首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Anucleated fragments ofAmoeba proteus obtained by dissection and kept on an untreated glass surface fail to adhere to this substratum, lose motor polarity, and stop moving, at least for several hours. If they are transferred after the operation to a highly adhesive surface (polylysine-coated glass), they adhere to the substratum, although locomotion is not spontaneously restored. However, after exposure to a light-shade difference along their body they start moving towards the shaded area and continue locomotion as long as the photic stimulus is acting. Disorganisation of the F-actin cytoskeleton of anucleated fragments was observed on the untreated glass but reorganization on the polylysine-coated surface. The anucleated fragments can show transient recovery of slight spontaneous motor activity and react promptly to external stimuli after up to several days on untreated glass. These intermittent activity periods are enabled by reconstruction of F-actin cytoskeleton in the anucleated fragments during their temporary adhesion to the glass. It is concluded that the injurious effect of cell nucleus removal on the locomotor capacity of amoebae can be compensated by the simultaneous enhancement of cell adhesion and application of a stimulus restoring the motor polarity of the cell. The compensation is achieved by cytoskeletal reorganization.  相似文献   

2.
The static adhesion of living L1210 cells to sulfonated copolymer surfaces of different sulfonic group content and the actin cytoskeleton organization in the adhering cells were studied. The strength of the cell-substratum interaction was estimated by determining the relative number of cells remaining adherent despite experiencing a shearing force equal to 1.25 x 10(-11) N caused by the laminar flow of the medium. The cell-substratum interaction took place in a medium with or without serum. The distribution of F-actin and alpha-actinin in the adhering cells was determined in sequences of fluorescent images of cell optical slices with the use of a computer method of cell image analysis. It was shown that the surface sulfonic groups affect not only the rate and strength of cell-substratum adhesion but also the F-actin and alpha-actinin distribution (in the cell regions near the substratum surface) in cells adhering in the medium containing serum. These proteins, concentrated in the tips of microvilli, were observed as dots. The distinctness (discernibleness) and sizes of these dots depend on the surface content of sulfonic groups. F-actin is located at the periphery of the cells in cells adhering in the medium without serum and alpha-actinin is concentrated in small dots at the periphery and in the central part of the cells.  相似文献   

3.
Summary Changes in F-actin organization following mechanical isolation ofZinnia mesophyll cells were documented by rhodamine-phalloidin staining. Immediately after isolation, most cells contained irregular cortical actin fragments of varying lengths, and less than 5% of cells contained intact cortical filaments. During the first 8 h of culture, filament fragments were replaced by actin rings, stellate actin aggregates, and bundled filament fragments. Some of these aggregates had no association with organelles (free actin aggregates). Other aggregates were associated with chloroplasts, which changed in shape and location at the same time actin aggregates appeared. F-actin was concentrated within or around the nucleus in a small percentage of cells. After 12 h in culture, the percentage of cells with free actin rings and chloroplast-associated actin aggregates began to decline and the percentage of cells having intact cortical actin filaments increased greatly. Intermediate images were recorded that strongly indicate that free actin rings, chloroplast-associated actin rings, and other actin aggregates self-assemble by successive bundling of actin filament fragments. The fragmentation and bundling of F-actin observed in mechanically isolatedZinnia cells resembles changes in F-actin distribution reported after diverse forms of cell disturbance and appears to be an example of a generalized response of the actin cytoskeleton to cell stress.Abbreviations FITC fluorescein isothiocyanate - MBS m-maleimidobenzoic acid N-hydroxysuccinimide ester - RhPh tetramethylrhodamine isothiocyanate-phalloidin  相似文献   

4.
By immunofluorescence and interference reflection microscopy (IRM) we found that F-actin and a group of cytoskeletal proteins involved in microfilament-membrane interaction, including vinculin, alpha-actinin, fimbrin and talin, are specifically organized in discrete dot-like structures corresponding to cell-substratum contact sites in both monocytes and monocyte-derived cells such as macrophages and osteoclasts. These proteins have a precise topological distribution; vinculin and talin form a doughnut-like ring, while actin, fimbrin and alpha-actinin are organized in dots matching the rings. An identical dot-like organization of F-actin and associated cytoskeletal proteins was also detected in malignant fibroblasts transformed by Rous Sarcoma virus (RSV) but not in the corresponding untransformed cells in culture. It is concluded that RSV transformation induces fibroblasts to express a cytoskeletal organization and a pattern of adhesion that are normally found in cells of monocytic origin. We propose that the occurrence of this cytoskeletal organization in RSV-transformed fibroblasts and in monocyte-derived cells may reflect a common ability to migrate across anatomical boundaries.  相似文献   

5.
Extensive programmed structural and functional changes of insect follicular epithelium during oogenesis provide a model to study modulation of cytoskeletal organization during morphogenesis in a non-dividing cell population. Rhodamine-phalloidin staining of whole mounted and cryosectioned oogenic follicles reveal changing F-actin filament organization from pre- to post-vitellogenic stages consistent with the presumptive dorsal-ventral orientation of the future embryo. Filaments are not abundant in pre-vitellogenic follicle cells up to day 2. Differences between dorsal and ventral follicle cells appear first on day 3. Obviously patent follicle cells are seen only on the ventral follicle surface which exhibits stronger F-actin fluorescence than the dorsal non-patent epithelium. On the presumptive ventral side of midvitellogenic follicles morphologically distinct bundles of actin filaments orient peripherally into projections connecting adjacent follicle cells and from the center of follicle cells apically into macrovillar projections extending toward the oocyte surface. The mid-vitellogenic dorsal follicle cell layer also possesses macrovillar extensions containing F-actin which reach and appear to penetrate the oolema. During chorion deposition major reorganization of actin of follicle cells takes place. After chorion deposition all F-actin filaments within a given follicle cell are arranged into large parallel bundles with semi-regular cross-striations which exclude fluorescent label. The parallel orientation of actin striated filament bundles within each follicle cell appears to be random with respect to the orientation of bundles in neighboring follicle cells over much of the mid-latitude of the follicle epithelium. At anterior and posterior follicle poles a more axial orientation of striated bundles is evident. This muscle-like tissue arrangement is appropriate for cooperation in ovulating the chorionated oocyte from the follicle into the oviduct.  相似文献   

6.
Summary Dynamics of F-actin organization during activation and germination ofPyrus communis (pear) pollen was examined using rhodaminephalloidin. Prior to activation, the rhodamine-phalloidin labelling pattern appeared as circular profiles in the peripheral cytoplasm of the vegetative cell and as coarse granules around the vegetative nucleus. In activated pollen, parallel arrays of cortical F-actin were aligned circumferentially, along the polar axis in non-apertural areas of the pollen grain, and at 45° to 90° to the polar axis beneath the apertures. Some pollen also showed fluorescent granules or fusiform bodies dispersed throughout the cytoplasm, but as the number of such pollen diminished with prolonged incubation, these are being considered as intermediate patterns. In later stages, the filaments became organized as interapertural bundles traversing the three apertures. However, prior to emergence of the pollen tube, labelling became confined to a single aperture. In germinated pollen grains, actin microfilaments are aligned more or less axially with respect to the axis of the developing pollen tube.The granular labelling pattern seen around the vegetative nucleus prior to pollen activation also became clearly filamentous with pollen activation; this filamentous pattern persisted until germination when it was replaced by cables that aligned longitudinally with respect to the emerging tube axis.The results demonstrate that the organization of actin undergoes considerable changes in the period preceding pollen germination and that microfilament polarization is achieved before pollen germination.  相似文献   

7.
Induction of pinocytosis in Amoeba proteus is independent of adhesion. It is manifested by non-adhering floating specimens, as well as by amoebae moderately adhering and locomoting on the glass, or tightly attached to the polylysine-coated substratum. The formation of pinocytotic rosettes results in de-adhesion, at the beginning of pinocytosis on the glass, but at its end on the polylysine. It suggests an opposition between adhesion and cell shape transformation. Pinocytosis and adhesion are both inhibited, by an unknown mechanism, in the presence of gelatin either in the substratum or in solution.  相似文献   

8.
The cytoskeleton, capsule and cell ultrastructure were studied during the cell cycle of Cryptococcus laurentii. In an encapsulated strain, cytoplasmic microtubules and a mitotic spindle were detected. Mitosis was preceded by migration of the nucleus into the bud. F-actin failed to be visualised by rhodamine-phalloidin (RhPh) in encapsulated cells and therefore an acapsular strain was used. The following actin structures were found: actin dots, actin cables and cytokinetic ring. Ultrastructural studies showed the presence of a nucleus in the bud before mitosis. A collar-shaped structure was seen at the base of bud emergence. A lamellar cell wall and a rough outer surface of the cells were detected. Cytoskeletal structures found in C. laurentii are similar to those in Cryptococcus neoformans, which is a serious human pathogen.  相似文献   

9.
Summary. We studied the distribution of the endogenous Arp2/3 complex in Amoeba proteus and visualised the ratio of filamentous (F-actin) to total actin in living cells. The presented results show that in the highly motile Amoeba proteus, Arp2/3 complex-dependent actin polymerisation is involved in the formation of the branching network of the contractile layer, adhesive structures, and perinuclear cytoskeleton. The aggregation of the Arp2/3 complex in the cortical network, with the exception of the uroid and advancing fronts, and the spatial orientation of microfilaments at the leading edge suggest that actin polymerisation in this area is not sufficient to provide the driving force for membrane displacement. The examined proteins were enriched in the pinocytotic pseudopodia and the perinuclear cytoskeleton in pinocytotic amoebae. In migrating amoebae, the course of changes in F-actin concentration corresponded with the distribution of tension in the cell cortex. The maximum level of F-actin in migrating amoebae was observed in the middle-posterior region and in the front of retracting pseudopodia. Arp2/3 complex-dependent actin polymerisation did not seem to influence F-actin concentration. The strongly condensed state of the microfilament system could be attributed to strong isometric contraction of the cortical layer accompanied by its retraction from distal cell regions. Isotonic contraction was limited to the uroid. Correspondence and reprints: Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, ulica Pasteura 3, 02-093 Warszawa, Poland.  相似文献   

10.
The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms.  相似文献   

11.
An intact complex that consisted of the cell membrane and cytoskeleton was prepared from Dictyostelium amoebae by an improved version of the method previously used by CLARKE et al. (1975). Proc. Natl. Acad. Sci. USA., 72: 1758-1762. After cells had attached tightly to a polylysine-coated coverslip in the presence of a divalent cation, the upper portions of the cells were removed with a jet of microfilament-stabilizing solution squirted from a syringe. The cell membranes left on the coverslip were immediately stained with tetramethylrhodamine-conjugated phalloidin for staining of actin filaments, and with antibody against myosin from Dictyostelium and a fluorescein-conjugated second antibody for staining of myosin. Networks of actin filaments and numerous rod-like structures of myosin (myosin filaments) aligned along them were observed on the exposed cytoplasmic surfaces of the cell membranes. These networks were similar to those observed in the cortex of fixed whole cells. Addition of ATP to these intact complexes of cell membrane and cytoskeleton caused the aggregation of both actin and myosin into several dot-like structures of actin on the cell membrane. Similar dot-like structures were also seen in the cortex of fixed whole cells, and their changes in distribution correlated with the motile activity of the cells. Transmission electron microscopy showed that these dot-like structures were composed of an electron-dense structure at the center, from which numerous actin filaments radiated outwards. These observations suggest that these novel dot-like structures are organizing centers for cortical actin filaments and may possibly be related to the adhesion of cells to the substratum.  相似文献   

12.
Vitronectin is a major cell adhesion molecule present in the subendothelial matrix that mediates the attachment and spreading of a variety of cells. The carboxy-terminal end of vitronectin has a consensus sequence for glycosaminoglycan-binding. To define the functional role of this domain, we generated fragments of vitronectin that lack the glycosaminoglycan-binding domain by formic acid cleavage of plasma-derived vitronectin. In addition, we also generated similar recombinant fragments of vitronectin as glutathione S-transferase fusion proteins in E. coll. These fragments were tested for their ability to support the adhesion of human umbilical vein endothelial cells. These fragments promoted endothelial cell adhesion, reaching half maximal activity at 2-5 μg/well compared to plasma-derived vitronectin which reached at 0.2 μg/well. However, the cells that adhered to these fragments did not develop well-formed focal adhesion plaques and actin stress fibers. In addition, these fragments were poorly chemotactic for endothelial cell migration when compared to intact plasma-derived vitronectin in a modified Boyden chamber assay. The present studies show that carboxy-terminal glycosaminoglycan-binding domain of vitronectin is essential for proper cytoskeletal organization and migration of endothelial cells on vitronectin substratum.  相似文献   

13.
We first examined the changes in distribution of F-actin during conjugate division in the apical cells of the dikaryon ofCoprinus cinereus using indirect immunofluorescence microscopy, then followed hyphal tip growth and the movement of the two nuclei in the apical cells using differential interference contrast microscopy (DIC). In apical cells with interphase nuclei, F-actin occurred solely as peripheral plaques, which were distributed along the whole length of the cell and were more concentrated at the tips, where they formed caps. In the early prophase of conjugate division, F-actin was transiently concentrated, as diffused form and plaques, at hyphal regions where the two nuclei sit, and this was accompanied by transient disappearance of the actin cap at the hyphal tip in the majority of cells. The actin cap was also present at the tips of growing clamp cells from late prophase through metaphase and disintegrated during anaphase. In telophase, actin rings formed at the future septa. DIC revealed that, in early prophase, when the F-actin array occurs around the two nuclei and the actin cap is absent at hyphal tips, hyphae kept growing and the second nucleus accelerated its forward movement to catch up with the leading nucleus, which was still moving forward.  相似文献   

14.
The effects of plasma fibronectin (pFn) and the tumor promoter 12-0-tetradecanoyl-phorbol-13-acetate (TPA) on adhesion and cytoskeletal organization of human erythroleukemia (HEL) cells were studied. HEL cells, that normally grow in suspension, attached rapidly on pFn-coated growth substratum and some cells showed spreading. Upon exposure to TPA most of the cells adhered and showed some degree of spreading also when plated on plastic. The spread cells showed mostly peripheral accumulations of F-actin in addition to actin fibers seen in some of the cells. When the cells were plated in the presence of TPA on pFn or on pFn-fragments, containing the cell binding site, all the cells adhered rapidly, spread extensively, organized prominent F-actin stress fibers and typical ventral plaques of vinculin and alpha-actinin. Both proteins were revealed also in the suspended cells by Western blot analysis. When plated on substratum coated with other pFn-fragments or laminin, the HEL cells did not adhere or spread. Both adhesion on pFn as well as formation of stress fibers in the presence of TPA could be prevented by the synthetic peptide Arg-Gly-Asp-Ser (RGDS). HEL cells were also able to organize typical ventral fibrillar arrays of Fn. Immunostaining and metabolic labeling experiments showed that the cells did not contain or synthesize Fn, indicating that the plaques were formed from exogenous pFn by the cells. The results suggest that Fn and TPA synergistically induce the organization of the actomyosin system in HEL cells by promoting the formation of prominent actin stress fibers and focal adhesion sites.  相似文献   

15.
We have examined fragments of the filamentous network underlying the human erythrocyte membrane by high-resolution electron microscopy. Networks were released from ghosts by extraction with Triton X-100, freed of extraneous proteins in 1.5 M NaCl, and collected by centrifugation onto a sucrose cushion. These preparations contained primarily protein bands 1 + 2 (spectrin), band 4.1 and band 5 (actin). The networks were partially disassembled by incubation at 37 degrees C in 2 mM NaPi (pH 7), which caused the preferential dissociation of spectrin tetramers to dimers. The fragments so generated were fractionated by gel filtration chromatography and visualized by negative staining with uranyl acetate on fenestrated carbon films. Unit complexes, which sedimented at approximately 40S, contained linear filaments approximately 7-8 nm diam from which several slender and convoluted filaments projected. The linear filaments had a mean length of 52 +/- 17 nm and a serrated profile reminiscent of F-actin. They could be decorated in an arrowhead pattern with S1 fragments of muscle heavy meromyosin which, incidentally, displaced the convoluted filaments. Furthermore, the linear filaments nucleated the polymerization of rabbit muscle G-actin, predominantly but not exclusively from the fast-growing ends. On this basis, we have identified the linear filaments as F-actin; we infer that the convoluted filaments are spectrin. Spectrin molecules were usually attached to actin filaments in clusters that showed a preference for the ends of the F-actin. We also observed free globules up to 15 nm diam, usually associated with three spectrin molecules, which also nucleated actin polymerization; these may be simple junctional complexes of spectrin, actin, and band 4.1. In larger ensembles, spectrin tetramers linked actin filaments and/or globules into irregular arrays. Intact networks were an elaboration of the basic pattern manifested by the fragments. Thus, we have provided ultrastructural evidence that the submembrane skeleton is organized, as widely inferred from less direct information, into short actin filaments linked by multiple tetramers of spectrin clustered at sites of association with band 4.1.  相似文献   

16.
Vitronectin is a major cell adhesion molecule present in the subendothelial matrix that mediates the attachment and spreading of a variety of cells. The carboxy-terminal end of vitronectin has a consensus sequence for glycosaminoglycan-binding. To define the functional role of this domain, we generated fragments of vitronectin that lack the glycosaminoglycan-binding domain by formic acid cleavage of plasma-derived vitronectin. In addition, we also generated similar recombinant fragments of vitronectin as glutathione S-transferase fusion proteins in E. coll. These fragments were tested for their ability to support the adhesion of human umbilical vein endothelial cells. These fragments promoted endothelial cell adhesion, reaching half maximal activity at 2-5 μg/well compared to plasma-derived vitronectin which reached at 0.2 μg/well. However, the cells that adhered to these fragments did not develop well-formed focal adhesion plaques and actin stress fibers. In addition, these fragments were poorly chemotactic for endothelial cell migration when compared to intact plasma-derived vitronectin in a modified Boyden chamber assay. The present studies show that carboxy-terminal glycosaminoglycan-binding domain of vitronectin is essential for proper cytoskeletal organization and migration of endothelial cells on vitronectin substratum.  相似文献   

17.
Stress fibers are actin bundles encompassing actin filaments, actin-crosslinking, and actin-associated proteins that represent the major contractile system in the cell. Different types of stress fibers assemble in adherent cells, and they are central to diverse cellular processes including establishment of the cell shape, morphogenesis, cell polarization, and migration. Stress fibers display specific cellular organization and localization, with ventral fibers present at the basal side, and dorsal fibers and transverse actin arcs rising at the cell front from the ventral to the dorsal side and toward the nucleus. Perinuclear actin cap fibers are a specific subtype of stress fibers that rise from the leading edge above the nucleus and terminate at the cell rear forming a dome-like structure. Perinuclear actin cap fibers are fixed at three points: both ends are anchored in focal adhesions, while the central part is physically attached to the nucleus and nuclear lamina through the linker of nucleoskeleton and cytoskeleton (LINC) complex. Here, we discuss recent work that provides new insights into the mechanism of assembly and the function of these actin stress fibers that directly link extracellular matrix and focal adhesions with the nuclear envelope.  相似文献   

18.
Phalloidin, applied by microinjection into Amoeba proteus inhibits specifically, in a concentration dependent manner, the process of cytoplasmic streaming. Preliminary ultrastructural analysis of phalloidin-injected amoebas shows that extensive arrays of microfilaments are formed. These results are discussed in relation to the specific interaction of phalloidin with actin known to occur in vitro, which involve promotion of actin polymerization and stabilization of F-actin structures.  相似文献   

19.
Summary Candida tropicalis is a dimorphic yeast capable of growing both as a budding yeast and as filamentous hyphae depending upon the source of the carbon used in the culture medium. The organization of F-actin during growth of the yeast form (Y-form) and the hyphal form (H-form) was visualized by rhodamine-conjugated phalloidin by using a conventional fluorescence microscope as well as a laser scanning confocal fluorescence microscope. In single cells without a bud or non-growing hyphae, actin dots were evenly distributed throughout the cytoplasm. Before the growth of the bud or hypha, the actin dots were concentrated at one site. During bud growth, actin dots were located solely in the bud. They filled the small bud and then filled the apical two-thirds of the cytoplasm of the middlesized bud. During growth of the large bud, actin dots which had filled the apical half of the cytoplasm gradually moved to the tip of the bud. In the formation of the septum, actin dots were arranged in two lines at the conjunction of the bud and the mother cell. During hyphal growth, the majority of actin dots were concentrated at the hyphal apex. A line of clustered spots or a band of actin was observed only at the site where the formation of a new septum was imminent. This spatial and temporal organization of actin in both categories of cells was demonstrated to be closely related to the growth and local deposition of new cell wall material by monitoring the mode of growth with Calcofluor staining. Treatment of both forms of cells with cytochalasin A (CA) confirmed the close relationship between actin and new cell wall deposition. CA treatment revealed lightly stained unlocalized actin which was associated with abnormal cell wall deposition as well as changes in morphology. These results suggest that actin is required for proper growth and proper deposition of cell wall material and also for maintaining the morphology of both forms of cells.Abbrevations FM fluorescence microscopy - EM electron microscopy - rh rhodamine - CA cytochalasin A - CD cytochalasin D - PBS phosphate-buffered saline - DMSO dimethylsulfoxide - GA glutaraldehyde  相似文献   

20.
Isolated fragments produced by bisection of Amoeba proteus differ by their position in the original cell and by the presence or absence of the cell nucleus. Immediately after the operation, both types of anterior fragments preserve the former motory polarity, and do not interrupt locomotion. In the same time, all posterior fragments stop, round up and fail to react stimuli. In the second phase of experiment, these anterior fragments, which had no nucleus ceased to move, whereas the nucleated posterior ones resumed locomotion. It was demonstrated, that the behaviour of a fragment is primarily determined by the peripheral F-actin distribution, which is different depending on the origin of the fragment either from the anterior or from the posterior cell region. Later, the "inherited" F-actin distribution may be stabilized or reorganized in the presence of the nucleus, or desorganized in its absence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号