首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of conditioned medium (CM) obtained from cultures of oestrogen-receptor positive breast cancer MCF7 cell line on the differentiation, proliferation and apoptosis patterns of cultured breast fibroblasts from normal interstitial and malignant stromal tissue. Fibroblasts were grown in the presence or absence of CM and examined for the differentiation pattern by immunofluorescence and Western blotting procedures, for proliferation profile by Ki67 expression, and for apoptosis by the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling technique. Monoclonal antibodies specific for non-muscle (NM), smooth muscle (SM) lineage and differentiation markers were applied to these cultures. CM is able to induce a SM-like differentiation in interstitial fibroblasts, i.e., essentially myofibroblast formation. Fibroblasts from tumour stroma showed the presence of a small number of smooth muscle cells (SMC) along with a large number of myofibroblasts. Treatment of these cultures with CM was unable to change this pattern. Only normal fibroblasts were responsive to the proliferation/apoptotic-inhibitory effect of the CM. These data suggest that structural and functional differences exist between stromal fibroblasts from normal breast and breast cancer with respect to the responsiveness to soluble factors present in the CM. We hypothesize that the lack of in vitro sensitivity to CM shown by 'tumour' fibroblasts is the result of an in vivo inherent and stable phenotypic change on the fibroblasts surrounding breast tumour cells occurring via a paracrine mechanism.  相似文献   

2.
Humoral and tumoral factors collectively promote cancer-induced skeletal muscle wasting by increasing protein degradation. Although several humoral proteins, namely TNFα (tumour necrosis factor α) and IL (interleukin)-6, have been shown to induce skeletal muscle wasting, there is a lack of information regarding the tumoral factors that contribute to the atrophy of muscle during cancer cachexia. Therefore, in the present study, we have characterized the secretome of C26 colon cancer cells to identify the tumoral factors involved in cancer-induced skeletal muscle wasting. In the present study, we show that myostatin, a procachectic TGFβ (transforming growth factor β) superfamily member, is abundantly secreted by C26 cells. Consistent with myostatin signalling during cachexia, treating differentiated C2C12 myotubes with C26 CM (conditioned medium) resulted in myotubular atrophy due to the up-regulation of muscle-specific E3 ligases, atrogin-1 and MuRF1 (muscle RING-finger protein 1), and enhanced activity of the ubiquitin-proteasome pathway. Furthermore, the C26 CM also activated ActRIIB (activin receptor type?II B)/Smad and NF-κB (nuclear factor κB) signalling, and reduced the activity of the IGF-I (insulin-like growth factor 1)/PI3K (phosphoinositide 3-kinase)/Akt pathway, three salient molecular features of myostatin action in skeletal muscles. Antagonists to myostatin prevented C26 CM-induced wasting in muscle cell cultures, further confirming that tumoral myostatin may be a key contributor in the pathogenesis of cancer cachexia. Finally, we show that treatment with C26 CM induced the autophagy-lysosome pathway and reduced the number of mitochondria in myotubes. These two previously unreported observations were recapitulated in skeletal muscles collected from C26 tumour-bearing mice.  相似文献   

3.
Addition of ATP (>0.1 mM) to cultures of human breast cancer T47D cells resulted in an inhibition of cell proliferation. The inhibition was found to be specific for ATP, and dependent on its concentration. Growth inhibition continued for at least three days, although ATP and its hydrolysis products were metabolized within one day. Conditioned medium from ATP-treated cultures (CM+) was found to inhibit the growth of cells that were not exposed to ATP. This is an indication that extracellular factors, besides ATP, are involved in the inhibition process. The inhibition was maintained after dialysis of the CM+, using an 8 kDa cut-off membrane. Conditioned medium from untreated cultures (CM-), however, only slightly affected cell growth. The data suggest that the CM+ -induced cell growth inhibition is mediated by an ATP-activated growth inhibiting factor. Flow microfluorometry and thymidine incorporation experiments have shown that the growth arrest is mainly due to the elongation of the S-phase of the cell cycle. © 1993 Wiley-Liss, Inc.  相似文献   

4.
Successful regeneration of damaged striated muscle in adult mice is dependent on the regeneration of newly differentiated myofibers from proliferating satellite cells and inhibition of scar tissue formation by fibroblasts. As with most tissues, the ability of skeletal muscle to regenerate decreases in older animals. In this study, we have analysed soluble extracts from intact and regenerating skeletal muscle from mice of different ages for their ability to affect avian myogenesis in tissue culture. We were interested in determining whether an age-dependent difference could be detected with this tissue culture bioassay system. Total cell proliferation in the cultures, measured by [3H]thymidine incorporation was increased equally by muscle extracts from both young and older mice but the resulting cell populations differed in proportion of cell types. The ratio of myoblasts to fibroblasts was significantly greater in cultures exposed to extracts from younger mouse muscle as compared with cultures exposed to extracts from older animals. This age-related activity was found to reside in a low molecular weight (MW) (greater than 12 kD) component of the extract. This fraction had dissimilar effects on myoblasts and fibroblasts. Relative to saline controls, myoblast proliferation was increased and fibroblast proliferation decreased. The low MW fraction from younger mouse muscle extracts stimulated myogenic cell proliferation and myotube formation to a greater extent than the similar fraction prepared from older mouse muscle. Conversely, younger mouse muscle fractions had significantly greater inhibitory activity against fibroblast proliferation than did older mouse muscle fractions.  相似文献   

5.
Gel filtration of a conditioned medium composed of the supernatant fluid removed from a 5-day culture of skeletal muscle cells from 9-day-old chick embryos with Bio-Gel P-2 revealed one peak of motility-prolonging activity (about 0.3 kDa), which was not present in fresh medium. Spermatozoa incubated in this fraction of the conditioned medium maintained their motility for at least 36 h at 37 degrees C. Both the formation of lipid peroxide and the leakage of lactic dehydrogenase of spermatozoa incubated in the conditioned medium fraction were lower than those incubated in the corresponding fresh medium. Initial rate of oxygen consumption of the spermatozoa incubated in the conditioned medium fraction increased compared with that of the fresh medium fraction. These results suggest that a low molecular weight factor(s) supplied by cultured cells effectively prolongs the motility of fowl spermatozoa, and that the effect could result from inhibition of the structural damage to the sperm membrane.  相似文献   

6.
Objectives:  The aim of this study was to determine whether normal human embryonic stem cells (hESC) would secrete factors that arrest growth of human epithelial cancer cell lines.
Materials and methods:  Cell proliferation was examined using the MTT assay then haemocytometer cell counts. Staining with propidium iodide followed by flow cytometry was used to detect cell cycle stages. Heat denaturation and molecular fractionation experiments were also performed.
Results:  We found that hESC conditioned medium (hESC CM) inhibited SKOV-3 and HEY cell proliferation. Similar results were also obtained when we used breast and prostate cancer cell lines, whereas little or no inhibitory effect was observed when human fibroblasts were tested. Moreover, a co-culture model confirmed that inhibition of cancer cell proliferation is mediated by soluble factors produced by hESCs. We also determined that the proportion of cancer cells in G1 phase was increased by hESC CM treatment, accompanied by decrease in cells in S and G2/M phases, suggesting that the factors slow progression of cancer cells by cell cycle inhibition. Heat denaturation and molecular fractionation experiments indicated a low molecular weight thermostable factor was responsible for these properties.
Conclusions:  Our findings provide evidence that the human embryonic microenvironment contains soluble factor(s) that are capable of inhibiting growth of cancer cells, and that exposure to such factors may represent a new cancer treatment strategy.  相似文献   

7.
The importance of connexins is implicated in proliferation and differentiation of cells. In skeletal muscle cells, connexin43 (Cx43) has been identified as the major connexin, and gap-junctional communication mediated by connexins has been shown to be required for their myogenic differentiation. In addition, inhibition of connexin function has been shown to induce transdifferentiation of osteoblasts to an adipocytic phenotype. In the present study, we examined whether the inhibition of connexin function could induce phenotypic changes in skeletal muscle cells. Treatment of skeletal muscle cells with an inhibitor of connexin function, 18alpha-glycyrrhetinic acid (AGRA), resulted in a reduction in the number of MyoD-positive cells and complete inhibition of myotube formation, concomitantly with an increase in the number of C/EBPalpha-positive cells. AGRA-treated cells cultured in adipogenic differentiation medium could give rise to mature adipocytes that express both PPARgamma and C/EBPalpha. The presence of AGRA during adipogenic differentiation did not inhibit adipogenesis of skeletal muscle cells. AGRA treatment did not affect Cx43 expression in skeletal muscle cells but reduced its phosphorylation. These results indicate that inhibition of connexin function induces phenotypic changes of skeletal muscle cells to enter adipogenesis.  相似文献   

8.
The hypothesis of the present study is that cardiomyocytes subjected to prolonged ischemia, may release survival factors that will protect new cardiac cells from ischemic stress. We exposed neonatal rat cardiomyocyte primary cultures to hypoxia, collected the supernatant, treated intact cardiac cells by this posthypoxic supernatant, and exposed them to hypoxia. The results show cardioprotection of the treated cells compared with the untreated ones. We named the collected posthypoxic supernatant "conditioned medium" (CM), which acts in a dose-dependent manner to protect new cardiac cells from hypoxia: 100 or 75% of CM diluted in phosphate-buffered saline (PBS) protected cells as if they were not exposed to hypoxia (P < 0.001). When CM was removed from the cells before hypoxia, protection was not observed. CM also protected skeletal muscle cultures from hypoxia, but not cardiac cells against H(2)O(2)-induced cell damage. Finally, CM treatment protected the isolated heart in Langendorff set-up against ischemia. Smaller infarct size (9.9 ± 4.4% vs. 28.3 ± 8.5%, P < 0.05), better Rate Pressure Product (67 ± 11% vs. 48.6 ± 13.4%, P < 0.05) and better rate of contraction and relaxation were observed following ischemia and reperfusion (1341 ± 399 mmHg/s vs. 951 ± 349 mmHg/s, P < 0.05 and 1053 ± 347 mmHg/s vs. 736 ± 314 mmHg/s, P < 0.05). To conclude, there are factors that are released from the heart cells subjected to ischemia/hypoxia that protects cardiomyocytes from ischemic stress.  相似文献   

9.
Treatment of sparse, proliferating cultures of 3T3 cells (target cells) with medium conditioned by exposure to density-inhibited 3T3 cultures resulted in an inhibition of growth and division in the target cells when compared to similar treatment with unconditioned medium (UCM). This differential effect of conditioned medium (CM) and UCM on target cells was demonstrated using three assay systems: (a) assessment of total cell number; (b) measurement of [3H]thymidine incorporated into acid-precipitable DNA; and (c) determination of the percentage of radioactively labeled nuclei in individual cells after incorporation of [3H]thymidine. The difference in the total incorporation of [3H]thymidine in CM-treated and UCM-treated cells was reflected by a difference in the percent of labeled cells. There was no differences in the average number of grains per labeled cell in the two cultures. Moreover, the inhibitory effect of the CM on target cell proliferation was reversible. Finally, this growth inhibitory activity can be collected in serum-free medium, precipitated by ammonium sulfate, and fractionated by gel filtration. In these purification procedures, the inhibitory activity was consistently found to be associated with the protein-containing fractions of the CM. No activity was found upon similar treatment with UCM. These results suggest that a system has been developed for the purification and molecular analysis of growth inhibitory factors that may mediate growth control in culture fibroblasts.  相似文献   

10.
Conditioned medium (CM) obtained from rat cerebellar astrocytes cultured in a serumcontaining medium was able to inhibit [3H]thymidine incorporation into proliferating astrocytes, when compared to fresh medium. This effect could be attributed to two fractions of the CM with different molecular weights. The low molecular weight fraction (Mr<1,000) inhibited the cellular transport of the labeled precursor, without significantly affecting cell proliferation. The high molecular weight fraction (Mr>10,000) showed a strong inhibitory effect on astrocyte proliferation, which was documented using different assay techniques: i) [3H]thymidine incorporation performed in conditions preventing the effects of CM on transport; ii) [3H]thymidine autoradiography; iii) determination of the DNA content of the cultures. The inhibitory activity was present in media conditioned by non proliferating astrocytes treated with the antimitotic cytosine arabinoside, but not in media conditioned by neuron-enriched cultures nor in a chemically defined (N2) CM. The antiproliferative activity of astrocyte CM could be due either to a rapid depletion of mitogenic factors present in serum, or, to a secretion of growth inhibitory factor(s) by cultured astrocytes.Special Issue Dedicated to Dr. Abel Lajtha.  相似文献   

11.
Umbilical cord mesenchymal stem cells (MSCs) have been shown to inhibit breast cancer cell growth but it is not known whether this effect is specific to only breast cancer cells. We compared the effects of human Wharton's jelly stem cell (hWJSC) extracts [conditioned medium (hWJSC‐CM) and cell lysate (hWJSC‐CL)] on breast adenocarcinoma (MDA‐MB‐231), ovarian carcinoma (TOV‐112D), and osteosarcoma (MG‐63) cells. The cells were treated with either hWJSC‐CM (50%) or hWJSC‐CL (15 µg/ml) for 48–72 h and changes in cell morphology, proliferation, cycle, gene expression, migration, and cell death studied. All three cancer cell lines showed cell shrinkage, blebbing, and vacuolations with hWJSC‐CL and hWJSC‐CM compared to controls. MTT and BrdU assays showed inhibition of cell growth by 2–6% and 30–60%, while Transwell migration assay showed inhibition by 20–26% and 31–46% for hWJSC‐CM and hWJSC‐CL, respectively, for all three cancer cell lines. Cell cycle assays showed increases in sub‐G1 and G2/M phases for all three cancer cell lines suggestive of apoptosis and metaphase arrest. AnnexinV‐FITC and TUNEL positive cells seen in TOV‐112D and MDA‐MB‐231 suggested that inhibition was via apoptosis while the presence of anti‐BECLIN1 and anti‐LC3B antibodies seen with MG‐63 indicated autophagy. Upregulation of pro‐apoptotic BAX and downregulation of anti‐apoptotic BCL2 and SURVIVIN genes were observed in all three cancer cell lines and additionally the autophagy genes (ATG5, ATG7, and BECLIN1) were upregulated in MG‐63 cells. hWJSCs possess tumor inhibitory properties that are not specific to breast cancer cells alone and these effects are mediated via agents in its extracts. J. Cell. Biochem. 113: 2027–2039, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
Conditioned medium (CM) taken from a serum-free culture of Trichoplusia ni (BTI-Tn-5B1-4, High Five) cells on days 2 and 3, shortened the lagphase and increased the maximum cell density when added to T. ni cultures with low-inoculum cell density. Gel filtration fractions of CM, eluting at around 45kDa, stimulated cell proliferation even better than CM. A protein in the gel filtration fraction was identified by N-terminal amino acid sequencing as a proteinase, related to a snake venom metalloproteinase. Casein zymography showed, multiple metalloproteinase bands between 48 and 25kDa, as well as precursor forms above 48kDa. Metalloproteinase bands below the main band at 48kDa were autocatalytic degradation products. Metalloproteinase activity was the sole factor responsible for the growth stimulating effect of CM as shown by using the specific metalloproteinase inhibitor dl-thiorphan. Metalloproteinases have recently been shown to release growth factors from sequestering extracellular proteins. We propose that the metalloproteinase is involved in autocrine regulation of T. ni proliferation in serum-free media. In addition, a gel filtration fraction of CM, eluting at about 10kDa, inhibited cell growth. Apart from a lysozyme precursor protein and a cyclophilin-like protein, a kazal-type proteinase inhibitor could be identified in this fraction.  相似文献   

13.
When normal human foreskin keratinocytes were cultured in the absence of polypeptide growth factors at densities above 5 x 10(3)/cells cm2, the cells proliferated continuously and the addition of IGF-I, EGF, TGF alpha, bFGF, or aFGF did not significantly alter growth rate. Heparin sulfate, TGF beta, or suramin inhibited keratinocyte growth factor-independent proliferation. The addition of EGF, TGF alpha, or aFGF reversed heparin-induced growth inhibition, while bFGF partially negated this effect. RIA of keratinocyte-derived conditioned medium (CM) indicated the presence of TGF alpha peptide at a concentration of approximately 235 pg/ml. In contrast, clonal growth of keratinocytes required the addition of growth factors to the basal medium. Keratinocyte-derived CM replaced EGF in stimulating keratinocyte clonal growth, and an anti-EGF receptor mAb inhibited CM-induced keratinocyte clonal growth. In addition to its effect on keratinocytes, keratinocyte-derived CM stimulated the incorporation of [3H]thymidine by quiescent cultures of human foreskin fibroblasts, mouse AKR-2B cells, and EGF-receptorless mouse NR6 cells. CM-stimulated [3H]thymidine incorporation into quiescent normal human fibroblasts was partially reduced in the presence of anti-EGF receptor mAb. Heparin sulfate partially inhibited CM-induced keratinocyte clonal growth and [3H]thymidine incorporation into quiescent AKR-2B cells. We hypothesize from these data that autocrine and paracrine-acting factors produced by keratinocytes mediated their effect through the activation of both EGF receptor-dependent and EGF receptor-independent mitogenic pathways and that some of these factors appear to be sensitive to inhibition by heparin.  相似文献   

14.
Bone metastases from prostate cancer cause abnormal new bone formation, however, the factors involved and the pathways leading to the response are incompletely defined. We investigated the mechanisms of osteoblast stimulatory effects of LNCaP prostate carcinoma cell conditioned media (CM). MC3T3-E1 osteoblastic cells were cultured with CM from confluent LNCaP cells. LNCaP CM stimulated MAP kinase, cell proliferation (3H-thymidine incorporation), and protein synthesis (14C-proline incorporation) in the MC3T3-E1 cells. The increases in cell proliferation and protein synthesis were prevented by inhibition of the MAP kinase pathway. IGF-I mimicked the effects of the CM on the MC3T3-E1 cells and inhibition of IGF-I action decreased the LNCaP CM stimulation of 3H-thymidine and 14C-proline incorporation and MAP kinase activity. The findings indicate that IGF-I is an important factor for the stimulatory effects of LNCaP cell CM on cell proliferation and protein synthesis in osteoblastic cells, and that MAP kinase is a component of the signaling pathway for these effects.  相似文献   

15.
Muscle cell culture as a tool in animal growth research   总被引:1,自引:0,他引:1  
Muscle cell culture techniques have been used for several years in research on muscle growth and development. Several types of culture systems have been devised, including primary cultures from embryonic or postnatal muscle and myogenic cell lines. In addition, serum-free and serum-containing media have been developed to address specific muscle development questions. Many of these questions center around muscle cell differentiation and muscle cell physiology; and, more recently, muscle cell cultures have been used as bioassay tools for examining growth physiology in domestic animals. In our laboratory, skeletal muscle satellite cells have been studied in vitro to evaluate the effect of several protein hormones and growth factors on satellite cell proliferation and differentiation. Of the hormones examined, only the insulin-like growth factors/somatomedins and fibroblast growth factor have been shown to have a stimulatory effect on proliferation that could be physiologically significant. None of the major anterior pituitary hormones interacted directly with satellite cells to stimulate proliferation. With advances in serum-free medium formulations and cell separation techniques, more information can be obtained from experiments with muscle cell cultures. With appropriate design and interpretation, our knowledge of muscle growth in domestic animals will be expanded.  相似文献   

16.
《The Journal of cell biology》1996,132(6):1151-1159
Several FGF family members are expressed in skeletal muscle; however, the roles of these factors in skeletal muscle development are unclear. We examined the RNA expression, protein levels, and biological activities of the FGF family in the MM14 mouse skeletal muscle cell line. Proliferating skeletal muscle cells express FGF-1, FGF-2, FGF-6, and FGF-7 mRNA. Differentiated myofibers express FGF-5, FGF-7, and reduced levels of FGF-6 mRNA. FGF-3, FGF-4, and FGF-8 were not detectable by RT-PCR in either proliferating or differentiated skeletal muscle cells. FGF-I and FGF-2 proteins were present in proliferating skeletal muscle cells, but undetectable after terminal differentiation. We show that transfection of expression constructs encoding FGF-1 or FGF-2 mimics the effects of exogenously applied FGFs, inhibiting skeletal muscle cell differentiation and stimulating DNA synthesis. These effects require activation of an FGF tyrosine kinase receptor as they are blocked by transfection of a dominant negative mutant FGF receptor. Transient transfection of cells with FGF-1 or FGF-2 expression constructs exerted a global effect on myoblast DNA synthesis, as greater than 50% of the nontransfected cells responded by initiating DNA synthesis. The global effect of cultures transfected with FGF-2 expression vectors was blocked by an anti-FGF-2 monoclonal antibody, suggesting that FGF-2 was exported from the transfected cells. Despite the fact that both FGF-l and FGF-2 lack secretory signal sequences, when expressed intracellularly, they regulate skeletal muscle development. Thus, production of FGF-1 and FGF-2 by skeletal muscle cells may act as a paracrine and autocrine regulator of skeletal muscle development in vivo.  相似文献   

17.
Activity of the enzyme choline acetyltransferase (CAT), which mediates the synthesis of the neurotransmitter, acetylcholine, was increased up to 20- fold in spinal cord (SC) cells grown in culture with muscle cells for 2 wk. This increase was directly related to the duration of co-culture as well as to the cell density of both the SC and muscle involved and was not affected by the presence of the acetylcholine receptor blocking agent, α-bungarotoxin. Glutamic acid decarboxylase (GAD) activity was often markedly decreased in SC-muscle cultures while the activities of acetylcholinesterase and several other enzymes were little changed. Increased CAT activity was also observed when SC cultures were maintained in medium which had been conditioned by muscle cells or by undifferentiated cells from embryonic muscle. Muscle-conditioned medium (CM) did not affect the activities of SC cell GAD or acetylcholinesterase. Dilution or concentration of the CM directly affected its ability to increase SC CAT activity , as did the duration and timing of exposure of the SC cells to the CM. The medium could be conditioned by muscle cells in the presence or absence of serum, and remained effective after dialysis or heating to 58 degrees C. Membrane filtration data were consistent with the conclusion that the active material(s) in CM had a molecular weight in excess of 50,000 daltons. We conclude that large molecular weight material that is released by muscle cells is capable of producing a specific increase in CAT activity of SC cells.  相似文献   

18.
The enzymatic machinery for neurotransmitter synthesis and breakdown have been compared in sister cultures of newborn rat sympathetic neurons grown for 12-28 days either in the presence (CM+ cultures) or in the absence (CM- cultures) of a culture medium conditioned by rat skeletal muscle cells. Neuron numbers, total protein, and lactate dehydrogenase activities were identical in CM+ and CM- cultures. Choline acetyltransferase activity was 27- to 100-fold higher in homogenates of CM+ than CM- cultures, whereas acetylcholinesterase activity was 2.5-fold lower. The activities of tyrosine hydroxylase (TOH), DOPA decarboxylase, and dopamine beta-hydroxylase were all about twofold lower in homogenates from CM+ cultures. All these effects were also observed in homogenates of sympathetic neuron cultures grown with and without a macromolecular factor partially purified from CM (Weber, J. (1981). Biol. Chem. 256, 3447-3453.). Experiments of mixing homogenates from CM+ and CM- cultures suggested that the differences in each of the enzyme activities did not result from differences in the concentrations of hypothetical reversible enzyme activators and/or inhibitors. In addition, the deficit in TOH activity in CM+ cultures resulted from a decrease in the enzymatic Vmax with no significant variation in the apparent Km's for the substrate and the cofactor. An identical decrease in the Vmax was observed if TOH was assayed under phosphorylating or nonphosphorylating conditions, suggesting that this decrease did not result from differences in the state of enzyme phosphorylation. Immunoprecipitation curves of TOH activity by an anti-TOH antiserum were parallel when performed on homogenates from CM+ and CM- cultures, suggesting a difference in the number of enzyme molecules without detectable alteration of their kinetic properties.  相似文献   

19.
Several growth factors, including platelet-derived growth factor (PDGF), have been implicated in the mechanism of lung and airway remodeling. In the present study, we evaluated whether thrombin may promote lung and airway remodeling by increasing PDGF production from lung and airway epithelial cells. Conditioned medium (CM) was prepared by treating epithelial cells with increasing concentrations of thrombin; before use in the assays, CM was treated with hirudin until complete inhibition of thrombin activity. CM from epithelial cells stimulated the proliferation of lung fibroblasts and bronchial smooth muscle cells. Anti-PDGF antibody significantly inhibited this CM proliferative activity, implicating PDGF in this effect. Enzyme immunoassay and RT-PCR demonstrated that thrombin induced the secretion and expression of PDGF from bronchial and alveolar epithelial cells. RT-PCR showed that epithelial cells express the thrombin receptors protease-activated receptor (PAR)-1, PAR-3, and PAR-4. The PAR-1 agonist peptide was also found to induce PDGF secretion from epithelial cells, suggesting that the cellular effect of thrombin occurs via a PAR-1-mediated mechanism. Overall, this study showed for the first time that thrombin may play an important role in the process of lung and airway remodeling by stimulating the expression of PDGF via its cellular receptor, PAR-1.  相似文献   

20.
A chemically defined medium has been formulated which supports the growth (proliferation and differentiation) of rat- and ovine-derived myogenic satellite cells in vitro. Utilization of this medium in a direct comparison study in which satellite cells from both species were exposed to insulin resulted in the following observations: (1) insulin promoted the dose-dependent proliferation of primary cultures of ovine-derived but not rat-derived satellite cells and (2) rat-derived satellite cells fused to form multinucleated myotubes when exposed to increasing levels of insulin. Collectively, these observations suggest that the rat satellite cell culture system may not be an appropriate model system for extrapolating in vitro growth data to variables of ruminant skeletal muscle growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号