首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 376 毫秒
1.
Zyxin is an adhesion protein that regulates actin assembly by binding to VASP family members through N-terminal proline-rich motifs. Evidence suggests that zyxin’s C-terminal LIM domains function as a negative regulator of zyxin-VASP complexes. Zyxin LIM domains access to binding partners is negatively regulated by an unknown mechanism. One possibility is that zyxin LIM domains mediate a head-tail interaction, blocking interactions with other proteins. Such a mechanism might prevent both zyxin-VASP complexes activity and LIM domain access. In this report, the effect of LIM domains on zyxin-VASP complex assembly is defined. We find that zyxin LIM domains associate with zyxin’s VASP binding sites, preventing zyxin from binding to PKA-phosphorylated VASP. Unphosphorylated VASP overcomes the head-tail interaction, a result of a direct interaction with the LIM domain region. Zyxin, like a growing number of actin regulators, is controlled by intramolecular interactions.  相似文献   

2.
Cellular adhesive events affect cell proliferation and differentiation decisions. How cell surface events mediating adhesion transduce signals to the nucleus is not well understood. After cell-cell or cell-substratum contact, cytosolic proteins are recruited to clustered adhesion receptor complexes. One such family of cytosolic proteins found at sites of cell adhesion is the Zyxin family of LIM proteins. Here we demonstrate that the family member Ajuba was recruited to the cell surface of embryonal cells, upon aggregate formation, at sites of cell-cell contact. Ajuba contained a functional nuclear export signal and shuttled into the nucleus. Importantly, accumulation of the LIM domains of Ajuba in the nucleus of P19 embryonal cells resulted in growth inhibition and spontaneous endodermal differentiation. The differentiating effect of Ajuba mapped to the third LIM domain, whereas regulation of proliferation mapped to the first and second LIM domains. Ajuba-induced endodermal differentiation of these cells correlated with the capacity to activate c-Jun kinase and required c-Jun kinase activation. These results suggest that the cytosolic LIM protein Ajuba may provide a new mechanism to transduce signals from sites of cell adhesion to the nucleus, regulating cell growth and differentiation decisions during early development.  相似文献   

3.
Integrin binding to extracellular matrix proteins induces formation of signaling complexes at focal adhesions. Zyxin co-localizes with integrins at sites of cell-substratum adhesion and is postulated to serve as a docking site for the assembly of multimeric protein complexes involved in regulating cell motility. Recently, we identified a new member of the zyxin family called TRIP6. TRIP6 is localized at focal adhesions and overexpression of TRIP6 slows cell migration. In an effort to define the molecular mechanism by which TRIP6 affects cell migration, the yeast two-hybrid assay was employed to identify proteins that directly bind to TRIP6. This assay revealed that both TRIP6 and zyxin interact with CasL/HEF1, a member of the Cas family. This association is mediated by the LIM region of the zyxin family members and the SH2 domain-binding region of CasL/HEF1. Furthermore, the association between p130(Cas) and the two zyxin family members was demonstrated to occur in vivo by co-immunoprecipitation. Zyxin and Cas family members may cooperate to regulate cell motility.  相似文献   

4.
The localization of proteins to particular intracellular compartments often regulates their functions. Zyxin is a LIM protein found prominently at sites of cell adhesion, faintly in leading lamellipodia, and transiently in cell nuclei. Here we have performed a domain analysis to identify regions in zyxin that are responsible for targeting it to different subcellular locations. The N-terminal proline-rich region of zyxin, which harbors binding sites for alpha-actinin and members of the Ena/VASP family, concentrates in lamellipodial extensions and weakly in focal adhesions. The LIM region of zyxin displays robust targeting to focal adhesions. When overexpressed in cells, the LIM region of zyxin causes displacement of endogenous zyxin from focal adhesions. Upon mislocalization of full-length zyxin, at least one member of the Ena/VASP family is also displaced, and the organization of the actin cytoskeleton is perturbed. Zyxin also has the capacity to shuttle between the nucleus and focal adhesion sites. When nuclear export is inhibited, zyxin accumulates in cell nuclei. The nuclear accumulation of zyxin occurs asynchronously with approximately half of the cells exhibiting nuclear localization of zyxin within 2.3 h of initiating leptomycin B treatment. Our results provide insight into the functions of different zyxin domains.  相似文献   

5.
6.
Zyxin is a zinc-binding phosphoprotein known to regulate cell migration, adhesion, and cell survival. Zyxin also plays a role in signal transduction between focal adhesions and the nuclear compartment. However, the mechanism of Zyxin shuttling to nucleus is still unclear. Here, we identify that the GlcNAc transferase (O-linked GlcNAc [O-GlcNAc] transferase) can O-GlcNAcylate Zyxin and regulate its nuclear localization. We show that O-GlcNAc transferase O-GlcNAcylates Zyxin at two residues, serine 169 (Ser-169) and Ser-246. In addition, O-GlcNAcylation of Ser-169, but not Ser-246, enhances its interaction with 14-3-3γ, which is a phosphoserine/threonine-binding protein and is reported to bind with phosphorylated Zyxin. Furthermore, we found that 14-3-3γ could promote the nuclear localization of Zyxin after Ser-169 O-GlcNAcylation by affecting the function of the N-terminal nuclear export signal sequence; functionally, UV treatment increases the O-GlcNAcylation of Zyxin, which may enhance the nuclear location of Zyxin. Finally, Zyxin in the nucleus maintains homeodomain-interacting protein kinase 2 stability and promotes UV-induced cell death. In conclusion, we uncover that the nuclear localization of Zyxin can be regulated by its O-GlcNAcylation, and that this protein may regulate UV-induced cell death.  相似文献   

7.
Cellular responses to mechanical perturbation are vital to cell physiology. In particular, migrating cells have been shown to sense substrate stiffness and alter cell morphology and speed. Zyxin is a focal adhesion protein that responds to external mechanical forces; however, the mechanisms of zyxin recruitment at force-bearing sites are unknown. Using force-sensing microfabricated substrates, we simultaneously measured traction force and zyxin recruitment at force-bearing sites. GFP-tagged zyxin accumulates at force-bearing sites at the leading edge, but not at the trailing edge, of migrating epithelial cells. Zyxin recruitment at force-bearing sites depends on Rho-kinase and myosin II activation, suggesting that zyxin responds not only to the externally applied force, as previously shown, but also to the internally generated actin-myosin force. Zyxin in turn recruits vasodilator-stimulated phosphoprotein, a regulator of actin assembly, to force-bearing sites. To dissect the domains of zyxin that are essential for this unique force-dependent accumulation, we generated two zyxin truncation mutants: one lacking the LIM domain (ΔLIM) and one containing only the LIM domain with all three LIM motifs (LIM). GFP-tagged ΔLIM does not localize to the force-bearing sites, but GFP-tagged zyxin LIM-domain is sufficient for the recruitment to and dynamics at force-bearing focal adhesions. Furthermore, one or two LIM motifs are not sufficient for force-dependent accumulation, suggesting that all three LIM motifs are required. Therefore, the LIM domain of zyxin recruits zyxin to force-bearing sites at the leading edge of migrating cells.  相似文献   

8.
Programmed cell death 10 (PDCD10) is a novel adaptor protein involved in human cerebral cavernous malformation, a common vascular lesion mostly occurring in the central nervous system. By interacting with different signal proteins, PDCD10 could regulate various physiological processes in the cell. The crystal structure of human PDCD10 complexed with inositol-(1,3,4,5)-tetrakisphosphate has been determined at 2.3 Å resolution. The structure reveals an integrated dimer via a unique assembly that has never been observed before. Each PDCD10 monomer contains two independent domains: an N-terminal domain with a new fold involved in the tight dimer assembly and a C-terminal four-helix bundle domain that closely resembles the focal adhesion targeting domain of focal adhesion kinase. An eight-residue flexible linker connects the two domains, potentially conferring mobility onto the C-terminal domain, resulting in the conformational variability of PDCD10. A variable basic cleft on the top of the dimer interface binds to phosphatidylinositide and regulates the intracellular localization of PDCD10. Two potential sites, respectively located on the two domains, are critical for recruiting different binding partners, such as germinal center kinase III proteins and the focal adhesion protein paxillin.  相似文献   

9.
Cytoskeletal regulation of cell adhesion is vital to the organization of multicellular structures. The focal adhesion protein zyxin emerged as a key regulator of actin assembly because zyxin recruits Enabled/vasodilator-stimulated phospho-proteins (Ena/VASP) to promote actin assembly. Zyxin also localizes to the sites of cell-cell adhesion and is thought to promote actin assembly with Ena/VASP. Using shRNA targeted to zyxin, we analyzed the roles of zyxin at adhesive contacts. In zyxin-deficient cells, the actin assembly at both focal adhesion and cell-cell adhesion was limited, but their migration rate was unchanged. Cell spreading on E-cadherin-coated surfaces and the formation of cell clusters were slower for zyxin-deficient cells than wild type cells. By ablating a single cell within a cell monolayer, we quantified the rate of wound closure driven by a contractile circumferential actin ring. Zyxin-deficient cells failed to recruit VASP to cell-cell junctions at the wound edge and had a slower wound closure rate than wild type cells. Our results suggest that, by recruiting VASP, zyxin regulates actin assembly at the sites of force-bearing cell-cell adhesion.  相似文献   

10.
Zyxin is an actin regulatory protein that is concentrated at sites of actin–membrane association, particularly cell junctions. Zyxin participates in actin dynamics by binding VASP, an interaction that occurs via proline-rich N-terminal ActA repeats. An intramolecular association of the N-terminal LIM domains at or near the ActA repeats can prevent VASP and other binding partners from binding full-length zyxin. Such a head–tail interaction likely accounts for how zyxin function in actin dynamics, cell adhesion, and cell migration can be regulated by the cell. Since zyxin binding to several partners, via the LIM domains, requires phosphorylation, it seems likely that zyxin phosphorylation might alter the head–tail interaction and, thus, zyxin activity. Here we show that zyxin point mutants at a known phosphorylation site, serine 142, alter the ability of a zyxin fragment to directly bind a separate zyxin LIM domains fragment protein. Further, expression of the zyxin phosphomimetic mutant results in increased localization to cell–cell contacts of MDCK cells and generates a cellular phenotype, namely inability to disassemble cell–cell contacts, precisely like that produced by expression of zyxin mutants that lack the entire regulatory LIM domain region. These data suggest that zyxin phosphorylation at serine 142 results in release of the head–tail interaction, changing zyxin activity at cell–cell contacts.  相似文献   

11.
The Zyxin/Ajuba family of cytosolic LIM domain-containing proteins has the potential to shuttle from sites of cell adhesion into the nucleus and thus can be candidate transducers of environmental signals. To understand Ajuba's role in signal transduction pathways, we performed a yeast two-hybrid screen with the LIM domain region of Ajuba. We identified the atypical protein kinase C (aPKC) scaffold protein p62 as an Ajuba binding partner. A prominent function of p62 is the regulation of NF-kappaB activation in response to interleukin-1 (IL-1) and tumor necrosis factor signaling through the formation of an aPKC/p62/TRAF6 multiprotein signaling complex. In addition to p62, we found that Ajuba also interacted with tumor necrosis factor receptor-associated factor 6 (TRAF6) and PKCzeta. Ajuba recruits TRAF6 to p62 and in vitro activates PKCzeta activity and is a substrate of PKCzeta. Ajuba null mouse embryonic fibroblasts (MEFs) and lungs were defective in NF-kappaB activation following IL-1 stimulation, and in lung IKK activity was inhibited. Overexpression of Ajuba in primary MEFs enhances NF-kappaB activity following IL-1 stimulation. We propose that Ajuba is a new cytosolic component of the IL-1 signaling pathway modulating IL-1-induced NF-kappaB activation by influencing the assembly and activity of the aPKC/p62/TRAF6 multiprotein signaling complex.  相似文献   

12.
CD34 and podocalyxin are structurally related sialomucins, which are expressed in multiple tissues including vascular endothelium and hematopoietic progenitors. These glycoproteins have been proposed to be involved in processes as diverse as glomerular filtration, inhibition of stem cell differentiation, and leukocyte-endothelial adhesion. Using homologies present in the cytoplasmic tails of these proteins, we have identified a novel member of this family, which we designate endoglycan. This protein shares a similar overall domain structure with the other family members including a sialomucin domain, but also possesses an extremely acidic amino-terminal region. In addition, endoglycan contains several potential glycosaminoglycan attachment sites and is modified with chondroitin sulfate. Endoglycan mRNA and protein were detected in both endothelial cells and CD34(+) bone marrow cells. Thus, CD34, podocalyxin, and endoglycan comprise a family of sialomucins sharing both structural similarity and sequence homology, which are expressed by both endothelium and multipotent hematopoietic progenitors. While the members of this family may perform overlapping functions at these sites, the unique structural features of endoglycan suggest distinct functions for this molecule.  相似文献   

13.
Increasingly a number of proteins important in the regulation of bone osteoclast development have been shown primarily influence osteoclastogenesis under conditions of physiologic or pathologic stress. Why basal osteoclastogenesis is normal and how these proteins regulate stress osteoclastogenic responses, as opposed to basal osteoclastogenesis, is unclear. LIM proteins of the Ajuba/Zyxin family localize to cellular sites of cell adhesion where they contribute to the regulation of cell adhesion and migration, translocate into the nucleus where they can affect cell fate, but are also found in the cytoplasm where their function is largely unknown. We show that one member of this LIM protein family, Limd1, is uniquely up-regulated during osteoclast differentiation and interacts with Traf6, a critical cytosolic regulator of RANK-L-regulated osteoclast development. Limd1 positively affects the capacity of Traf6 to activate AP-1, and Limd1(-/-) osteoclast precursor cells are defective in the activation of AP-1 and thus induction of NFAT2. Limd1(-/-) mice, although having normal basal bone osteoclast numbers and bone density, are resistant to physiological and pathologic osteoclastogenic stimuli. These results implicate Limd1 as a potentially important regulator of osteoclast development under conditions of stress.  相似文献   

14.
15.
16.
α辅肌动蛋白的结构和功能   总被引:5,自引:0,他引:5  
α辅肌动蛋白是近年来在细胞骨架与细胞运动研究中的热点蛋白 .目前发现有α辅肌动蛋白 1、2、3和 4四种类型 ,呈细胞或组织特异性分布 .这四种蛋白的共同结构特征是在细胞内均为反向平行的二聚体 ,并具有N末端肌动蛋白结合结构域 (ABD)、血影蛋白样中央重复结构域和C末端“EF手”结构域 .作为细胞骨架中一种重要的肌动蛋白交联蛋白 ,α辅肌动蛋白通过与其相关蛋白包括整合素 (integrins)、钙粘素 (cadherin)以及细胞信号传导通路中的信号分子等的协同作用 ,在稳定细胞粘附、调节细胞形状及细胞运动中发挥着重要作用 .因此 ,肿瘤的发生、发展和恶化与α辅肌动蛋白的结构、功能密切相关 .本文结合本实验室的研究工作 ,综述了α辅肌动蛋白家族成员的结构、功能及其与肿瘤发生的相关性 .  相似文献   

17.
The Drosophila cell adhesion molecule Rst plays key roles during the development of the embryonic musculature, spacing of ommatidia in the compound eye and of sensory organs on the antenna, as well as in the neuronal wiring of the optic lobe. In rst(CT) mutants lacking the cytoplasmic domain of the Rst protein, cell sorting and apoptosis in the eye are affected, suggesting a requirement of this domain for Rst function. To identify potential interacting proteins, yeast two-hybrid screens were performed using the cytoplasmic domains of Rst and its paralogue Kirre as baits. Among several putative interactors, two paralogous Drosophila PDZ motif proteins related to X11/Mint were identified. X11/Mint family members in C. elegans (LIN-10) and vertebrates are believed to function as adaptor proteins and to regulate the assembly of multi-subunit complexes at the synapse, thereby linking the vesicle cycle to cell adhesion. Using genetic, cell biological, and biochemical approaches, we show that the interaction of Rst with X11Lalpha is of biological significance. The proteins interact, for example, in the context of cell sorting in the pupal retina.  相似文献   

18.
Bcl-2-associated athanogene (BAG) family proteins share the BAG domain, which is characterized by their interaction with a variety of partners (heat shock proteins, steroid hormone receptors, Raf-1 and others) and is involved in regulating a number of cellular processes. BAG3, also known as CAIR-1 or Bis, mediates protein delivery to proteasome and modulates apoptosis by interfering with cytochrome c release, apoptosome assembly and other events in the cellular death program. Moreover, it takes part in the processes of cell adhesion and migration. It has been shown that, in human cancer cells, including lymphocytic and myeloblastic leukemic cells, BAG3 sustains cell survival and underlies resistance to chemotherapy, through down-modulation of apoptosis. BAG3 knocking down could enhance the effectiveness of chemotherapy. This review summarizes the physiological and pathological roles of BAG3 in cancer cells and its potential as a therapeutic target of human malignancies.  相似文献   

19.
By screening a yeast two-hybrid library with COOH-terminal fragments of vinculin/metavinculin as the bait, we identified a new protein termed raver1. Raver1 is an 80-kD multidomain protein and widely expressed but to varying amounts in different cell lines. In situ and in vitro, raver1 forms complexes with the microfilament-associated proteins vinculin, metavinculin, and alpha-actinin and colocalizes with vinculin/metavinculin and alpha-actinin at microfilament attachment sites, such as cell-cell and cell matrix contacts of epithelial cells and fibroblasts, respectively, and in costameres of skeletal muscle. The NH2-terminal part of raver1 contains three RNA recognition motifs with homology to members of the heterogeneous nuclear RNP (hnRNP) family. Raver1 colocalizes with polypyrimidine tract binding protein (PTB)/hnRNPI, a protein involved in RNA splicing of microfilament proteins, in the perinucleolar compartment and forms complexes with PTB/hnRNPI. Hence, raver1 is a dual compartment protein, which is consistent with the presence of nuclear location signal and nuclear export sequence motifs in its sequence. During muscle differentiation, raver1 migrates from the nucleus to the costamere. We propose that raver1 may coordinate RNA processing and targeting as required for microfilament anchoring in specific adhesion sites.  相似文献   

20.
The zyxin family of proteins consists of five members, ajuba, LIMD1, LPP, TRIP6 and zyxin, which localize at cell adhesion sites and shuttle to the nucleus. Previously, we established that LPP interacts with the tumor suppressor Scrib, a member of the leucine-rich repeat and PDZ (LAP) family of proteins. Here, we demonstrate that Scrib also interacts with TRIP6, but not with zyxin, ajuba, or LIMD1. We show that TRIP6 directly binds to the third PDZ domain of Scrib via its carboxy-terminus. Both proteins localize in cell-cell contacts but are not responsible to target each other to these structures. In the course of our experiments, we also characterized the nuclear export signal of human TRIP6, and show that LIMD1 is localized in focal adhesions. The binding between two of zyxin's family members and Scrib links Scrib to a communication pathway between cell-cell contacts and the nucleus, and implicates these zyxin family members in Scrib-associated functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号