首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
18S rRNA genes (SSU rDNA) of five newly sequenced species were used as molecular markers to infer phylogenetic relationships within the euglenoids. Two members of the order Euglenales ( Lepocinclis ovata Playfair , Phacus similis Christen), two of the order Eutreptiales ( Distigma proteus Ehrenberg, , D. curvata Pringsheim) and Gyropaigne lefévrei Bourelly et Georges of the order Rhabdomonadales were used in parsimony, maximum likelihood, and distance analyses. All trees derived from SSU rRNA data strongly supported the monophyletic origin of the Euglenozoa, with kinetoplastids as sister clade to the euglenoids and Petalomonas cantuscygni Cann et Pennick diverging at the base of the monophyletic euglenoid lineage. The data also supported the theory that phagotrophic euglenoids arose prior to osmotrophs and phototrophs. A lineage of Peranema trichophorum Ehrenberg and all sequenced Euglenales formed a sister clade to the osmotrophs. This suggests that the evolution of phototrophy within the euglenoids radiated from a single event.  相似文献   

2.
In 1985, the existence of a cytoplasmic pocket formed from the reservoir membrane in the photosynthetic euglenoid Colacium was described. A band of reinforcing microtubules (MTR) derived from the ventral flagellar root lined the pocket, and a dense fibrillar mesh was associated with the membrane. A comparison of bodonid cytostomes, colorless euglenoid cytostomes, and the reservoir pocket found in Colacium suggested that the three structures were homologous and that photosynthetic euglenoids arose from phagotrophic ancestors. MTR/pockets have since been reported in other photosynthetic euglenoids, including Euglena, Eutreptia, Eutreptiella, Cryptoglena, Tetreutreptia, and Phacus. We found MTR/pockets in three additional taxa, Lepocinclis, Trachelomonas, and Strombomonas, thereby demonstrating the presence of this complex in representatives of all the major photosynthetic genera. A comparison of the MTR/pocket complex across genera indicated a reduction in structural complexity that was consistent with recent phylogenetic schemes based on molecular characters. Three alternative hypotheses of the origin of MTR/pockets in phototrophic euglenoids are presented and discussed.  相似文献   

3.
Sequence comparisons of small subunit ribosomal RNA coding regions from 12 chlorophylls a + c-containing algae were used to infer phylogenetic relationships within the Chromophyta. Three chromophyte lines of descent, delineated by the Bacillariophyceae, the Phaeophyceae/Xanthophyceae, and the Chrysophyceae/Eustigmatophyceae/Synurophyceae are members of a complex evolutionary assemblage, which also includes representatives of the Oomycota (“lower” fungi). Maximum parsimony and distance matrix methods demonstrate a common evolutionary history for these lineages but their relative branching order could not be determined. Other algal species with chlorophylls a + c, including dinoflagellates and prymnesiophytes, are not members of this complex assemblage. Dinoflagellates are specifically related to apicomplexans and ciliates, and the prymnesiophyte, Emiliania huxleyi, represents an independent photosynthetic lineage that separated from other eukaryotes during the nearly simultaneous divergence of plants, animals, fungi, and a number of other protist lineages. The small subunit rRNA phylogenies of chromophytes/oomycetes were compared to those derived from comparisons of ultrastructural characters. Only tubular, tripartite mastigonemes (flagellar hairs) characterized all studied taxa of chromophytes/oomycetes as a monophyletic assemblage.  相似文献   

4.
Maslov DA  Yasuhira S  Simpson L 《Protist》1999,150(1):33-42
In order to shed light on the phylogenetic position of diplonemids within the phylum Euglenozoa, we have sequenced small subunit rRNA (SSU rRNA) genes from Diplonema (syn. Isonema) papillatum and Diplonema sp. We have also analyzed a partial sequence of the mitochondrial gene for cytochrome c oxidase subunit I from D. papillatum. With both markers, the maximum likelihood method favored a closer grouping of diplonemids with kinetoplastids, while the parsimony and distance suggested a closer relationship of diplonemids with euglenoids. In each case, the differences between the best tree and the alternative trees were small. The frequency of codon usage in the partial D. papillatum COI was different from both related groups; however, as is the case in kinetoplastids but not in Euglena, both the non-canonical UGA codon and the canonical UGG codon were used to encode tryptophan in Diplonema.  相似文献   

5.
The latest studies of chloroplast genomes of phototrophic euglenoids yielded different results according to intrageneric variability such as cluster arrangement or diversity of introns. Although the genera Euglena and Monomorphina in those studies show high syntenic arrangements at the intrageneric level, the two investigated Eutreptiella species comprise low synteny. Furthermore Trachelomonas volvocina show low synteny to the chloroplast genomes of the sister genera Monomorphina aenigmatica, M. parapyrum, Cryptoglena skujae, Euglenaria anabaena, Strombomonas acuminata, all of which were highly syntenic. Consequently, this study aims at the analysis of the cpGenome of Trachelomonas grandis and a comparative examination of T. volvocina to investigate whether the cpGenomes are of such resemblance as could be expected for a genus within the Euglenaceae. Although these analyses resulted in almost identical gene content to other Euglenaceae, the chloroplast genome showed significant novelties: In the rRNA operon, we detected group II introns, not yet found in any other cpGenome of Euglenaceae and a substantially heterogeneous cluster arrangement in the genus Trachelomonas. The phylogenomic analysis with 84 genes of 19 phototrophic euglenoids and 18 cpGenome sequences from Chlorophyta and Streptophyta resulted in a well‐supported cpGenome phylogeny, which is in accordance to former phylogenetic analyses.  相似文献   

6.
Bayesian and maximum‐likelihood (ML) analyses of the combined multigene data (nuclear SSU rDNA, and plastid SSU and LSU rDNA) were conducted to evaluate the phylogeny of photosynthetic euglenoids. The combined data set consisted of 108 strains of photosynthetic euglenoids including a colorless sister taxon. Bayesian and ML analyses recovered trees of almost identical topology. The results indicated that photosynthetic euglenoids were divided into two major clades, the Euglenaceae clade (Euglena, Euglenaria, Trachelomonas, Strombomonas, Monomorphina, Cryptoglena, Colacium) and the Phacaceae clade (Phacus, Lepocinclis, Discoplastis). The Euglenaceae clade was monophyletic with high support and subdivided into four main clades: the Colacium, the Strombomonas and Trachelomonas, the Cryptoglena and Monomorphina, and the Euglena and Euglenaria clades. The genus Colacium was positioned at the base of the Euglenaceae and was well supported as a monophyletic lineage. The loricate genera (Strombomonas and Trachelomonas) were located at the middle of the Euglenaceae clade and formed a robust monophyletic lineage. The genera Cryptoglena and Monomorphina also formed a well‐supported monophyletic clade. Euglena and the recently erected genus Euglenaria emerged as sister groups. However, Euglena proxima branched off at the base of the Euglenaceae. The Phacaceae clade was also a monophyletic group with high support values and subdivided into three clades, the Discoplastis, Phacus, and Lepocinclis clades. The genus Discoplastis branched first, and then Phacus and Lepocinclis emerged as sister groups. These genera shared a common characteristic, numerous small discoid chloroplasts without pyrenoids. These results clearly separated the Phacaceae clade from the Euglenaceae clade. Therefore, we propose to limit the family Euglenaceae to the members of the Euglena clade and erect a new family, the Phacaceae, to house the genera Phacus, Lepocinclis, and Discoplastis.  相似文献   

7.
The phylogenetic relationship and origin of the euglenoids are controversial at present. It is not clear which of the extant genera may be most primitive, although Distigma proteus has been suggested as an early progenitor by some researchers. Scanning (SEM) and transmission (TEM) electron microscopic data were obtained in an effort to clarify some of the major taxonomic characteristics of this organism. SEM analyses of cells fixed during euglenoid movement (metaboly) show that the spirally arranged pellicular strips in the expanded regions of the organism have a lower pitch than those in the more constricted regions. This finding reveals the mechanical basis for euglenoid contortional movements. Mitochondria observed by TEM contain discoidal cristae, but some mitochondria are particularly large (e.g., 1.5 μm) and contain concentrically arranged, multiply layered cristae located deeper within the matrix, as in Khawkinea sp. Acid phosphatase reaction product is located in the cisternae and peripheral saccules throughout the Golgi stack and is regularly observed in the cisternae of the ER located beneath the pellicular ridges. Vacuoles varying in size, containing acid phosphatase reaction product, occur particularly near the periphery of the cell including the region surrounding the flagellar pouch. Occasional deposits of the reaction product within what appear to be membranous extrusions occur at the outer surface of the cell and may be secreted from sub-pellicular organelles. © 1994 Wiley-Liss, Inc.  相似文献   

8.
Molecular studies based on small subunit (SSU) rDNA sequences addressing euglenid phylogeny hitherto suffered from the lack of available data about phagotrophic species. To extend the taxon sampling, SSU rRNA genes from species of seven genera of phagotrophic euglenids were investigated. Sequence analyses revealed an increasing genetic diversity among euglenid SSU rDNA sequences compared with other well‐known eukaryotic groups, reflecting an equally broad diversity of morphological characters among euglenid phagotrophs. Phylogenetic inference using standard parsimony and likelihood approaches as well as Bayesian inference and spectral analyses revealed no clear support for euglenid monophyly. Among phagotrophs, monophyly of Petalomonas cantuscygni and Notosolenus ostium, both comprising simple ingestion apparatuses, is strongly supported. A moderately supported clade comprises phototrophic euglenids and primary osmotrophic euglenids together with phagotrophs, exhibiting a primarily flexible pellicle composed of numerous helically arranged strips and a complex ingestion apparatus with two supporting rods and four curved vanes. Comparison of molecular and morphological data is used to demonstrate the difficulties to formulate a hypothesis about how the ingestion apparatus evolved in this group.  相似文献   

9.
Thirty‐one strains of Microcoleus were isolated from desert soils in the United States. Although all these taxa fit the broad definition of Microcoleus vaginatus (Vaucher) Gomont in common usage by soil algal researchers, sequence data for the 16S rRNA gene and 16S–23S internal transcribed spacer (ITS) region indicated that more than one species was represented. Combined sequence and morphological data revealed the presence of two morphologically similar taxa, M. vaginatus and Microcoleus steenstrupii Boye‐Petersen. The rRNA operons of these taxa were sufficiently dissimilar that we suspect the two taxa belong in separate genera. The M. vaginatus clade was most similar to published sequences from Trichodesmium and Arthrospira. When 16S sequences from the isolates we identified as M. steenstrupii were compared with published sequences, our strains grouped with M. chthonoplastes (Mertens) Zanardini ex Gomont and may have closest relatives among several genera in the Phormidiaceae. Organization within the 16S–23S ITS regions was variable between the two taxa. Microcoleus vaginatus had either two tRNA genes (tRNAIle and tRNAAla) or a fragment of the tRNAIle gene in its ITS regions, whereas M. steenstrupii had rRNA operons with either the tRNAIle gene or no tRNA genes in its ITS regions. Microcoleus vaginatus showed no subspecific variation within the combined morphological and molecular characterizations, with 16S similarities ranging from 97.1% to 99.9%. Microcoleus steenstrupii showed considerable genetic variability, with 16S similarities ranging from 91.5% to 99.4%. In phylogenetic analyses, we found that this variability was not congruent with geography, and we suspect that our M. steenstrupii strains represent several cryptic species.  相似文献   

10.
Five cyanobacterial strains exhibiting Nostoc-like morphology were sampled from the biodiversity hotspots of the northeast region of India and characterized using a polyphasic approach. Molecular and phylogenetic analysis using the 16S rRNA gene indicated that the strains belonged to the genera Amazonocrinis and Dendronalium. In the present investigation, the 16S rRNA gene phylogeny clearly demarcated two separate clades of Amazonocrinis. The strain MEG8-PS clustered along with Amazonocrinis nigriterrae CENA67, which is the type strain of the genus. The other three strains ASM11-PS, RAN-4C-PS, and NP-KLS-5A-PS clustered in a different clade that was phylogenetically distinct from the Amazonocrinis sensu stricto clade. Interestingly, while the 16S rRNA gene phylogeny exhibited two separate clusters, the 16S–23S ITS region analysis did not provide strong support for the phylogenetic observation. Subsequent analyses raised questions regarding the resolving power of the 16S–23S ITS region at the genera level and the associated complexities in cyanobacterial taxonomy. Through this study, we describe a novel genus Ahomia to accommodate the members clustering outside the Amazonocrinis sensu stricto clade. In addition, we describe five novel species, Ahomia kamrupensis, Ahomia purpurea, Ahomia soli, Amazonocrinis meghalayensis, and Dendronalium spirale, in accordance with the International Code of Nomenclature for algae, fungi, and plants (ICN). Apart from further enriching the genera Amazonocrinis and Dendronalium, the current study helps to resolve the taxonomic complexities revolving around the genus Amazonocrinis and aims to attract researchers to the continued exploration of the tropical and subtropical cyanobacteria for interesting taxa and lineages.  相似文献   

11.
ABSTRACT. In order to re‐evaluate the systematics of sessilid peritrich ciliates, small subunit (SSU) rRNA gene sequences were determined for 12 species belonging to five genera: Vorticella, Pseudovorticella, Epicarchesium, Zoothamnium, and Zoothamnopsis. Phylogenetic trees were deduced using Bayesian inference, maximum parsimony, and maximum likelihood methods. The phylogenetic analyses suggest that (1) sessilids which have stalks with continuous myonemes that contract in a zig‐zag fashion form a separate clade from those which have stalks that contract independently and in a spiral fashion, supporting the separation of the family Zoothamniidae from the family Vorticellidae and (2) Epicarchesium and Pseudovorticella, both of which have reticulate silverline systems, are more closely related to each other than to other vorticellids, suggesting that differences in the silverline system (i.e. transverse vs. reticulate) may be the result of genuine evolutionary divergence among sessilid peritrichs. However, the newly sequenced Zoothamnopsis sinica, which has a reticulate silverline pattern, nests within the unresolved Zoothamnium species that have transverse silverline patterns. Thus, there were at least two evolutions of the reticulate silverline pattern character state from a plesiomorphic transverse state in the peritrichid ciliates. The molecular work demonstrates the genus Zoothamnium to be paraphyletic in relation to morphological studies, and suggests that Astylozoon, Opisthonecta, and Vorticella microstoma possibly share a SSU rRNA secondary structure in the helix E10‐1 region.  相似文献   

12.
13.
The Urostylida is a major taxon of hypotrichs with many unresolved evolutionary relationships. Due to incomplete or inaccurate character states and a paucity of morphogenetic data, the phylogeny of several taxa within urostylids is unresolved. Molecular phylogeny studies based on single gene (SSU rDNA) data may lead to conflict between morphological classification and SSU rDNA tree. In this work, 20 new sequences (SSU rDNA, ITS1‐5.8S‐ITS2 and LSU rDNA) of five genera of urostylids are provided to further investigate the phylogenetic relationships of this group. The main findings are as follows: (i) the establishment of Hemicycliostylidae, a novel family presently including Hemicycliostyla and Australothrix, is supported by both single gene and concatenated phylogenies; (ii) all molecular data support the exclusion of Eschaneustyla from the family Epiclintidae; (iii) Australothrix, Bergeriella and Thigmokeronopsis are distinctly separated in all gene trees although they share the character that each posterior streak generates the ventral row together with the midventral pair; (iv) compared with closely related genera in all trees, that is Metaurostylopsis and Apourostylopsis, Neourostylopsis is characterized by having more than three frontal cirri arranged in distinct or indistinct corona rather than the length of the midventral complex; (v) Hemicycliostyla and Pseudourostyla, two morphologically similar genera, do not form a monophyletic group in all molecular trees, suggesting that the bicorona, multiple marginal cirral rows and high numbers of dorsal kineties may result from convergent evolution; (vi) species of Bakuella fall into three separate clades in all trees suggesting that this genus needs to be split.  相似文献   

14.
Systematic relationships among the African bush babies are not well understood. Various generic designations are currently in use. Some authors refer all species to a single genus (Galago), while others recognize 4 genera. Phylogenetic reconstructions based on morphology, karyology, allozymes and vocal repertoires have generated inconsistent hypotheses of relationship. We analyzed partial sequences of three mitochondrial genes (270 bp from cytochrome b, 387 bp from 12S rRNA, and 241 bp from 16S rRNA, total 898 bp) to resolve some uncertainties. We sampled taxa from each of three genera: Galagoides alleni, G. demidoff and G. zanzibaricus; Galago senegalensis, G. gallarum and G. moholi; and Otolemur crassicaudatus and O. garnettii. Outgroup taxa were Asian lorises: Nycticebus coucang and Loris tardigradus. We analyzed sequences separately and in combination, and modeled phylogenies using maximum parsimony, weighted parsimony, neighbor-joining and maximum-likelihood. We obtained some variation in phylogenetic inference depending on sequence and analytical method, but the results also gave strong phylogenetic signals. The lesser bush babies invariably formed a clade, showing evidence of very recent radiation. The greater bush babies also formed a clade, marked by somewhat greater interspecific genetic distances, which was allied with Galagoides alleni in most instances. Galagoides demidoff and G. zanzibaricus are not closely related, though both diverged early in the history of the group. A genus comprising Galagoides alleni, G. demidoff and G. zanzibaricus is not supported by our data. The most likely alliance for Galagoides alleni is within the genus Otolemur. Of the three partial sequences employed in the study, 16S rRNA gave the most consistent results, while cytochrome b was least informative.  相似文献   

15.
Litvaitis  M. K.  Newman  L. J. 《Hydrobiologia》2001,444(1-3):177-182
Systematic relationships within the cotylean family Pseudocerotidae were examined using nucleotide sequences of the D3 expansion segment of the 28S rDNA gene. A previously suggested separation of Pseudoceros and Pseudobiceros based on the number of male reproductive systems was confirmed. Regardless of the algorithm employed, Pseudoceros always formed a monophyletic clade. Pseudobiceros appeared to be paraphyletic; however, a constrained maximum parsimony tree was not significantly longer (2 steps, = 0.05). Additionally, the genera Maiazoon, Phrikoceros and Tytthosoceros were validated as taxonomic entities, and their relationships to other genera within the family were determined. Molecular data also supported species separations based on colour patterns. An intraspecific genetic distance of 1.14% was found for Pseudoceros bifurcus, whereas the intrageneric distance was 3.58%. Genetic distances among genera varied, with the closest distance being 2.048% between Pseudobiceros and Maiazoon, and the largest distance (8.345%) between Pseudoceros and Tytthosoceros.  相似文献   

16.
Makiuchi T  Annoura T  Hashimoto T  Murata E  Aoki T  Nara T 《Protist》2008,159(3):459-470
A unique feature of the genome architecture in the parasitic trypanosomatid protists is large-scale synteny. We addressed the evolutionary trait of synteny in the eukaryotic group, Euglenozoa, which consists of euglenoids (earliest branching), diplonemids, and kinetoplastids (trypanosomatids and bodonids). Synteny of the pyrimidine biosynthetic (pyr) gene cluster, which constitutes part of a large syntenic cluster in trypanosomatids and includes four separate genes (pyr1-pyr4) and one fused gene (pyr6/pyr5 fusion), was conserved in the bodonid, Parabodo caudatus. In the diplonemid, Diplonema papillatum, we identified pyr4 and pyr6 genes. Phylogenetic analyses of pyr4 and pyr6 showed the separate origin of each in kinetoplastids and euglenoids/diplonemids and suggested that kinetoplastids have acquired these genes via lateral gene transfer (LGT). Because replacement of genes by non-orthologs within the syntenic cluster is highly unlikely, we concluded that, after separation of the line leading to diplonemids, the syntenic pyr gene cluster was established in the common ancestor of kinetoplastids, preceded by their acquisition via LGT. Notably, we found that diplonemid pyr6 is a stand-alone gene, inconsistent with both euglenoid pyr5/pyr6 and kinetoplastid pyr6/pyr5 fusions. Our findings provide insights into the evolutionary gaps within Euglenozoa and the evolutionary trait of rearrangement of gene fusion in this lineage.  相似文献   

17.
In this study, the first reported isolates of the genera Snowella and Woronichinia were characterized by 16S rRNA gene sequencing and morphological analysis. Phylogenetic studies and sequences for these genera were not available previously. By botanical criteria, the five isolated strains were identified as Snowella litoralis (Häyrén) Komárek et Hindák Snowella rosea (Snow) Elenkin and Woronichinia naegeliana (Unger) Elenkin. This study underlines the identification of freshly isolated cultures, since the Snowella strains lost the colony structure and were not identifiable after extended laboratory cultivation. In the 16S rRNA gene analysis, the Snowella strains formed a monophyletic cluster, which was most closely related to the Woronichinia strain. Thus, our results show that the morphology of the genera Snowella and Woronichinia was in congruence with their phylogeny, and their phylogeny seems to support the traditional botanical classification of these genera. Furthermore, the genera Snowella and Woronichinia occurred commonly and might occasionally be the most abundant cyanobacterial taxa in mainly oligotrophic and mesotrophic Finnish lakes. Woronichinia occurred frequently and also formed blooms in eutrophic Czech reservoirs.  相似文献   

18.
To gain insights into the phylogeny of the Euglenales, we analyzed the plastid LSU rDNA sequences from 101 strains of the photosynthetic euglenoids belonging to nine ingroup genera (Euglena, Trachelomonas, Strombomonas, Monomorphina, Cryptoglena, Colacium, Discoplastis, Phacus, and Lepocinclis) and two outgroup genera (Eutreptia and Eutreptiella). Bayesian and maximum‐likelihood (ML) analyses resulted in trees of similar topologies and four major clades: a Phacus and Lepocinclis clade; a Colacium clade; a Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade; and a Euglena clade. The Phacus and Lepocinclis clade was the sister group of all other euglenalian genera, followed by Discoplastis spathirhyncha (Skuja) Triemer and the Colacium clade, respectively, which was inconsistent with their placement based on nuclear rDNA genes. The Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade was sister to the Euglena clade. The loricate genera, Trachelomonas and Strombomonas, were closely related to each other, while Monomorphina and Cryptoglena also grouped together. The Euglena clade formed a monophyletic lineage comprising most species from taxa formerly allocated to the subgenera Calliglena and Euglena. However, within this genus, none of the subgenera was monophyletic.  相似文献   

19.
Aphelids are a poorly known group of parasitoids of algae that have raised considerable interest due to their pivotal phylogenetic position. Together with Cryptomycota and the highly derived Microsporidia, they have been recently re‐classified as the Opisthosporidia, which constitute the sister group to the fungi within the Holomycota. Despite their huge diversity, as revealed by molecular environmental studies, and their phylogenetic interest, only three genera have been described (Aphelidium, Amoeboaphelidium, and Pseudaphelidium), from which 18S rRNA gene sequences exist only for Amoeboaphelidium and Aphelidium species. Here, we describe the life cycle and ultrastructure of a new representative of Aphelida, Paraphelidium tribonemae gen. et sp. nov., and provide the first 18S rRNA gene sequence obtained for this genus. Molecular phylogenetic analysis indicates that Paraphelidium is distantly related to both Aphelidium and Amoebaphelidium, highlighting the wide genetic diversity of aphelids. Paraphelidium tribonemae has amoeboflagellate zoospores containing a lipid‐microbody complex, dictyosomes, and mitochondria with rhomboid cristae, which are also present in trophonts and plasmodia. The amoeboid trophont uses pseudopodia to feed from the host cytoplasm. Although genetically distinct, the genus Paraphelidium is morphologically indistinguishable from other aphelid genera and has zoospores able to produce lamellipodia with subfilopodia like those of Amoeboaphelidium.  相似文献   

20.
Species assigned to the genera Debaryomyces, Lodderomyces, Spathaspora, and Yamadazyma, as well as selected species of Pichia and Candida that also form coenzyme Q-9, were phylogenetically analyzed from the combined sequences of the D1/D2 domains of the large subunit and the nearly complete small subunit rRNA genes. Species assigned to Debaryomyces partitioned into three clades and species assigned to Pichia were distributed among six clades. These well-supported clades were interpreted as genera, and from this analysis, the following new genera are proposed: Babjeviella, Meyerozyma, Millerozyma, Priceomyces, and Scheffersomyces. The genus Schwanniomyces was reinstated and emended, and the genus Yamadazyma was phylogenetically defined. From this study, 23 new combinations and 3 new ranks are proposed. The preceding genera are members of a single, large clade, and it is proposed to delineate this clade as the new family Debaryomycetaceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号