首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To better define the role of B cells in the control of pathogenic simian immunodeficiency virus (SIV) replication, six rhesus monkeys were depleted of B cells by intravenous infusion of rituximab (anti-CD20) 28 days and 7 days before intravaginal SIVmac239 inoculation and every 21 days thereafter until AIDS developed. Although the blood and tissues were similarly depleted of B cells, anti-SIV immunoglobulin G (IgG) antibody responses were completely blocked in only three of the six animals. In all six animals, levels of viral RNA (vRNA) in plasma peaked at 2 weeks and declined by 4 weeks postinoculation (PI). However, the three animals prevented from making an anti-SIV antibody response had significantly higher plasma vRNA levels through 12 weeks PI (P = 0.012). The remaining three B-cell-depleted animals made moderate anti-SIV IgG antibody responses, maintained moderate plasma SIV loads, and showed an expected rate of disease progression, surviving to 24 weeks PI without developing AIDS. In contrast, all three of the B-cell-depleted animals prevented from making anti-SIV IgG responses developed AIDS by 16 weeks PI (P = 0.0001). These observations indicate that antiviral antibody responses are critical in maintaining effective control of SIV replication at early time points postinfection.  相似文献   

2.
Six female rhesus macaques were immunized orally and intranasally at 0 weeks and intratracheally at 12 weeks with an adenovirus type 5 host range mutant (Ad5hr)-simian immunodeficiency virus SIVsm env recombinant and at 24 and 36 weeks with native SIVmac251 gp120 in Syntex adjuvant. Four macaques received the Ad5hr vector and adjuvant alone; two additional controls were naive. In vivo replication of the Ad5hr wild-type and recombinant vectors occurred with detection of Ad5 DNA in stool samples and/or nasal secretions in all macaques and increases in Ad5 neutralizing antibody in 9 of 10 macaques following Ad administrations. SIV-specific neutralizing antibodies appeared after the second recombinant immunization and rose to titers > 10,000 following the second subunit boost. Immunoglobulin G (IgG) and IgA antibodies able to bind gp120 developed in nasal and rectal secretions, and SIV-specific IgGs were also observed in vaginal secretions and saliva. T-cell proliferative responses to SIV gp140 and T-helper epitopes were sporadically detected in all immunized macaques. Following vaginal challenge with SIVmac251, transient or persistent infection resulted in both immunized and control monkeys. The mean viral burden in persistently infected immunized macaques was significantly decreased in the primary infection period compared to that of control macaques. These results establish in vivo use of the Ad5hr vector, which overcomes the host range restriction of human Ads for rhesus macaques, thereby providing a new model for evaluation of Ad-based vaccines. In addition, they show that a vaccine regimen using the Ad5hr-SIV env recombinant and gp120 subunit induces strong humoral, cellular, and mucosal immunity in rhesus macaques. The reduced viral burden achieved solely with an env-based vaccine supports further development of Ad-based vaccines comprising additional viral components for immune therapy and AIDS vaccine development.  相似文献   

3.
Transient antiretroviral treatment with tenofovir, (R)-9-(2-phosphonylmethoxypropyl)adenine, begun shortly after inoculation of rhesus macaques with the highly pathogenic simian immunodeficiency virus (SIV) isolate SIVsmE660, facilitated the development of SIV-specific lymphoproliferative responses and sustained effective control of the infection following drug discontinuation. Animals that controlled plasma viremia following transient postinoculation treatment showed substantial resistance to subsequent intravenous rechallenge with homologous (SIVsmE660) and highly heterologous (SIVmac239) SIV isolates, up to more than 1 year later, despite the absence of measurable neutralizing antibody. In some instances, resistance to rechallenge was observed despite the absence of detectable SIV-specific binding antibody and in the face of SIV lymphoproliferative responses that were low or undetectable at the time of challenge. In vivo monoclonal antibody depletion experiments demonstrated a critical role for CD8(+) lymphocytes in the control of viral replication; plasma viremia rose by as much as five log units after depletion of CD8(+) cells and returned to predepletion levels (as low as <100 copy Eq/ml) as circulating CD8(+) cells were restored. The extent of host control of replication of highly pathogenic SIV strains and the level of resistance to heterologous rechallenge achieved following transient postinoculation treatment compared favorably to the results seen after SIVsmE660 and SIVmac239 challenge with many vaccine strategies. This impressive control of viral replication was observed despite comparatively modest measured immune responses, less than those often achieved with vaccination regimens. The results help establish the underlying feasibility of efforts to develop vaccines for the prevention of AIDS, although the exact nature of the protective host responses involved remains to be elucidated.  相似文献   

4.
We previously described the pattern of sequence variation in gp120 following persistent infection of rhesus monkeys with the pathogenic simian immunodeficiency virus SIVmac239 molecular clone (D.P.W. Burns and R.C. Desrosiers, J. Virol. 65:1843, 1991). Sequence changes were confined largely to five variable regions (V1 to V5), four of which correspond to human immunodeficiency virus type 1 (HIV-1) gp120 variable regions. Remarkably, 182 of 186 nucleotide substitutions that were documented in these variable regions resulted in amino acid changes. This is an extremely nonrandom pattern, which suggests selective pressure driving amino acid changes in discrete variable domains. In the present study, we investigated whether neutralizing-antibody responses are one selective force responsible at least in part for the observed pattern of sequence variation. Variant env sequences called 1-12 and 8-22 obtained 69 and 93 weeks after infection of a rhesus monkey with cloned SIVmac239 were recombined into the parental SIVmac239 genome, and variant viruses were generated by transfection of cultured cells with cloned DNA. The 1-12 and 8-22 recombinants differ from the parental SIVmac239 at 18 amino acid positions in gp120 and at 5 and 10 amino acid positions, respectively, in gp41. Sequential sera from the monkey infected with cloned SIVmac239 from which the 1-12 and 8-22 variants were isolated showed much higher neutralizing antibody titers to cloned SIVmac239 than to the cloned 1-12 and 8-22 variants. For example, at 55 weeks postinfection the neutralizing antibody titer against SIVmac239 was 640 while those to the variant viruses were 40 and less than 20. Two other rhesus monkeys infected with cloned SIVmac239 showed a similar pattern. Rhesus monkeys were also experimentally infected with the cloned variants so that the type-specific nature of the neutralizing antibody responses could be verified. Indeed, each of these monkeys showed neutralizing-antibody responses of much higher titer to the homologous variant used for infection. These experiments unambiguously demonstrate that SIV mutants resistant to serum neutralization arise during the course of persistent infection of rhesus monkeys.  相似文献   

5.
Recent recombinant viral vector-based AIDS vaccine trials inducing cellular immune responses have shown control of CXCR4-tropic simian-human immunodeficiency virus (SHIV) replication but difficulty in containment of pathogenic CCR5-tropic simian immunodeficiency virus (SIV) in rhesus macaques. In contrast, controlled infection of live attenuated SIV/SHIV can confer the ability to contain SIV superchallenge in macaques. The specific immune responses responsible for this control may be induced by live virus infection but not consistently by viral vector vaccination, although those responses have not been determined. Here, we have examined in vitro anti-SIV efficacy of CD8+ cells in rhesus macaques that showed prophylactic viral vector vaccine-based control of CXCR4-tropic SHIV89.6PD replication. Analysis of the effect of CD8+ cells obtained at several time points from these macaques on CCR5-tropic SIVmac239 replication in vitro revealed that CD8+ cells in the chronic phase after SHIV challenge suppressed SIV replication more efficiently than those before challenge. SIVmac239 superchallenge of two of these macaques at 3 or 4 years post-SHIV challenge was contained, and the following anti-CD8 antibody administration resulted in transient CD8+ T-cell depletion and appearance of plasma SIVmac239 viremia in both of them. Our results indicate that CD8+ cells acquired the ability to efficiently suppress SIV replication by controlled SHIV infection, suggesting the contribution of CD8+ cell responses induced by controlled live virus infection to containment of HIV/SIV superinfection.  相似文献   

6.
The potential contribution of a plasmid DNA construct to vaccine-elicited protective immunity was explored in the simian immunodeficiency virus (SIV)/macaque model of AIDS. Making use of soluble major histocompatibility class I/peptide tetramers and peptide-specific killing assays to monitor CD8(+) T-lymphocyte responses to a dominant SIV Gag epitope in genetically selected rhesus monkeys, a codon-optimized SIV gag DNA vaccine construct was shown to elicit a high-frequency SIV-specific cytotoxic T-lymphocyte (CTL) response. This CTL response was demonstrable in both peripheral blood and lymph node lymphocytes. Following an intravenous challenge with the highly pathogenic viral isolate SIVsm E660, these vaccinated monkeys developed a secondary CTL response that arose with more rapid kinetics and reached a higher frequency than did the postchallenge CTL response in control plasmid-vaccinated monkeys. While peak plasma SIV RNA levels were comparable in the experimentally and control-vaccinated monkeys during the period of primary infection, the gag plasmid DNA-vaccinated monkeys demonstrated better containment of viral replication by 50 days following SIV challenge. These findings indicate that a plasmid DNA vaccine can elicit SIV-specific CTL responses in rhesus monkeys, and this vaccine-elicited immunity can facilitate the generation of secondary CTL responses and control of viral replication following a pathogenic SIV challenge. These observations suggest that plasmid DNA may prove a useful component of a human immunodeficiency virus type 1 vaccine.  相似文献   

7.
HIV-specific CD8+ T cells that secrete multiple cytokines in response to Ag stimulation are associated with the control of virus replication during chronic HIV infection. To determine whether the presence of polyfunctional CD8+ T cell responses distinguishes protected and unprotected monkeys in a live attenuated lentivirus model, SIV Gag peptide-specific CD8+ T cell responses of simian HIV (SHIV) 89.6-vaccinated, SIVmac239-challenged rhesus macaques were compared in two monkeys that controlled challenge virus replication and two that did not. The ratio of Bcl-2+ Gag-specific CD8+ T cells to caspase-3+ Gag-specific CD8+ T cells was higher in the vaccinated-protected animals compared with unprotected monkeys. In addition, polyfunctional SIV-specific CD8+ T cells were consistently detected through 12 wk postchallenge in the protected animals but not in the unprotected animals. In the unprotected monkeys, there was an increased frequency of CD8+ T cells expressing markers associated with effector memory T cells. Further, there was increased annexin V expression in central memory T cells of the unprotected animals before challenge. Thus, monkeys that control viral replication after live attenuated SHIV infection have polyfunctional SIV-specific CD8+ T cells with an increased survival potential. Importantly, the differences in the nature of the SIV-specific CD8+ T cell response in the protected and unprotected animals are present during acute stages postchallenge, before different antigenic levels are established. Thus, the polyfunctional capacity and increased survival potential of CD8+ SIV-specific T cells may account for live attenuated, SHIV89.6-mediated protection from uncontrolled SIV replication.  相似文献   

8.
To explore the roles played by specific human immunodeficiency virus type 1 (HIV-1) genes in determining the in vivo replicative capacity of AIDS viruses, we have examined the replication kinetics and virus-specific immune responses in rhesus monkeys following infection with two chimeric simian/human immunodeficiency viruses (SHIVs). These viruses were composed of simian immunodeficiency virus SIVmac239 expressing HIV-1 env and the associated auxiliary HIV-1 genes tat, vpu, and rep. Virus replication was assessed during primary infection of rhesus monkeys by measuring plasma SIVmac p27 levels and by quantifying virus replication in lymph nodes using in situ hybridization. SHIV-HXBc2, which expresses the HIV-1 env of a T-cell-tropic, laboratory-adapted strain of HIV-1 (HXBc2), replicated well in rhesus monkey peripheral blood leukocytes (PBL) in vitro but replicated only to low levels when inoculated in rhesus monkeys. In contrast, SHIV-89.6 was constructed with the HIV-1 env gene of a T-cell- and macrophage-tropic clone of a patient isolate of HIV-1 (89.6). This virus replicated to a lower level in monkey PBL in vitro but replicated to a higher degree in monkeys during primary infection. Moreover, monkeys infected with SHIV-89.6 developed an inversion in the PBL CD4/CD8 ratio coincident with the clearance of primary viremia. The differences in the in vivo consequences of infection by these two SHIVs could not be explained by differences in the immune responses elicited by these viruses, since infected animals had comparable type-specific neutralizing antibody titers, proliferative responses to recombinant HIV-1 gp120, and virus-specific cytolytic effector T-cell responses. With the demonstration that a chimeric SHIV can replicate to high levels during primary infection in rhesus monkeys, this model can now be used to define genetic determinants of HIV-1 pathogenicity.  相似文献   

9.
Although the cellular immune response is essential for controlling SIV replication in Asian macaques, its role in maintaining nonpathogenic SIV infection in natural hosts such as sooty mangabeys (SM) remains to be defined. We have previously shown that similar to rhesus macaques (RM), SM are able to mount a T lymphocyte response against SIV infection. To investigate early control of SIV replication in natural hosts, we performed a detailed characterization of SIV-specific cellular immunity and viral control in the first 6 mo following SIV infection in SM. Detection of the initial SIV-specific IFN-γ ELISPOT response in SIVsmE041-infected SM coincided temporally with a decline in peak plasma viremia and was similar in magnitude, specificity, and breadth to SIVsmE041-infected and SIVmac239-infected RM. Despite these similarities, SM showed a greater reduction in postpeak plasma viremia and a more rapid disappearance of productively SIV-infected cells from the lymph node compared with SIVmac239-infected RM. The early Gag-specific CD8(+) T lymphocyte response was significantly more polyfunctional in SM compared with RM, and granzyme B-positive CD8(+) T lymphocytes were present at significantly higher frequencies in SM even prior to SIV infection. These findings suggest that the early SIV-specific T cell response may be an important determinant of lymphoid tissue viral clearance and absence of lymph node immunopathology in natural hosts of SIV infection.  相似文献   

10.
With the recent demonstration in the RV144 Thai trial that a vaccine regimen that does not elicit neutralizing antibodies or cytotoxic T lymphocytes may confer protection against human immunodeficiency virus type 1 (HIV-1) infection, attention has turned to nonneutralizing antibodies as a possible mechanism of vaccine protection. In the current study, we evaluated the kinetics of the antibody-dependent cell-mediated cytotoxicity (ADCC) response during acute and chronic SIVmac251 infection of rhesus monkeys. We first adapted a flow cytometry-based ADCC assay, evaluating the use of different target cells as well as different strategies for quantitation of activated natural killer (NK) cells. We found that the use of SIVmac251 Env gp130-coated target cells facilitates analyses of ADCC activity with a higher degree of sensitivity than the use of simian immunodeficiency virus (SIV)-infected target cells; however, the kinetics of the measured responses were the same using these different target cells. By comparing NK cell expression of CD107a with NK cell expression of other cytokines or chemokine molecules, we found that measuring CD107a expression is sufficient for evaluating the anti-SIV function of NK cells. We also showed that ADCC responses can be detected as early as 3 weeks after SIVmac251 infection and that the magnitude of this antibody response is inversely associated with plasma viral RNA levels in animals with moderate to high levels of viral replication. However, we also demonstrated an association between NK cell-mediated ADCC responses and the amount of SIVmac251 gp140 binding antibody that developed after viral infection. This final observation raises the possibility that the antibodies that mediate ADCC are a subset of the antibodies detected in a binding assay and arise within weeks of infection.  相似文献   

11.
Abstract: This study assessed the magnitude and cross-reactivity of the neutralizing antibody response generated by natural SIV infection in wild-caught African green monkeys. Neutralizing antibodies of variable potency, sometimes exceeding a titer of 1:1,000, were detected in 20 of 20 SIV-seropositive African green monkeys in Kenya. Detection of those neutralizing antibodies was dependent on the strain of virus and the cells used for assay, where the most sensitive detection was made with SIVagml532 in Sup T1 cells. Potent neutralization of SIVagml532 was seen with contemporaneous autologous serum. Potent neutralization was also detected with laboratory-passaged SIVmac251 and SIVsmB670, but not with SIVsmE660 and two additional strains of SIVagm. Serum samples from rhesus macaques (Macaca mulatta) experimentally infected with either SIVmac251 or SIVsmE660 were capable of low-level neutralization of SIVagm. These results indicate that natural infection with SIV can generate strain-specific neutralizing antibodies in African green monkeys. They also indicate that some neutralization determinants of SIVagm are partially shared with SIV strains that arose in sooty mangabys and were subsequently transmitted to rhesus macaques.  相似文献   

12.
In this study we investigated the ability of a replication-competent Ad5hr-SIVenv/rev and Ad5hr-SIVgag recombinant priming/gp120 boosting regimen to induce protective immunity in rhesus macaques against pathogenic simian immunodeficiency virus(mac251). Immunization of macaques by two sequential administrations of the same recombinants by the same route resulted in boosting and persistence of SIV-specific cellular immune responses for 42 weeks past the initial immunization. Anti-SIV gp120 immunoglobulin G (IgG) and IgA antibodies were induced in secretory fluids, and all macaques exhibited serum neutralizing antibody activity. After intrarectal SIV(mac251) challenge, all of the macaques became infected. However, relative protection, as assessed by statistically significant lower SIV viral loads in plasma at both acute infection and set point, was observed in 8 out of 12 immunized non-Mamu-A(*)01 animals. Elevated mean cellular immune responses to Gag and Env, neutralizing antibody activity, and IgG and IgA binding antibody levels were observed in the eight protected macaques. Statistically significant correlations with protective outcome were observed for cellular immune responses to SIV Env and Gag and for SIV gp120-specific IgG antibodies in nasal and vaginal fluids. Two macaques that exhibited the greatest and most persistent viremia control also exhibited strong CD8(+) T-cell antiviral activity. The results suggest that a spectrum of immune responses may be necessary for adequate control of viral replication and disease progression and highlight a potential role for nonneutralizing antibodies at mucosal sites.  相似文献   

13.
To explore the efficacy of novel complementary prime-boost immunization regimens in a nonhuman primate model for HIV infection, rhesus monkeys primed by different DNA vaccines were boosted with virus-like particles (VLP) and then challenged by repeated low-dose rectal exposure to simian immunodeficiency virus (SIV). Characteristic of the cellular immune response after the VLP booster immunization were high numbers of SIV-specific, gamma interferon-secreting cells after stimulation with inactivated SIV particles, but not SIV peptides, and the absence of detectable levels of CD8(+) T cell responses. Antibodies specific to SIV Gag and SIV Env could be induced in all animals, but, consistent with a poor neutralizing activity at the time of challenge, vaccinated monkeys were not protected from acquisition of infection and did not control viremia. Surprisingly, vaccinees with high numbers of SIV-specific, gamma interferon-secreting cells were infected fastest during the repeated low-dose exposures and the numbers of these immune cells in vaccinated macaques correlated with susceptibility to infection. Thus, in the absence of protective antibodies or cytotoxic T cell responses, vaccine-induced immune responses may increase the susceptibility to acquisition of immunodeficiency virus infection. The results are consistent with the hypothesis that virus-specific T helper cells mediate this detrimental effect and contribute to the inefficacy of past HIV vaccination attempts (e.g., STEP study).  相似文献   

14.
Although live attenuated vaccines can provide potent protection against simian immunodeficiency virus (SIV) and simian-human immunodeficiency virus challenges, the specific immune responses that confer this protection have not been determined. To test whether cellular immune responses mediated by CD8+ lymphocytes contribute to this vaccine-induced protection, we depleted rhesus macaques vaccinated with the live attenuated virus SIVmac239Delta3 of CD8+ lymphocytes and then challenged them with SIVmac251 by the intravenous route. While vaccination did not prevent infection with the pathogenic challenge virus, the postchallenge levels of virus in the plasmas of vaccinated control animals were significantly lower than those for unvaccinated animals. The depletion of CD8+ lymphocytes at the time of challenge resulted in virus levels in the plasma that were intermediate between those of the vaccinated and unvaccinated controls, suggesting that CD8+ cell-mediated immune responses contributed to protection. Interestingly, at the time of challenge, animals expressing the Mamu-A*01 major histocompatibility complex class I allele showed significantly higher frequencies of SIV-specific CD8+ T-cell responses and lower neutralizing antibody titers than those in Mamu-A*01- animals. Consistent with these findings, the depletion of CD8+ lymphocytes abrogated vaccine-induced protection, as judged by the peak postchallenge viremia, to a greater extent in Mamu-A*01+ than in Mamu-A*01- animals. The partial control of postchallenge viremia after CD8+ lymphocyte depletion suggests that both humoral and cellular immune responses induced by live attenuated SIV vaccines can contribute to protection against a pathogenic challenge and that the relative contribution of each of these responses to protection may be genetically determined.  相似文献   

15.
A major goal of AIDS vaccine development is to design vaccination strategies that can elicit broad and potent protective antibodies. The initial viral targets of neutralizing antibodies (NAbs) early after human or simian immunodeficiency virus (HIV/SIV) infection are not known. The identification of early NAb epitopes that induce protective immunity or retard the progression of disease is important for AIDS vaccine development. The aim of this study was to determine the Env residues targeted by early SIV NAbs and to assess the influence of prior vaccination on neutralizing antibody kinetics and specificity during early infection. We previously described stereotypic env sequence variations in SIVmac251-infected rhesus monkeys that resulted in viral escape from NAbs. Here, we defined the early viral targets of neutralization and determined whether the ability of serum antibody from infected monkeys to neutralize SIV was altered in the setting of prior vaccination. To localize the viral determinants recognized by early NAbs, a panel of mutant pseudoviruses was assessed in a TZM-bl reporter gene neutralization assay to define the precise changes that eliminate recognition by SIV Env-specific NAbs in 16 rhesus monkeys. Changing R420 to G or R424 to Q in V4 of Env resulted in the loss of recognition by NAbs in vaccinated monkeys. In contrast, mutations in the V1 region of Env did not alter the NAb profile. These findings indicate that early NAbs are directed toward SIVmac251 Env V4 but not the V1 region, and that this env vaccination regimen did not alter the kinetics or the breadth of NAbs during early infection.  相似文献   

16.
The goal of an AIDS vaccine regimen designed to induce cellular immune responses should be to reduce the viral set point and preserve memory CD4 lymphocytes. Here we investigated whether vaccine-induced cellular immunity in the absence of any Env-specific antibodies can control viral replication following multiple low-dose challenges with the highly pathogenic SIVmac239 isolate. Eight Mamu-A*01-positive Indian rhesus macaques were vaccinated with simian immunodeficiency virus (SIV) gag, tat, rev, and nef using a DNA prime-adenovirus boost strategy. Peak viremia (P = 0.007) and the chronic phase set point (P = 0.0192) were significantly decreased in the vaccinated cohort, out to 1 year postinfection. Loss of CD4(+) memory populations was also ameliorated in vaccinated animals. Interestingly, only one of the eight vaccinees developed Env-specific neutralizing antibodies after infection. The control observed was significantly improved over that observed in animals vaccinated with SIV gag only. Vaccine-induced cellular immune responses can, therefore, exert a measure of control over replication of the AIDS virus in the complete absence of neutralizing antibody and give us hope that a vaccine designed to induce cellular immune responses might control viral replication.  相似文献   

17.
The potential of the simian immunodeficiency virus (SIV) variable 2 (V2) domain as an effective region to boost SIV-neutralizing antibodies and to protect against live SIV challenge was tested in rhesus macaques. In this study, two rhesus macaques were primed with vaccinia virus recombinants expressing the surface glycoprotein gp140 of SIVmac and were given booster injections with the SIVmac V2 domain presented by a highly immunogenic carrier, the hepatitis B surface antigen (HBsAg). The two vaccinated macaques exhibited SIV-neutralizing antibodies after primer injections that were enhanced by the V2/HBsAg injections. Part of these SIV-neutralizing antibodies were directed specifically to the V2 region, as shown by neutralization-blocking experiments. However, despite having consistent SIV-neutralizing antibody titers, animals were not protected against homologous challenge with BK28, the molecular clone of SIVmac251. No SIV envelope-specific cellular cytotoxic response was detected throughout the immunization protocol, suggesting that neutralizing antibodies directed to SIV envelope gp140 and especially to the V2 domain were unable on their own to protect against SIV challenge. Furthermore, the vaccinees seemed to have higher viral loads than control animals after challenge, raising the question of whether neutralizing antibodies induced by vaccination and directed to the SIV envelope selected viral escape mutants, as shown previously in SIV-infected macaques. This mechanism is certainly worthy of intensive investigation and raises some concern for SIV envelope-targeted immunization.  相似文献   

18.
Therapeutic dendritic-cell vaccine for simian AIDS   总被引:27,自引:0,他引:27  
Lu W  Wu X  Lu Y  Guo W  Andrieu JM 《Nature medicine》2003,9(1):27-32
An effective immune response against human immunodeficiency virus or simian immunodeficiency virus (SIV) is critical in achieving control of viral replication. Here, we show in SIV-infected rhesus monkeys that an effective and durable SIV-specific cellular and humoral immunity is elicited by a vaccination with chemically inactivated SIV-pulsed dendritic cells. After three immunizations made at two-week intervals, the animals exhibited a 50-fold decrease of SIV DNA and a 1,000-fold decrease of SIV RNA in peripheral blood. Such reduced viral load levels were maintained over the remaining 34 weeks of the study. Molecular and cellular analyses of axillary and inguinal node lymphocytes of vaccinated monkeys revealed a correlation between decreased SIV DNA and RNA levels and increased SIV-specific T-cell responses. Neutralizing antibody responses were augmented and remained elevated. Inactivated whole virus-pulsed dendritic cell vaccines are promising means to control diseases caused by immuno- deficiency viruses.  相似文献   

19.
Neutralizing antibodies were assessed before and after intravenous challenge with pathogenic SIVsmE660 in rhesus macaques that had been immunized with recombinant modified vaccinia virus Ankara expressing one or more simian immunodeficiency virus gene products (MVA-SIV). Animals received either MVA-gag-pol, MVA-env, MVA-gag-pol-env, or nonrecombinant MVA. Although no animals were completely protected from infection with SIV, animals immunized with recombinant MVA-SIV vaccines had lower virus loads and prolonged survival relative to control animals that received nonrecombinant MVA (I. Ourmanov et al., J. Virol. 74:2740-2751, 2000). Titers of neutralizing antibodies measured with the vaccine strain SIVsmH-4 were low in the MVA-env and MVA-gag-pol-env groups of animals and were undetectable in the MVA-gag-pol and nonrecombinant MVA groups of animals on the day of challenge (4 weeks after final immunization). Titers of SIVsmH-4-neutralizing antibodies remained unchanged 1 week later but increased approximately 100-fold 2 weeks postchallenge in the MVA-env and MVA-gag-pol-env groups while the titers remained low or undetectable in the MVA-gag-pol and nonrecombinant MVA groups. This anamnestic neutralizing antibody response was also detected with T-cell-line-adapted stocks of SIVmac251 and SIV/DeltaB670 but not with SIVmac239, as this latter virus resisted neutralization. Most animals in each group had high titers of SIVsmH-4-neutralizing antibodies 8 weeks postchallenge. Titers of neutralizing antibodies were low or undetectable until about 12 weeks of infection in all groups of animals and showed little or no evidence of an anamnestic response when measured with SIVsmE660. The results indicate that recombinant MVA is a promising vector to use to prime for an anamnestic neutralizing antibody response following infection with primate lentiviruses that cause AIDS. However, the Env component of the present vaccine needs improvement in order to target a broad spectrum of viral variants, including those that resemble primary isolates.  相似文献   

20.
While the simian immunodeficiency virus (SIV)-infected rhesus monkey is an important animal model for human immunodeficiency virus type 1 (HIV-1) infection of humans, much remains to be learned about the evolution of the humoral immune response in this model. In HIV-1 infection, autologous neutralizing antibodies emerge 2 to 3 months after infection. However, the ontogeny of the SIV-specific neutralizing antibody response in mucosally infected animals has not been defined. We characterized the kinetics of the autologous neutralizing antibody response to the transmitted/founder SIVmac251 using a pseudovirion-based TZM-bl cell assay and monitored env sequence evolution using single-genome amplification in four rhesus animals that were infected via intrarectal inoculations. We show that the SIVmac251 founder viruses induced neutralizing antibodies at 5 to 8 months after infection. Despite their slow emergence and low titers, these neutralizing antibodies selected for escape mutants that harbored substitutions and deletions in variable region 1 (V1), V2, and V4 of Env. The neutralizing antibody response was initially focused on V4 at 5 to 8 months after infection and then targeted V1/V2 and V4 by 16 months. These findings reveal a striking delay in the development of neutralizing antibodies in SIVmac-infected animals, thus raising questions concerning the suitability of SIVmac251 as a challenge strain to screen AIDS vaccines that elicit neutralizing antibodies as a means to prevent virus acquisition. They also illustrate the capacity of the SIVmac quasispecies to modify antigenic determinants in response to very modest titers of neutralizing antibodies.While neutralizing antibodies (Nabs) mediate protection in humans against a diversity of viral pathogens (38, 53, 72), it is unclear how they impact human immunodeficiency virus type 1 (HIV-1) infection. One reason that the contribution of neutralizing antibodies to the control of HIV-1 remains uncertain is that HIV-specific neutralizing antibodies develop relatively late in natural infection. High titers of HIV-specific autologous neutralizing antibodies usually emerge as late as 2 to 3 months after infection and continue to evolve throughout the first years of infection (18, 25, 57, 66, 74). Such neutralizing antibodies have been shown to influence HIV-1 evolution within a host and to be responsible for viral escape mutations (47, 48, 58, 59). A better understanding of why there is a prolonged time associated with the maturation of the neutralizing antibody response in HIV-1 infection and whether conserved viral epitopes exist that could mediate antibody protection is important for the development of effective HIV-1 vaccine strategies.The simian immunodeficiency virus (SIV)/rhesus macaque model of AIDS provides an important system to study AIDS immunopathogenesis and to evaluate HIV-1 vaccine strategies. SIVmac251, an uncloned, pathogenic, CCR5-tropic virus isolate comprised of a swarm of quasispecies that are closely related (33), and SIVmac239, an infectious molecular clone derived from SIVmac251, are the two most commonly used rhesus monkey SIV challenge viruses utilized in AIDS vaccine research in the nonhuman primate (NHP) model. SIVmac239 has been shown to be relatively resistant to antibody-mediated neutralization by both autologous antibodies and a wide range of monoclonal antibodies (29, 30). The env sequence evolution in SIVmac239-infected rhesus monkeys and SIVMne-CL8-infected pigtailed macaques has been well described (8, 50, 51). Some of these changes in Env have been shown to result in viral escape from neutralizing antibodies (7, 10, 34, 60). In particular, a recent study by Sato et al. characterized SIVmac239 env sequence changes that were associated with viral escape in a rhesus monkey with an unusually high titer of neutralizing antibodies after intravenous infection (67). However, the antibody-mediated neutralization of SIVmac251 has not been tested rigorously using standardized assays that are currently being used to measure neutralization of HIV-1, thereby precluding a direct comparison of the neutralization sensitivities of HIV-1 and SIV. Furthermore, it is also unclear whether more typical titers of neutralizing antibodies against SIV239/251 exert selection pressure on the viral population in animals that acquire infection mucosally.The aims of this study were to elucidate the kinetics of the neutralizing antibody response against the transmitted viruses and the sequence evolution of env in association with humoral immunity in mucosally infected rhesus macaques. We hypothesized that a low titer of SIVmac Env-specific neutralizing antibodies exerts potent selection pressure on the viral quasispecies. To test this hypothesis, we utilized a pseudovirion-based TZM-bl reporter gene neutralization assay and single genome amplification (SGA) in order to characterize the humoral immune pressures driving viral sequence evolution in four rhesus monkeys that were infected with SIVmac251 via intrarectal inoculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号