdth cells to transfer a secondary DTH response to DNCB was inhibited by co-incubation with macrophages or Lyt 1-,2+ T cells treated with TDSF. Preliminary biochemical analysis suggested that TDSF was an RNA- protein complex. Thus, several murine fibrosarcomas produced a soluble factor that activated splenic suppressor cells to depress the immune response to nonneoplastic antigens. These suppressor factors represent a novel group of regulatory molecules which may be ribonucleoprotein complexes.  相似文献   

10.
Anti-idiotypic rabbit antiserum (anti-Id) directed to the idiotypes of anti-hen egg-white lysozyme (HEL) antibody from a single C3H mouse (No. 2) was shown to be capable of recognizing only a fraction of the anti-HEL antibody populations produced by other C3H mice. Experiments were performed to examine the effect of this particular anti-Id on the delayed-type hypersensitivity (DTH) response specific for the same protein antigen. A group of 60-day-old C3H mice which had been administered anti-Id within 24 hr after birth were tested for HEL-DTH response. The results indicated that the DTH response was completely suppressed by the anti-Id treatment. The inhibition of DTH reactivity is due to active suppression and involves the generation of suppressor T cells. Thus, the suppression induced with a single injection of anti-Id was transferable with both spleen cells and thymocytes from mice that received anti-Id. These suppressor cells are T cells since their ability to suppress DTH is completely abrogated by treatment in vitro with anti-Thy 1.2 serum and complement.  相似文献   

11.
Suppressor cells in delayed-type hypersensitivity (DTH) to soluble protein antigens were induced in vitro from BALB/c spleen cells. Transfer of these cells into syngeneic recipients resulted in suppression of the hosts' DTH responses in an antigen-specific manner. These suppressor cells were characterized as B cells by their adherence to nylon-wool columns, resistance to treatment of anti-Thy 1, -Ly 1, and -Ly 2 antibodies plus complement, adherence to anti-mouse immunoglobulin-coated dishes, and nonadherence to uncoated plastic dishes. In addition to being radiation sensitive, these suppressor B cells showed the capability of binding to the primed antigen. Thus, it was demonstrated that our in vitro-induced suppressor cells were antigen-specific B cells. When these suppressor B cells were transferred into the recipients, serum titers of specific antibodies were elevated and effector phase suppressor T cells were induced in the recipients. These results suggest that suppressor B cells exert their suppressor activity through the idiotype-anti-idiotype network.  相似文献   

12.
The effects of infection with vesicular stomatitis virus (VSV) on delayed-type hypersensitivity (DTH) to heterologous serum proteins were investigated in mice. DTH was induced by a subcutaneous injection of antigen in complete Freund's adjuvant. Infection with VSV at the time of immunization did not affect the level of DTH elicited 3 wk later. Marked augmentation of DTH was observed only when previously immunized mice were infected with VSV simultaneously with restimulation by soluble antigen; either soluble antigen or the virus infection alone was ineffective. The augmentation was specific to the antigen used for the restimulation; in the mouse previously immunized with both bovine serum albumin (BSA) and human alpha-globulin (HGG), DTH to BSA but not to HGG was augmented by injecting soluble BSA and VSV, and vice versa. These results strongly suggest that cells involved in the suppression of DTH manifestation became susceptible to the virus after specific antigenic restimulation and were then eliminated.  相似文献   

13.
This report defines a methodology for the production and characterization of an antigen-specific, monoclonal T cell hybrid-derived suppressor T cell factor (TsF) that suppresses the passive transfer of 2,4-dinitrofluorobenzene (DNFB) contact hypersensitivity. Fusion of T cells from BALB/c (H-2d) mice tolerized with syngeneic DNP-spleen cells to BW 5147 thymoma cells resulted in several hybrids that constitutively produce a soluble regulatory molecule. One of these hybrids, 26.10.2, was subsequently cloned, and its soluble factor was characterized with respect to its antigen specificity, biochemical nature, MHC restriction pattern, and identity of its target cell. 26.10.2 TsF suppresses the passive transfer of delayed-type hypersensitivity (DTH) mediated by DNP- but not trinitrochlorobenzene- or oxazalone-primed DTH T cells (TDH) after a 1 hr incubation at 37 degrees C. In contrast, 26.10.2 TsF had no suppressive effect on secondary in vitro DNP-specific T cell proliferative responses. 26.10.2 TsF therefore represents an antigen-specific factor with effector (efferent-acting) function. The monoclonal TsF was shown to consist of a two-chain, disulfide-bonded molecule, and to bear a receptor(s) specific for DNP and determinants encoded by the I region of the H-2 complex. Effector suppressive activity of 26.10.2 TsF was restricted by Class I H-2Dd determinants. One cellular target of this monoclonal factor was shown to be the DNP-specific TDH cell, because DNFB-primed lymph node cells from cyclophosphamide-pretreated donors (lacking Ts-auxiliary (Ts-aux) cells) were efficiently suppressed. The TsF appears to focus on passively bound, TDH receptor-associated, DNP-Class I determinants, as suggested by the observation that freshly prepared, but not overnight cultured, DNP-specific TDH cells were susceptible to suppression.  相似文献   

14.
The effect of encephalitogenic myelin basic protein, BP, on active rosette-forming T cells (ARFC) was compared to that of nonencephalitogenic peptide S42, a synthetic analogue of the tryptophan region of BP. Depression of ARFC by these antigens was reversible within 24 h after a second dose of the antigen into the skin, or after in vitro incubation of lymphocytes with the sensitizing antigen (Ag-ARFC). The ratio of Ag-ARFC to ARFC rose with time following the sensitization but fell shortly before the clinical onset of experimental allergic encephalomyelitis in animals sensitized with BP. In contrast, the Ag-ARFC/ARFC ratios for animals sensitized with peptide S42 reached plateau levels from which they did not drop. The kinetics of the Ag-ARFC/ARFC responses paralleled those for delayed-type skin hypersensitivity (DTH) in the respective animals. The DTH responses rose following sensitization and fell shortly after the appearance of clinical signs of EAE. The results of this study provide in vitro and in vivo evidence for sensitization to myelin basic protein, and focus attention on the ARFC as a measure for an immunologically active cell population which may be quantitated by antigenic stimulation.Abbreviations used in this report EAE experimental allergic encephalomyelitis - DTH delayed-type skin hypersensitivity - ARFC active rosette-forming T cells - Ag-ARFC antigen-stimulated active rosette-forming T cells - TRFC total rosette-forming T cells  相似文献   

15.
The adjuvant Corynebacterium parvum, when administered intravenously during an ongoing alloimmunization, induces alloantigen-specific splenic suppressor cells which inhibit primary and secondary in vitro sensitizations. We have previously shown that these cells produce a soluble suppressor factor in culture. We now further characterize this factor and its mechanism of action. Release of this suppressive factor is dependent upon specific restimulation of the splenic suppressor cell with the sensitizing alloantigen for 24-48 hr in culture. The suppressor factor inhibits primary, but not secondary, in vitro sensitizations in an antigen-specific, genetically unrestricted manner. The suppressive activity is not absorbed by passage through immunoadsorbent columns containing anti-mouse immunoglobulin. The factor does not lyse tumor cells bearing the sensitizing alloantigen. Delay in addition to primary cultures of as little as 4 hr after culture initiation leads to loss of suppressive activity, suggesting that this antigen-specific allosuppressor factor inhibits an early step in the sensitization of precursor cytotoxic T lymphocytes.  相似文献   

16.
Previous work from this laboratory has revealed that spleen and/or lymph node cells from Lewis rats, that have recovered from an acute episode of experimental autoimmune encephalomyelitis (EAE), suppress the development of EAE when injected into syngeneic recipients subsequently challenged with myelin basic protein (MBP) in CFA. In an effort to understand the mechanism of this suppression, we measured the production of immune IFN-gamma, which may be required for the induction of an immune response, by EAE effector T cells (which transfer disease) and EAE suppressor cells when cultured in vitro with MBP. We now report that EAE effector T cells produce IFN-gamma when cultured in vitro with MBP. In contrast, spleen cells from recovered rats (which manifest suppressor activity in vivo) do not produce IFN-gamma. Moreover, in cell mixing experiments, these suppressor spleen cells inhibited the production of IFN-gamma by EAE effector cells. This inhibition was not eliminated by the removal of macrophages nor by the inhibition of PG synthesis by indomethacin. Furthermore, the inhibition was shown to be Ag-specific and mediated by nylon-adherent, radiation-sensitive splenic T cells. The findings suggest that suppressor cells regulate EAE by inhibiting IFN-gamma production by effector cells. This inhibition may result in the down-regulation of IFN-gamma-induced expression of class II major histocompatibility Ag on cells of the central nervous system, thus reducing the presentation of tissue-specific Ag (i.e., MBP) to autoreactive lymphocytes.  相似文献   

17.
Normal mouse lymphocytes are not capable of mounting a primary cytotoxic T cell response to Mls encoded, non H-2, allodeterminants, although a strong lymphoproliferative response is observed in primary MLR between Mls incompatible cells. In this study it is reported that in the supernatant of primary cultures between AKR macrophages and CBA/H lymphocytes (H-2 identical, incompatible for Mls and other minor antigens) a suppressor of T cell proliferation in MLR is detected. By contrast, a suppressor is not detected in supernatants from primary cultures between BALB/C macrophages and CBA/H lymphocytes (H-2 incompatible, Mls identical), B10.BR macrophages and CBA/H macrophages and CBA/H lymphocytes (syngeneic) suggesting that the production of the suppressor factor occurs only when an Mls incompatibility exists. The suppressive activity of the Mls incompatible culture supernatant upon MLR between incompatible macrophages and lymphocytes is neither antigen specific nor Mls or H-2 restricted, nor is it due to an irreversible toxic effect on T lymphocytes or macrophages. The inhibition of T cell proliferation could be explained by inhibition of IL 2 production, by blocking its union to T cells or by a combination of both effects. Our findings could help explain previous observations that lymphocytes from mice preimmunized with Mls incompatible cells have a depressed proliferative response as well as depressed cytotoxicity against alloantigens.  相似文献   

18.
The nature and function of suppressor factor(s) elaborated by suppressor T cells in response to certain chemically induced tumors have been further defined. Thus, suppressor factor(s) specific for the S1509a methylchol-anthrene-induced fibrosarcoma have been shown to bear determinants encoded by the I-J subregion of the murine MHC since suppressive activity is removed by passage of the factor through an immunoadsorbent composed of anti-I-Jk coupled to Sepharose. No loss of activity was observed after passage of factor through control columns composed of normal mouse globulin. Furthermore, activity could be recovered from the relevant immunoadsorbent by elution with high salt. The administration of crude suppressor factor(s) to normal animals for 4 days resulted in the development of a population of suppressor cells that act in a manner analogous to the suppressor cell population used for production of factor. These factor-induced suppressor cells are T cells and exhibit an antigen specificity similar to that displayed by the tumor-induced suppressor cells. Thus, tumor-specific suppressor factor(s) bear I-J determinants and are capable of inducing the appearance of suppressor T cells in the nontumor-bearing host, which may then act in a specific manner to limit host responsiveness to tumor antigen.  相似文献   

19.
The mammalian fetus expresses a variety of antigens against which the maternal immune system can react and which in an allogeneic mating bears paternal transplantation antigens. Although these antigens may be expressed on the fetal trophoblast cells that contact maternal uterine decidua, the "fetal allograft" is not usually rejected. Previous studies have demonstrated the presence of nonspecific non-thymus-derived suppressor cells in the lymph nodes draining the uterus and in decidua of laboratory mice undergoing first allogeneic pregnancy. These suppressor cells appeared to be small lymphocyte cells that inhibit the generation of cytotoxic T lymphocytes (CTL) in vitro and in vivo and elaborate a nonspecific non-MHC-restricted soluble suppressor activity when cultured for 48 hours at 37 degrees C in vitro. We now report that soluble suppressor activity obtained from the decidua (DS) of allopregnant C3H/HeJ mice inhibits both the primary and secondary (memory) CTL response in vitro but does not inhibit lysis of target cells by preformed CTL. DS did not suppress the proliferation of YAC lymphoma cells, P-815 cells, or a C3H placental trophoblastoma line. Suppressor activity was obtained from anti-thy-1.2 + complement-resistant cells in the decidua, could also be obtained from the decidua of allopregnant CD1 nu/nu mice, and was associated with a single peak of activity of approximately 100,000 daltons on Sephacryl 200 chromatography. Suppression could not be overcome by adding either crude or HPLC-purified IL 2 to the mixed lymphocyte cultures in vitro, and both crude and column-purified suppressor factor inhibited the IL 2-dependent proliferation of H-Y cells (a cloned T cell line with NK activity). Furthermore, DS inhibited the IL 2-dependent generation of cytotoxic effector cells in vitro in the absence of allogeneic stimulator cells. Thus, a soluble suppressor factor obtained from non-T cells present in the decidua of successfully allopregnant mice could block the response to IL 2 and inhibit the generation of both specific and nonspecific cytotoxic effector cells. The significance of this inhibition with respect to survival of the "fetal allograft" is discussed.  相似文献   

20.
During multiple in vitro allosensitisations of human lymphocytes, suppressor cells of the allogenic response are developed. They are radioresistant and specific to the HLA-DR presented by the stimulators, and adherent to nylon and glass wool, while cytotoxic cells are not. Moreover when irradiated, these hyperimmunized cells are able to release a suppressor factor (SF). This suppressor factor is non antigen specific and active on the autologous producer and some allogenic responders. There is a restriction phenomenon, the genetic control of which is not yet defined. The dominant effect of multiple transfusions on kidney graft survival could be explained in part by a similar cellular mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号