首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mammalian DNA ligase I is presumed to act in DNA replication. Rabbit antibodies against the homogeneous enzyme from calf thymus inhibited DNA ligase I activity and consistently recognized a single polypeptide of 125 kDa when cells from an established bovine kidney cell line (MDBK) were lysed rapidly by a variety of procedures and subjected to immunoblotting analysis. After biosynthetic labeling of MDBK cells with [35S]methionine, immunoprecipitation experiments revealed a polypeptide of 125 kDa that did not appear when purified calf thymus DNA ligase I was used in competition. A 125-kDa polypeptide was adenylated when immunoprecipitated protein from MDBK cells was incubated with [alpha-32P]ATP. Thus, the apparent molecular mass of the initial translation product is identical or nearly so to that of the purified enzyme. The half-life of the protein is 7 h as determined by pulse-chase experiments in asynchronous MDBK cells. Immunocytochemistry and indirect immunofluorescence experiments showed that DNA ligase I is localized to cell nuclei.  相似文献   

2.
Mammalian DNA ligases. Catalytic domain and size of DNA ligase I.   总被引:14,自引:0,他引:14  
DNA ligase I is the major DNA ligase activity in proliferating mammalian cells. The protein has been purified to apparent homogeneity from calf thymus. It has a monomeric structure and a blocked N-terminal residue. DNA ligase I is a 125-kDa polypeptide as estimated by sodium dodecyl sulfate-gel electrophoresis and by gel chromatography under denaturing conditions, whereas hydrodynamic measurements indicate that the enzyme is an asymmetric 98-kDa protein. Immunoblotting with rabbit polyclonal antibodies to the enzyme revealed a single polypeptide of 125 kDa in freshly prepared crude cell extracts of calf thymus. Limited digestion of the purified DNA ligase I with several reagent proteolytic enzymes generated a relatively protease-resistant 85-kDa fragment. This domain retained full catalytic activity. Similar results were obtained with partially purified human DNA ligase I. The active large fragment represents the C-terminal part of the intact protein, and contains an epitope conserved between mammalian DNA ligase I and yeast and vaccinia virus DNA ligases. The function of the N-terminal region of DNA ligase I is unknown.  相似文献   

3.
Mammalian DNA ligases. Serological evidence for two separate enzymes.   总被引:5,自引:0,他引:5  
Mammalian cells contain two DNA ligase activities with different chromatographic properties, referred to as DNA ligase I and II. The major ligase activity present in calf thymus cell extracts, DNA ligase I, has been purified 1000-fold. After repeated injections of this enzyme with complete Freund's adjuvant into a rabbit, antibodies were induced that inhibit DNA ligase I from calf, human, mouse, and rabbit tissues. This antiserum did not affect DNA ligase II from the same sources to a detectable extent, even at a concentration 10-fold higher than that required for 98% inhibition of DNA ligase I. These data strongly indicate that the two mammalian DNA ligase activities are due to two separate enzymes, and not to two forms of the same enzyme. Both enzymes are present in the nuclear fraction, but are also found in the cytoplasmic fraction. Rapidly dividing cells (mouse ascites tumor cells and calf thymus) contain higher amounts of DNA ligase I than other cells (calf liver and spleen, human placenta, and rabbit spleen), while no such correlation was observed for DNA ligase II.  相似文献   

4.
5.
Eukaryotic DNA ligases   总被引:9,自引:0,他引:9  
Recent studies on eukaryotic DNA ligases are briefly reviewed. The two distinguishable enzymes from mammalian cells, DNA ligase I and DNA ligase II, have been purified to homogeneity and characterized biochemically. Two distinct DNA ligases have also been identified in Drosophila melanogaster embryos. The genes encoding DNA ligases from Schizosaccharomyces pombe, Saccharomyces cerevisiae and vaccinia virus have been cloned and sequenced. These 3 proteins exhibit about 30% amino acid sequence identity; the 2 yeast enzymes share 53% amino acid sequence identity or conserved changes. Altered DNA ligase I activity has been found in cell lines from patients with Bloom's syndrome, although a causal link between the enzyme deficiency and the disease has not yet been proven.  相似文献   

6.
DNA ligases join breaks in the phosphodiester backbone of DNA molecules and are used in many essential reactions within the cell. All DNA ligases follow the same reaction mechanism, but they may use either ATP or NAD+ as a cofactor. All Bacteria (eubacteria) contain NAD+-dependent DNA ligases, and the uniqueness of these enzymes to Bacteria makes them an attractive target for novel antibiotics. In addition to their NAD+-dependent enzymes, some Bacteria contain genes for putative ATP-dependent DNA ligases. The requirement for these different isozymes in Bacteria is unknown, but may be related to their utilization in different aspects of DNA metabolism. The putative ATP-dependent DNA ligases found in Bacteria are most closely related to proteins from Archaea and viruses. Phylogenetic analysis suggests that all NAD+-dependent DNA ligases are closely related, but the ATP-dependent enzymes have been acquired by Bacterial genomes on a number of separate occasions.  相似文献   

7.
Martin IV  MacNeill SA 《Genome biology》2002,3(4):reviews300-7
SUMMARY: By catalyzing the joining of breaks in the phosphodiester backbone of duplex DNA, DNA ligases play a vital role in the diverse processes of DNA replication, recombination and repair. Three related classes of ATP-dependent DNA ligase are readily apparent in eukaryotic cells. Enzymes of each class comprise catalytic and non-catalytic domains together with additional domains of varying function. DNA ligase I is required for the ligation of Okazaki fragments during lagging-strand DNA synthesis, as well as for several DNA-repair pathways; these functions are mediated, at least in part, by interactions between DNA ligase I and the sliding-clamp protein PCNA. DNA ligase III, which is unique to vertebrates, functions both in the nucleus and in mitochondria. Two distinct isoforms of this enzyme, differing in their carboxy-terminal sequences, are produced by alternative splicing: DNA ligase IIIalpha has a carboxy-terminal BRCT domain that interacts with the mammalian DNA-repair factor XrccI, but both alpha and beta isoforms have an amino-terminal zinc-finger motif that appears to play a role in the recognition of DNA secondary structures that resemble intermediates in DNA metabolism. DNA ligase IV is required for DNA non-homologous end joining pathways, including recombination of the V(D)J immunoglobulin gene segments in cells of the mammalian immune system. DNA ligase IV forms a tight complex with Xrcc4 through an interaction motif located between a pair of carboxy-terminal BRCT domains in the ligase. Recent structural studies have shed light on the catalytic function of DNA ligases, as well as illuminating protein-protein interactions involving DNA ligases IIIalpha and IV.  相似文献   

8.
Members of the HECT family of E3 ubiquitin-protein ligases are characterized by a C-terminal HECT domain that catalyzes the covalent attachment of ubiquitin to substrate proteins and by N-terminal extensions of variable length and domain architecture that determine the substrate spectrum of a respective HECT E3. Since their discovery in 1995, it has become clear that deregulation of distinct HECT E3s plays an eminent role in human disease or disease-related processes including cancer, cardiovascular and neurological disorders, viral infections, and immune response. Thus, a detailed understanding of the structure–function aspects of HECT E3s as well as the identification and characterization of the substrates and regulators of HECT E3s is critical in developing new approaches in the treatment of respective diseases. In this review, we summarize what is currently known about mammalian HECT E3s, with a focus on their biological functions and roles in pathophysiology.This article is part of a Special Issue entitled: Ubiquitin–Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.  相似文献   

9.
Nick recognition by DNA ligases   总被引:4,自引:0,他引:4  
Phage T7 DNA ligase seals nicked DNA substrates and is a representative member of the ATP-dependent class of DNA ligases. Although the catalytic mechanism of DNA ligases has been delineated, little is known about the nature of nick recognition by these enzymes. Here, we show that T7 ligase discriminates, at the nick-binding step, between nicks containing either a 5'-phosphate or a 5'-OH. T7 ligase binds preferentially to phosphorylated nicks and catalyses the sealing reaction. We also show using DNA footprinting studies, that T7 ligase binds asymmetrically to nicks as a monomer, with the protein interface covering between 12 and 14 bp of DNA. Based on molecular modelling studies we propose a structural model of the ligase-DNA complex consistent with these and other data. Using photo-crosslinking and site-directed mutagenesis we have identified two residues, K238 and K240, critical for the transadenylation and nick-sealing reactions. Sequence conservation and structural analysis supports the premise that these two lysine residues are critical for both nucleotide binding and DNA nick recognition. The implications of these results on the ligation mechanism are discussed.  相似文献   

10.
The mitochondrial DNA of Trypanosoma brucei, termed kinetoplast DNA or kDNA, consists of thousands of minicircles and a small number of maxicircles catenated into a single network organized as a nucleoprotein disk at the base of the flagellum. Minicircles are replicated free of the network but still contain nicks and gaps after rejoining to the network. Covalent closure of remaining discontinuities in newly replicated minicircles after their rejoining to the network is delayed until all minicircles have been replicated. The DNA ligase involved in this terminal step in minicircle replication has not been identified. A search of kinetoplastid genome databases has identified two putative DNA ligase genes in tandem. These genes (LIG k alpha and LIG k beta) are highly diverged from mitochondrial and nuclear DNA ligase genes of higher eukaryotes. Expression of epitope-tagged versions of these genes shows that both LIG k alpha and LIG k beta are mitochondrial DNA ligases. Epitope-tagged LIG k alpha localizes throughout the kDNA, whereas LIG k beta shows an antipodal localization close to, but not overlapping, that of topoisomerase II, suggesting that these proteins may be contained in distinct structures or protein complexes. Knockdown of the LIG k alpha mRNA by RNA interference led to a cessation of the release of minicircles from the network and resulted in a reduction in size of the kDNA networks and rapid loss of the kDNA from the cell. Closely related pairs of mitochondrial DNA ligase genes were also identified in Leishmania major and Crithidia fasciculata.  相似文献   

11.
Mammalian DNA methyltransferases   总被引:7,自引:0,他引:7  
  相似文献   

12.
DNA cytosine methylation is a reversible epigenetic mark regulating gene expression. Aberrant methylation profiles are concomitant with developmental defects and cancer. Numerous studies in the past decade have identified enzymes and pathways responsible for active DNA demethylation both on a genome-wide as well as gene-specific scale. Recent findings have strengthened the idea that 5-methylcytosine oxidation catalyzed by members of the ten-eleven translocation (Tet1–3) oxygenases in conjunction with replication-coupled dilution of the conversion products causes the majority of genome-wide erasure of methylation marks during early development. In contrast, short and long patch DNA excision repair seems to be implicated mainly in gene-specific demethylation. Growth arrest and DNA damage-inducible protein 45 a (Gadd45a) regulates gene-specific demethylation within regulatory sequences of limited lengths raising the question of how such site specificity is achieved. A new study identified the protein inhibitor of growth 1 (Ing1) as a reader of the active chromatin mark histone H3 lysine 4 trimethylation (H3K4me3). Ing1 binds and directs Gadd45a to target sites, thus linking the histone code with DNA demethylation.  相似文献   

13.
DNA ligases in the repair and replication of DNA   总被引:1,自引:0,他引:1  
DNA ligases are critical enzymes of DNA metabolism. The reaction they catalyse (the joining of nicked DNA) is required in DNA replication and in DNA repair pathways that require the re-synthesis of DNA.Most organisms express DNA ligases powered by ATP, but eubacteria appear to be unique in having ligases driven by NAD(+). Interestingly, despite protein sequence and biochemical differences between the two classes of ligase, the structure of the adenylation domain is remarkably similar. Higher organisms express a variety of different ligases, which appear to be targetted to specific functions. DNA ligase I is required for Okazaki fragment joining and some repair pathways; DNA ligase II appears to be a degradation product of ligase III; DNA ligase III has several isoforms, which are involved in repair and recombination and DNA ligase IV is necessary for V(D)J recombination and non-homologous end-joining. Sequence and structural analysis of DNA ligases has shown that these enzymes are built around a common catalytic core, which is likely to be similar in three-dimensional structure to that of T7-bacteriophage ligase. The differences between the various ligases are likely to be mediated by regions outside of this common core, the structures of which are not known. Therefore, the determination of these structures, along with the structures of ligases bound to substrate DNAs and partner proteins ought to be seen as a priority.  相似文献   

14.
哺乳动物DNA甲基化酶分子量较大,对蛋白水解酶非常敏感。该酶优先作用于半甲基化DNA中的GpG序列的胞嘧啶;基C-端约500aa帱10个微区构成,具有较强的保守性;而N-端约350aa带电荷和极性较强,但易被蛋白酶水解。而甲基化的完成则可能采用“没动”机制。  相似文献   

15.
Structural and mechanistic conservation in DNA ligases   总被引:4,自引:5,他引:4       下载免费PDF全文
DNA ligases are enzymes required for the repair, replication and recombination of DNA. DNA ligases catalyse the formation of phosphodiester bonds at single-strand breaks in double-stranded DNA. Despite their occurrence in all organisms, DNA ligases show a wide diversity of amino acid sequences, molecular sizes and properties. The enzymes fall into two groups based on their cofactor specificity, those requiring NAD+ for activity and those requiring ATP. The eukaryotic, viral and archael bacteria encoded enzymes all require ATP. NAD+-requiring DNA ligases have only been found in prokaryotic organisms. Recently, the crystal structures of a number of DNA ligases have been reported. It is the purpose of this review to summarise the current knowledge of the structure and catalytic mechanism of DNA ligases.  相似文献   

16.
Three distinct DNA ligases in mammalian cells   总被引:17,自引:0,他引:17  
The major DNA ligase of proliferating mammalian cells, DNA ligase I, catalyzes the joining of single strand breaks in double stranded DNA and is active on a synthetic substrate of oligo(dT) hybridized to poly(dA). DNA ligase I does not catalyze the joining of an oligo(dT).poly(rA) substrate. Two additional DNA ligases, II and III, which can act on the latter substrate have been purified from calf thymus. DNA ligase II, which has been described previously, is a 72-kDa protein. DNA ligase III migrates as a 100-kDa protein in denaturing gel electrophoresis. Structural, immunochemical, and catalytic studies on the three DNA ligase activities strongly indicate that they are the products of three different genes.  相似文献   

17.
Mammalian DNA helicase.   总被引:3,自引:5,他引:3       下载免费PDF全文
A forked DNA was constructed to serve as a substrate for DNA helicases. It contains features closely resembling a natural replication fork. The DNA was prepared in large amounts and was used to assay displacement activity during isolation from calf thymus DNA polymerases alpha holoenzyme. One form of DNA polymerase alpha holoenzyme is possibly involved leading strand replication at the replication fork and possesses DNA dependent ATPase activity (Ottiger, H.-P. and Hübscher, U. (1984) Proc. Natl. Acad. Sci. USA 81, 3993-3997). The enzyme can be separated from DNA polymerase alpha by velocity sedimentation in conditions of very low ionic strength and then be purified by chromatography on Sephacryl S-200 and ATP-agarose. At all stages of purification, DNA dependent ATPase and displacement activity profiles were virtually superimposable. The DNA dependent ATPase can displace a hybridized DNA fragment with a short single-stranded tail at its 3'hydroxyl end only in the presence of ATP, and this displacement relies on ATP hydrolysis. Furthermore, homogeneous single-stranded binding proteins from calf thymus as well as from other tissues cannot perform this displacement reaction. By all this token the DNA dependent ATPase appears to be a DNA helicase. It is suggested that this DNA helicase might act in concert with DNA polymerase alpha at the leading strand, possibly pushing the replication fork ahead of the polymerase.  相似文献   

18.
We describe the characterisation of four thermostable NAD+-dependent DNA ligases, from Thermus thermophilus (Tth), Thermus scotoductus (Ts), Rhodothermus marinus (Rm) and Thermus aquaticus (Taq), by an assay which measures ligation rate and mismatch discrimination. Complete libraries of octa-, nona- and decanucleotides were used as substrates. The assay comprised the polymerisation of oligonucleotides initiated from a 17 base ‘primer’, using M13mp18 ssDNA as template. Polymers of ligation products were analysed by polyacrylamide gel electrophoresis. Under optimum conditions, the enzymes produced polymers ranging from 8 to 16 additions; there was variation between enzymes and the length of the oligonucleotides had a strong effect. The optimal total oligonucleotide concentration for each library was ~4 nmol. We compared the rates of ligation between the four ligases using an octanucleotide library as substrate. By this criterion, the Ts and Rm ligases are far more active compared to the more commonly available thermostable ligases.  相似文献   

19.
Two distinct DNA ligases from Drosophila melanogaster embryos   总被引:5,自引:0,他引:5  
M Takahashi  M Senshu 《FEBS letters》1987,213(2):345-352
Embryos of Drosophila melanogaster contain two distinct DNA ligases (DNA ligase I and II). DNA ligase I was eluted at 0.2 M KCl and DNA ligase II at 0.6 M KCl on phosphocellulose column chromatography. The former was rich in early developing embryos and its activity decreased during embryonic development. The latter was found constantly throughout the developing stages of embryos. DNA ligase I existed in a cytoplasmic fraction and DNA ligase II is concentrated in nuclei. Both enzymes ligate 5'-phosphoryl and 3'-hydroxyl groups in oligo(dT) in the presence of poly(dA). DNA ligase II is also able to join oligo(dT)(poly(rA). Both enzymes require ATP and Mg2+ for activity. The Km for ATP is 2.7 X 10(-6) M for DNA ligase I, and 3.0 X 10(-5) M for DNA ligase II. DNA ligase I requires dithiothreitol and polyvinyl alcohol, but DNA ligase II does not. Both enzymes are inhibited in the presence of N-ethylmaleimide. DNA ligase I is active at a low salt concentration (0-30 mM KCl), but DNA ligase II is active at high salt concentrations (50-100 mM). DNA ligase I is more labile than DNA ligase II. The molecular masses of DNA ligase-AMP adducts were determined as 86 and 75 kDa for DNA ligase I, and as 70 (major protein) and 90 kDa (minor protein) for DNA ligase II under denaturing conditions. A sedimentation coefficient of 4.2 S was observed for DNA ligase II. Consequently, Drosophila DNA ligase I and II are quite similar to mammalian DNA ligase I and II. Drosophila DNA ligase I and a DNA ligase by B.A. Rabin et al. [(1986) J. Biol. Chem. 261, 10637-10645] seem to be the same enzyme.  相似文献   

20.

DNA ligases operating at low temperatures have potential advantages for use in biotechnological applications. For this reason, we have characterized the temperature optima and thermal stabilities of three minimal Lig E-type ATP-dependent DNA ligase originating from Gram-negative obligate psychrophilic bacteria. The three ligases, denoted Vib-Lig, Psy-Lig, and Par-Lig, show a remarkable range of thermal stabilities and optima, with the first bearing all the hallmarks of a genuinely cold-adapted enzyme, while the latter two have activity and stability profiles more typical of mesophilic proteins. A comparative approach based on sequence comparison and homology modeling indicates that the cold-adapted features of Vib-Lig may be ascribed to differences in surface charge rather than increased local or global flexibility which is consistent with the contemporary emerging paradigm of the physical basis of cold adaptation of enzymes.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号