首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The identification of immunogenic regions on the surface of antigens, which are able to stimulate an immune response, is a major challenge for the design of new vaccines. Computational immunology aims at predicting such regions—in particular B‐cell epitopes—but is far from being reliably applicable on a large scale. To gain understanding into the factors that contribute to the antigen–antibody affinity and specificity, we perform a detailed analysis of the amino acid composition and secondary structure of antigen and antibody surfaces, and of the interactions that stabilize the complexes, in comparison with the composition and interactions observed in other heterodimeric protein interfaces. We make a distinction between linear and conformational B‐cell epitopes, according to whether they consist of successive residues along the polypeptide chain or not. The antigen–antibody interfaces were shown to differ from other protein–protein interfaces by their smaller size, their secondary structure with less helices and more loops, and the interactions that stabilize them: more H‐bond, cation–π, amino–π, and π–π interactions, and less hydrophobic packing; linear and conformational epitopes can clearly be distinguished. Often, chains of successive interactions, called cation/amino–π and π–π chains, are formed. The amino acid composition differs significantly between the interfaces: antigen–antibody interfaces are less aliphatic and more charged, polar and aromatic than other heterodimeric protein interfaces. Moreover, paratopes and epitopes—albeit to a lesser extent—have amino acid compositions that are distinct from general protein surfaces. This specificity holds promise for improving B‐cell epitope prediction. Proteins 2014; 82:1734–1746. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
3.
4.
5.
6.
Because of having many low molecular mass substrates, CYP2E1 is of particular interests to the pharmaceutical industry. Many evidences showed that this enzyme can adopt multiple substrates to significantly reduce the oxidation rate of the substrates. The detailed mechanism for this observation is still unclear. In the current study, we employed GPU‐accelerated molecular dynamics simulations to study the multiple‐binding mode of human CYP2E1, with an aim of offering a mechanistic explanation for the unexplained multiple‐substrate binding. Our results showed that Thr303 and Phe478 were key factors for the substrate recognition and multiple‐substrate binding. The former can form a significant hydrogen bond to recognize and position the substrate in the productive binding orientation in the active site. The latter acted as a mediator for the substrate communications via π–π stacking interactions. In the multiple‐binding mode, the aforementioned π–π stacking interactions formed by the aromatic rings of both substrates and Phe478 drove the first substrate far away from the catalytic center, orienting in an additional binding position and going against the substrate metabolism. All these findings could give atomic insights into the detailed mechanism for the multiple‐substrate binding in human CYP2E1, providing useful information for the drug metabolism mechanism and personalized use of clinical drugs. Proteins 2013; © 2012 Wiley Periodicals, Inc.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
Vegetation changes are documented from a well-dated pollen record from Lake Emakat, Empakaai Crater, northern Tanzania. This pollen record includes the time interval covering the Pleistocene/Holocene transition, analysed at a resolution interval averaging 200 yr. Around the crater lake, an Hagenia-forest development starting at 14,500 cal yr BP lasted until 13,000 cal yr BP. A change in vegetation, indicated by an increased proportion of Nuxia congesta in the forest and Artemisia in the afro alpine grassland after 13,000 cal yr BP, corresponds in time to the Northern Hemisphere's Younger Dryas cooling. Grasses and sedges increased at  10,100 cal yr BP, indicating a significant increase in local pollen possibly attributed to lowered lake level, related to drier conditions. Although the Empakaai pollen record documents continuous forest conditions, from 14,500 to 10,100 cal yr BP, the variation in the proportion of forest components seem to respond to environmental changes at the millennium scale.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号