首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic force microscopy (AFM) is a unique tool for imaging membrane proteins in near‐native environment (embedded in a membrane and in buffer solution) at ~1 nm spatial resolution. It has been most successful on membrane proteins reconstituted in 2D crystals and on some specialized and densely packed native membranes. Here, we report on AFM imaging of purified plasma membranes from Xenopus laevis oocytes, a commonly used system for the heterologous expression of membrane proteins. Isoform M23 of human aquaporin 4 (AQP4‐M23) was expressed in the X. laevis oocytes following their injection with AQP4‐M23 cRNA. AQP4‐M23 expression and incorporation in the plasma membrane were confirmed by the changes in oocyte volume in response to applied osmotic gradients. Oocyte plasma membranes were then purified by ultracentrifugation on a discontinuous sucrose gradient, and the presence of AQP4‐M23 proteins in the purified membranes was established by Western blotting analysis. Compared with membranes without over‐expressed AQP4‐M23, the membranes from AQP4‐M23 cRNA injected oocytes showed clusters of structures with lateral size of about 10 nm in the AFM topography images, with a tendency to a fourfold symmetry as may be expected for higher‐order arrays of AQP4‐M23. In addition, but only infrequently, AQP4‐M23 tetramers could be resolved in 2D arrays on top of the plasma membrane, in good quantitative agreement with transmission electron microscopy analysis and the current model of AQP4. Our results show the potential and the difficulties of AFM studies on cloned membrane proteins in native eukaryotic membranes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
Intermittent contact mode atomic force microscopy (AFM) was used to visualize the native plasma membrane of Xenopus laevis oocytes. Oocyte membranes were purified via ultracentrifugation on a sucrose gradient and adsorbed on mica leaves. AFM topographs and the corresponding phase images allowed for visualization and identification of both oocyte plasma membrane patches and pure lipid bilayer regions with a height of about 5 nm within membrane patches. The quantitative analysis showed a normal distribution for the lateral dimension and height of the protein complexes centered on 16.7 ± 0.2 nm (mean ± SE, n = 263) and 5.4 ± 0.1 nm (n = 262), respectively. The phase signal, providing material-dependent information, allowed for the recognition of structural features observed in AFM topographs.  相似文献   

3.
The membrane protein bacteriorhodopsin was imaged in buffer solution at room temperature with the atomic force microscope. Three different substrates were used: mica, silanized glass and lipid bilayers. Single bacteriorhodopsin molecules could be imaged in purple membranes adsorbed to mica. A depression was observed between the bacteriorhodopsin molecules. The two dimensional Fourier transform showed the hexagonal lattice with a lattice constant of 6.21 +/- 0.20 nm which is in agreement with results of electron diffraction experiments. Spots at a resolution of approximately 1.1 nm could be resolved. A protein, cationic ferritin, could be imaged bound to the purple membranes on glass which was silanized with aminopropyltriethoxysilane. This opens the possibility of studying receptor/ligand binding under native conditions. In addition, purple membranes bound to a lipid bilayer were imaged. These images may help in interpreting results of functional studies done with purple membranes adsorbed to black lipid membranes.  相似文献   

4.
The current view of the biological membrane is that in which lipids and proteins mutually interact to accomplish membrane functions. The lateral heterogeneity of the lipid bilayer can induce partitioning of membrane-associated proteins, favoring protein-protein interaction and influence signaling and trafficking. The Atomic Force Microscope allows to study the localization of membrane-associated proteins with respect to the lipid organization at the single molecule level and without the need for fluorescence staining. These features make AFM a technique of choice to study lipid/protein interactions in model systems or native membranes. Here we will review the technical aspects inherent to and the main results obtained by AFM in the study of protein partitioning in lipid domains concentrating in particular on GPI-anchored proteins, lipidated proteins, and transmembrane proteins. Whenever possible, we will also discuss the functional consequences of what has been imaged by Atomic Force Microscopy.  相似文献   

5.
Fundamental biological processes such as cell-cell communication, signal transduction, molecular transport and energy conversion are performed by membrane proteins. These important proteins are studied best in their native environment, the lipid bilayer. The atomic force microscope (AFM) is the instrument of choice to determine the native surface structure, supramolecular organization, conformational changes and dynamics of membrane-embedded proteins under near-physiological conditions. In addition, membrane proteins are imaged at subnanometer resolution and at the single molecule level with the AFM. This review highlights the major advances and results achieved on reconstituted membrane proteins and native membranes as well as the recent developments of the AFM for imaging.  相似文献   

6.
Membrane trafficking of the cystic fibrosis transmembrane conductance regulator (CFTR) is supposed to be an important mechanism controlled by the intracellular messenger cAMP. This has been shown with fluorescence techniques, electron microscopy and membrane capacitance measurements. In order to visualize protein insertion we applied atomic force microscopy (AFM) to inside-out oriented plasma membrane patches of CFTR-expressing Xenopus laevis oocytes before and after cAMP-stimulation. In a first step, oocytes injected with CFTR-cRNA were voltage-clamped, verifying successful CFTR expression. Water-injected oocytes served as controls. Then, plasma membrane patches were excised, placed (inside out) on glass and scanned by AFM. Before cAMP-stimulation plasma membranes of both water-injected and CFTR-expressing oocytes contained about 200 proteins per μm2. Molecular protein masses were estimated from molecular volumes measured by AFM. Before cAMP-stimulation, protein distribution showed a peak value of 11 nm protein height corresponding to 475 kDa. During cAMP-stimulation with 1 mm isobutylmethylxanthine (IBMX) plasma membrane protein density increased in water-injected oocytes to 700 proteins per μm2 while the peak value shifted to 7 nm protein height corresponding to 95 kDa. In contrast, CFTR-expressing oocytes showed after cAMP-stimulation about 400 proteins per μm2 while protein distribution exhibited two peak values, one peak at 10 nm protein height corresponding to 275 kDa and another one at 14 nm corresponding to 750 kDa. They could represent heteromeric protein clusters associated with CFTR. In conclusion, we visualized plasma membrane protein insertion upon cAMP-stimulation and quantified protein distribution with AFM at molecular level. We propose that CFTR causes clustering of plasma membrane proteins. Received: 11 September 2000/Revised: 13 December 2000  相似文献   

7.
The negative charge of phosphatidylserine in lipid bilayers of secretory vesicles and plasma membranes couples the domains of positively charged amino acids of secretory vesicle SNARE proteins with similar domains of plasma membrane SNARE proteins enhancing fusion of the two membranes to promote exocytosis of the vesicle contents of secretory cells. Our recent study of insulin secretory granules (ISG) (MacDonald, M. J., Ade, L., Ntambi, J. M., Ansari, I. H., and Stoker, S. W. (2015) Characterization of phospholipids in insulin secretory granules in pancreatic beta cells and their changes with glucose stimulation. J. Biol. Chem. 290, 11075–11092) suggested that phosphatidylserine and other phospholipids, such as phosphatidylethanolamine, in ISG could play important roles in docking and fusion of ISG to the plasma membrane in the pancreatic beta cell during insulin exocytosis. P4 ATPase flippases translocate primarily phosphatidylserine and, to a lesser extent, phosphatidylethanolamine across the lipid bilayers of intracellular vesicles and plasma membranes to the cytosolic leaflets of these membranes. CDC50A is a protein that forms a heterodimer with P4 ATPases to enhance their translocase catalytic activity. We found that the predominant P4 ATPases in pure pancreatic beta cells and human and rat pancreatic islets were ATP8B1, ATP8B2, and ATP9A. ATP8B1 and CDC50A were highly concentrated in ISG. ATP9A was concentrated in plasma membrane. Gene silencing of individual P4 ATPases and CDC50A inhibited glucose-stimulated insulin release in pure beta cells and in human pancreatic islets. This is the first characterization of P4 ATPases in beta cells. The results support roles for P4 ATPases in translocating phosphatidylserine to the cytosolic leaflets of ISG and the plasma membrane to facilitate the docking and fusion of ISG to the plasma membrane during insulin exocytosis.  相似文献   

8.
Bacterial surface layers (S-layers) are extracellular protein networks that act as molecular sieves and protect a large variety of archaea and bacteria from hostile environments. Atomic force microscopy (AFM) was used to asses the S-layer of Coryne-bacterium glutamicum formed of PS2 proteins that assemble into hexameric complexes within a hexagonal lattice. Native and trypsin-treated S-layers were studied. Using the AFM stylus as a nanodissector, native arrays that adsorbed to mica as double layers were separated. All surfaces of native and protease-digested S-layers were imaged at better than 1 nm lateral resolution. Difference maps of the topographies of native and proteolysed samples revealed the location of the cleaved C-terminal fragment and the sidedness of the S-layer. Because the corrugation depths determined from images of both sides span the total thickness of the S-layer, a three-dimensional reconstruction of the S-layer could be calculated. Lattice defects visualized at 1 nm resolution revealed the molecular boundaries of PS2 proteins. The combination of AFM imaging and single molecule force spectroscopy allowed the mechanical properties of the Corynebacterium glutamicum S-layer to be examined. The results provide a basis for understanding the amazing stability of this protective bacterial surface coat.  相似文献   

9.
The advent of amphiphilic copolymers enables integral membrane proteins to be solubilized into stable 10–30 nm native nanodiscs to resolve their multisubunit structures, post-translational modifications, endogenous lipid bilayers, and small molecule ligands. This breakthrough has positioned biological membrane:protein assemblies (memteins) as fundamental functional units of cellular membranes. Herein, we review copolymer design strategies and methods for the characterization of transmembrane proteins within native nanodiscs by cryo-electron microscopy (cryo-EM), transmission electron microscopy, nuclear magnetic resonance spectroscopy, electron paramagnetic resonance, X-ray diffraction, surface plasmon resonance, and mass spectrometry.  相似文献   

10.
Lipopolysaccharides (LPS; endotoxin) activate immunocompetent cells of the host via a transmembrane signaling process. In this study, we investigated the function of the LPS-binding protein (LBP) in this process. The cytoplasmic membrane of the cells was mimicked by lipid liposomes adsorbed on mica, and the lateral organization of LBP in these membranes and its interaction with LPS aggregates were characterized by atomic force microscopy. Using cantilever tips functionalized with anti-LBP antibodies, single LBP molecules were localized in the membrane at low concentrations. At higher concentrations, LBP formed clusters of several molecules and caused cross-linking of lipid bilayers. The addition of LPS to LBP-containing liposomes led to the formation of LPS domains in the membranes, which could be inhibited by anti-LBP antibodies. Thus, LBP mediates the fusion of lipid membranes and LPS aggregates.  相似文献   

11.
Heat shock proteins (hsp) are well recognized for their protein folding activity. Additionally, hsp expression is enhanced during stress conditions to preserve cellular homeostasis. Hsp are also detected outside cells, released by an active mechanism independent of cell death. Extracellular hsp appear to act as signaling molecules as part of a systemic response to stress. Extracellular hsp do not contain a consensus signal for their secretion via the classical ER-Golgi compartment. Therefore, they are likely exported by an alternative mechanism requiring translocation across the plasma membrane. Since Hsp70, the major inducible hsp, has been detected on surface of stressed cells, we propose that membrane interaction is the first step in the export process. The question that emerges is how does this charged cytosolic protein interact with lipid membranes? Prior studies have shown that Hsp70 formed ion conductance pathways within artificial lipid bilayers. These early observations have been extended herewith using a liposome insertion assay. We showed that Hsp70 selectively interacted with negatively charged phospholipids, particularly phosphatidyl serine (PS), within liposomes, which was followed by insertion into the lipid bilayer, forming high-molecular weight oligomers. Hsp70 displayed a preference for less fluid lipid environments and the region embedded into the lipid membrane was mapped toward the C-terminus end of the molecule. The results from our studies provide evidence of an unexpected ability of a large, charged protein to become inserted into a lipid membrane. This observation provides a new paradigm for the interaction of proteins with lipid environments. In addition, it may explain the export mechanism of an increasing number of proteins that lack the consensus secretory signals.  相似文献   

12.
Muller DJ 《Biochemistry》2008,47(31):7986-7998
Cellular membranes are vital for life. They confine cells and cytosolic compartments and are involved in virtually every cellular process. Cellular membranes form cellular contacts and focal adhesions, anchor the cytoskeleton, generate energy gradients, transform energy, transduce signals, move cells, and actively form compartments to assemble different membrane proteins into functional entities. But how do cellular membranes perform these tasks? What do the machineries of cellular membranes look like, and how are they controlled and guided? Atomic force microscopy (AFM) allows the observation of biological surfaces in their native environment at a signal-to-noise ratio superior to that of any optical microscopic technique. With a spatial resolution approaching approximately 1 nm, AFM can identify the supramolecular assemblies, characteristic structure, and functional conformation of native membrane proteins. In recent years, AFM has evolved from imaging applications to a multifunctional "laboratory on a tip" that allows observation and manipulation of the machineries of cellular membranes. In the force spectroscopy mode, AFM detects interactions between two single cells at molecular resolution. Force spectroscopy can also be used to probe the local elasticity, chemical groups, and receptor sites of live cells. Other applications locate molecular interactions driving membrane protein folding, assembly, and their switching between functional states. It is also possible to examine the energy landscape of biomolecular reactions, as well as reaction pathways, associated lifetimes, and free energy. In this review, we provide a flavor of the fascinating opportunities offered by the use of AFM as a nanobiotechnological tool in modern membrane biology.  相似文献   

13.
Membrane bilayers of dipalmitoyl phosphatidylcholine (DPPC) and dipalmitoyl phosphatidylethanolamine (DPPE) adsorbed to a freshly cleaved mica substrate have been imaged by Atomic Force Microscopy (AFM). The membranes were mounted for imaging by two methods: (a) by dialysis of a detergent solution of the lipid in the presence of the substrate material, and (b) by adsorption of lipid vesicles onto the substrate surface from a vesicle suspension. The images were taken in air, and show lipid bilayers adhering to the surface either in isolated patches or in continuous sheets, depending on the deposition conditions. Epifluorescence light-microscopy shows that the lipid is distributed on the substrate surfaces as seen in the AFM images. In some instances, when DPPE was used, whole, unfused vesicles, which were bound to the substrate, could be imaged by the AFM. Such membranes should be capable of acting as natural anchors for imaging membrane proteins by AFM.  相似文献   

14.
The cell membrane plays a key role in compartmentalization, nutrient transportation and signal transduction, while the pattern of protein distribution at both cytoplasmic and ectoplasmic sides of the cell membrane remains elusive. Using a combination of single-molecule techniques, including atomic force microscopy (AFM), single molecule force spectroscopy (SMFS) and stochastic optical reconstruction microscopy (STORM), to study the structure of nucleated cell membranes, we found that (1) proteins at the ectoplasmic side of the cell membrane form a dense protein layer (4 nm) on top of a lipid bilayer; (2) proteins aggregate to form islands evenly dispersed at the cytoplasmic side of the cell membrane with a height of about 10–12 nm; (3) cholesterol-enriched domains exist within the cell membrane; (4) carbohydrates stay in microdomains at the ectoplasmic side; and (5) exposed amino groups are asymmetrically distributed on both sides. Based on these observations, we proposed a Protein Layer-Lipid-Protein Island (PLLPI) model, to provide a better understanding of cell membrane structure, membrane trafficking and viral fusion mechanisms.  相似文献   

15.
The eyespot apparatus (EA) of Chlamydomonas reinhardtii P. A. Dang. consists of two layers of carotenoid‐rich lipid globules subtended by thylakoids. The outermost globule layer is additionally associated with the chloroplast envelope membranes and the plasma membrane. In a recent proteomic approach, we identified 202 proteins from isolated EAs of C. reinhardtii via at least two peptides, including, for example, structural components, signalling‐related proteins, and photosynthetic‐related membrane proteins. Here, we have analyzed the proteins of the EA with regard to their topological distribution using thermolysin to find out whether the arrangement of globules and membranes provides protection mechanisms for some of them. From about 230 protein spots separated on two‐dimensional gels, the majority were degraded by thermolysin. Five major protein spots were protected against the action of this protease. These proteins and some that were degradable were identified by mass spectrometry. Surprisingly, the thermolysin‐resistant proteins represented the α and β subunits of the soluble CF1 complex of the chloroplast ATP synthase. Degradable proteins included typical membrane proteins like LHCs, demonstrating that thermolysin is not in general sterically prevented by the EA structure from reaching membrane‐associated proteins. A control experiment showed that the CF1 complex of thylakoids is efficiently degraded by thermolysin. Blue native PAGE of thermolysin‐treated EAs followed by SDS‐PAGE revealed that the α and β subunits are present in conjunction with the γ subunit in a thermolysin‐resistant complex. These results provide strong evidence that a significant proportion of these ATP‐synthase subunits have a specialized localization and function within the EA of C. reinhardtii.  相似文献   

16.
It has been assumed that following hepatic uptake, bilirubin is bound exclusively to cytosolic proteins prior to conjugation by microsomal UDP-glucuronyl-transferase. Since bilirubin partitions into lipid rather than the aqueous phase at neutral pH, we postulated that bilirubin reaches the sites of glucuronidation by rapid diffusion within membranes. To examine this hypothesis, [14C]bilirubin was incorporated into the membrane bilayer of small unilamellar liposomes of egg phosphatidylcholine. Radiochemical assay of this membrane-bound substrate in a physiologic concentration, using native rat liver microsomes, demonstrated immediate formation of bilirubin glucuronides at a more rapid initial velocity than for bilirubin bound to the high-affinity sites of purified cytosolic binding proteins, i.e. glutathione S-transferases (p less than 0.025) or native liver cytosol (p less than 0.05). Kinetic analysis suggested that the mechanisms of substrate transfer from liposomal membranes and from purified glutathione S-transferases to microsomal UDP-glucuronyltransferase were similar. The exchange of 3H- and 14C-labeled bilirubin substrate between binding proteins and liposomal membranes was then investigated using Sepharose 4B chromatography. As the concentration of bilirubin was increased relative to that of protein, net transfer of substrate from the protein to the membrane pool was observed. These findings indicate that bilirubin is efficiently transported by membrane-membrane transfer to hepatic microsomes, where it undergoes rapid conjugation. Bilirubin entering hepatocytes may partition between membrane and cytosolic protein pools, but as intracellular bilirubin concentration increases, the membrane pool is likely to provide a greater proportion of the substrate for glucuronidation.  相似文献   

17.
Lipid molecules bound to membrane proteins are resolved in some high-resolution structures of membrane proteins. An analysis of these structures provides a framework within which to analyse the nature of lipid-protein interactions within membranes. Membrane proteins are surrounded by a shell or annulus of lipid molecules, equivalent to the solvent layer surrounding a water-soluble protein. The lipid bilayer extends right up to the membrane protein, with a uniform thickness around the protein. The surface of a membrane protein contains many shallow grooves and protrusions to which the fatty acyl chains of the surrounding lipids conform to provide tight packing into the membrane. An individual lipid molecule will remain in the annular shell around a protein for only a short period of time. Binding to the annular shell shows relatively little structural specificity. As well as the annular lipid, there is evidence for other lipid molecules bound between the transmembrane alpha-helices of the protein; these lipids are referred to as non-annular lipids. The average thickness of the hydrophobic domain of a membrane protein is about 29 A, with a few proteins having significantly smaller or greater thicknesses than the average. Hydrophobic mismatch between a membrane protein and the surrounding lipid bilayer generally leads to only small changes in membrane thickness. Possible adaptations in the protein to minimise mismatch include tilting of the helices and rotation of side chains at the ends of the helices. Packing of transmembrane alpha-helices is dependent on the chain length of the surrounding phospholipids. The function of membrane proteins is dependent on the thickness of the surrounding lipid bilayer, sometimes on the presence of specific, usually anionic, phospholipids, and sometimes on the phase of the phospholipid.  相似文献   

18.
Lipid molecules bound to membrane proteins are resolved in some high-resolution structures of membrane proteins. An analysis of these structures provides a framework within which to analyse the nature of lipid-protein interactions within membranes. Membrane proteins are surrounded by a shell or annulus of lipid molecules, equivalent to the solvent layer surrounding a water-soluble protein. The lipid bilayer extends right up to the membrane protein, with a uniform thickness around the protein. The surface of a membrane protein contains many shallow grooves and protrusions to which the fatty acyl chains of the surrounding lipids conform to provide tight packing into the membrane. An individual lipid molecule will remain in the annular shell around a protein for only a short period of time. Binding to the annular shell shows relatively little structural specificity. As well as the annular lipid, there is evidence for other lipid molecules bound between the transmembrane α-helices of the protein; these lipids are referred to as non-annular lipids. The average thickness of the hydrophobic domain of a membrane protein is about 29 Å, with a few proteins having significantly smaller or greater thicknesses than the average. Hydrophobic mismatch between a membrane protein and the surrounding lipid bilayer generally leads to only small changes in membrane thickness. Possible adaptations in the protein to minimise mismatch include tilting of the helices and rotation of side chains at the ends of the helices. Packing of transmembrane α-helices is dependent on the chain length of the surrounding phospholipids. The function of membrane proteins is dependent on the thickness of the surrounding lipid bilayer, sometimes on the presence of specific, usually anionic, phospholipids, and sometimes on the phase of the phospholipid.  相似文献   

19.
Measurements of contact-dependent fluorescence quenching and of fluorescence resonance energy transfer (FRET) within bilayers provide information concerning the spatial relationships between molecules on distance scales of a few nm or up a few tens of nm, respectively, and are therefore well suited to detect the presence and composition of membrane microdomains. As described in this review, techniques based on fluorescence quenching and FRET have been used to demonstrate the formation of nanoscale liquid-ordered domains in cholesterol-containing model membranes under physiological conditions, and to investigate the structural features of lipids and proteins that influence their partitioning between liquid-ordered and liquid-disordered domains. FRET-based methods have also been used to test for the presence of ‘raft’ microdomains in the plasma membranes of mammalian cells. We discuss the sometimes divergent findings of these studies, possible modifications to the ‘raft hypothesis’ suggested by studies using FRET and other techniques, and the further potential of FRET-based methods to test and to refine current models of the nature and organization of membrane microdomains.  相似文献   

20.
The lipid-layer technique allows reconstituting transmembrane proteins at a high density in microns size planar membranes and suspended to a lipid monolayer at the air/water interface. In this paper, we transferred these membranes onto two hydrophobic substrates for further structural analysis of reconstituted proteins by Atomic Force Microscopy (AFM). We used a mica sheet covered by a lipid monolayer or a sheet of highly oriented pyrolytic graphite (HOPG) to trap the lipid monolayer at the interface and the suspended membranes. In both cases, we succeeded in the transfer of large membrane patches containing densely packed or 2D-crystallized proteins. As a proof of concept, we transferred and imaged the soluble Shiga toxin bound to its lipid ligand and the ATP-binding cassette (ABC) transporter BmrA reconstituted into a planar bilayer. AFM imaging with a lateral resolution in the nanometer range was achieved. Potential applications of this technique in structural biology and nanobiotechnology are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号