首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
SYNOPSIS. The life cycle of the true slime mold Physarum polycephalum includes 2 vegetative stages: the multinucleate coenocytic plasmodium and the uninucleate amoeba. A clone of amoebae established from a single spore does not normally yield plasmodia. Plasmodia are formed when amoebae from particular clones are mixed; thus plasmodium formation is said to be controlled by a ‘mating-type’ system. Previous work by the author with a sample of P. polycephalum derived from a single source revealed that 2 mating types were present and were determined by a pair of alleles at 1 locus. The present paper reveals the presence of 2 more mating types in a sample of P. polycephalum derived from a different source and provides evidence that these are determined by 2 alleles at the same locus as the other 2. Evidence for the presence of other inherited factors affecting plasmodium formation, the mode of action of these factors and possible explanations for the occurrence of plasmodia in single-spore cultures are also discussed.  相似文献   

2.
During the life cycle of Physarum polycephalum, uninucleate amoebae develop into multinucleate syncytial plasmodia. These two cell types differ greatly in cellular organisation, behaviour and gene expression. Classical genetic analysis has identified the mating-type gene, matA, as the key gene controlling the initiation of plasmodium development, but nothing is known about the molecular events controlled by matA. In order to identify genes involved in regulating plasmodium formation, we constructed a subtracted cDNA library from cells undergoing development. Three genes that have their highest levels of expression during plasmodium development were identified: redA, redB (regulated in development) and mynD (myosin). Both redA and redB are single-copy genes and are not members of gene families. Although redA has no significant sequence similarities to known genes, redB has sequence similarity to invertebrate sarcoplasmic calcium-binding proteins. The mynD gene is closely related to type II myosin heavy-chain genes from many organisms and is one of a family of type II myosin genes in P. polycephalum. Our results indicate that many more red genes remain to be identified, some of which may play key roles in controlling plasmodium formation. Received: 21 June 1999 / Accepted: 17 August 1999  相似文献   

3.
Summary Strain CL ofPhysarum polycephalum forms multinucleate plasmodia within clones of uninucleate amoebae. The plasmodia have the same nuclear DNA content as the amoebae. Analysis of plasmodial development, using time-lapse cinematography, showed that binucleate cells were formed as a result of nuclear division in uninucleate cells. Binucleate cells developed into plasmodia by further nuclear divisions and cell fusions. No fusions involving uninucleate cells were observed. A temporary increase in cell and nuclear size occurred at the time of binucleate cell formation.  相似文献   

4.
Summary In strain CL ofPhysarum polycephalum, multinucleate, haploid plasmodia form within clones of uninucleate, haploid amoebae. Analysis of plasmodium development, using time-lapse cinematography, shows that binucleate cells arise from uninucleate cells, by mitosis without cytokinesis. Either one or both daughter cells, from an apparently normal amoebal division, can enter an extended cell cycle (28.7 hours compared to the 11.8 hours for vegetative amoebae) that ends in the formation of a binucleate cell. This long cycle is accompanied by extra growth; cells that become binucleate are twice as big as amoebae at the time of mitosis. Nuclear size also increases during the extended cell cycle: flow cytometric analysis indicates that this is not associated with an increase over the haploid DNA content. During the extended cell cycle uninucleate cells lose the ability to transform into flagellated cells and also become irreversibly committed to plasmodium development. It is shown that commitment occurs a maximum of 13.5 hours before binucleate cell formation and that loss of ability to flagellate precedes commitment by 3–5 hours. Plasmodia develop from binucleate cells by cell fusions and synchronous mitoses without cytokinesis.Abbreviations CL Colonia Leicester - DSDM Dilute semi-defined medium - FKB Formalin killed bacterial suspension - IMT Intermitotic time - LIA Liver infusion agar - SBS Standard bacterial suspension - SDM Semi-defined medium  相似文献   

5.
6.
Summary Amoebae of strain CLof Physarum polycephalum undergo apogamic development to form multinucleate plasmodia. During the amoebalplasmodial transition, large uninucleate cells become irreversibly committed to plasmodium development. In developing cultures, amoebae lose the ability to flagellate before they become committed. Enriched suspensions of committed cells can be obtained by inducing asynchronous differentiating cultures to flagellate and passing the cells through a glass bead column. Committed cells can be cultured to form plasmodia on bacterial lawns or in axenic liquid medium but cannot be cultured on axenic agar medium. Uninucleate committed cells express tubulin isotypes characteristic of amoebae, but after culture in axenic liquid medium, the cells express plasmodial specific tubulin isotypes.Abbrevations SDM Semi-defined medium - DSDM Dilute semidefined medium - LIA Liver infusion agar - SBS Standard bacterial suspension - IEF Isoelectric focussing - SDS Sodium dodecyl sulphate - PAUF Precommitted amoebae unable to flagellate (for the explanation of these cells see text).  相似文献   

7.
In the acellular slime mold, Physarum polycephalum, the differentiation of amoebae into plasmodia is controlled by a mating type locus, mt. Amoebae carrying heterothallic alleles usually do not differentiate within clones; plasmodia form when two amoebae carrying different alleles fuse and undergo karyogamy. In this paper, we show that amoebae heterozygous for heterothallic alleles can be isolated and maintained as amoebae; the amoebae form plasmodia in clones without a change in ploidy. Plasmodia were also found to be formed, infrequently, by heterothallic amoebae of a single mating type. The plasmodia are healthy and are also formed without a change in ploidy. Thus, the presence of two different heterothallic mating type genes in a single nucleus is compatible with the amoebal state and one heterothallic mating type gene is compatible with the plasmodial state, once established.  相似文献   

8.
Mating inPhysarum polycephalum involves the fusion of two haploid amoebae and the differentiation of the resulting diploid zygote into a multinucleate plasmodium. Mating proceeds optimally with amoebae growing on an agar medium at pH 5.0. At pH 6.2, the amoebae still grow normally, but mating is completely blocked. The barrier at pH 6.2 is not in the differentiation step, since preformed diploids readily convert to plasmodia at this pH. The barrier can be overcome by raising the ionic strength of the agar medium; the effect, moreover, is not ion-specific. We have discovered a genetic locus,imz (ionicmodulation of zygote formation), that affects the upper pH limit for mating; the respective limits associated with the two known alleles,imz-1 andimz-2, are pH 5.6 and pH 6.0 at low ionic strength. Animz-1×imz-2 mating displays the pH 6.0 limit;imz-2 is therefore “dominant”. We suggest that this new gene affects a cell component that is exposed to the exterior of the amoeba and is involved in the fusion step of mating.  相似文献   

9.
10.
Time-lapse cinematography and immunofluorescence microscopy were used to study cellular events during amoebal fusions and sexual plasmodium development in Physarum polycephalum. Amoebal fusions occurred frequently in mixtures of strains heteroallelic or homoallelic for the mating-type locus matA, but plasmodia developed only in the matA-heteroallelic cultures. These observations confirmed that matA controls development of fusion cells rather than cell fusion. Analysis of cell pedigrees showed that, in both types of culture, amoebae fused at any stage of the cell cycle except mitosis. In matA-heteroallelic fusion cells, nuclear fusion occurred in interphase about 2 h after cell fusion; interphase nuclear fusion did not occur in matA-homoallelic fusion cells. The diploid zygote, formed by nuclear fusion in matA-heteroallelic fusion cells, entered an extended period of cell growth which ended in the formation of a binucleate plasmodium by mitosis without cytokinesis. In contrast, no extension to the cell cycle was observed in matA-homoallelic fusion cells and mitosis was always accompanied by cytokinesis. In matA-homoallelic cultures, many of the binucleate fusion cells split apart without mitosis, regenerating pairs of uninucleate amoebae; in the remaining fusion cells, the nuclei entered mitosis synchronously and spindle fusion sometimes occurred, giving rise to a variety of products. Immunofluorescence microscopy showed that matA-heteroallelic fusion cells possessed two amoebal microtubule organizing centres, and that most zygotes possessed only one; amoebal microtubule organization was lost gradually over several cell cycles. In matA-homoallelic cultures, all the cells retained amoebal microtubule organization.  相似文献   

11.
Summary Methods are described for the isolation and testing of temperature-sensitive plasmodial strains of Physarum polycephalum. Nineteen temperature-sensitive strains were found by screening plasmodia derived from mutagenised amoebae and the properties of these are described. A scheme is outlined for the detection of specific mitotic cycle lesions amongst temperature-sensitive strains, and the properties of a presumptive mitotic cycle mutant are described.  相似文献   

12.
In Physarum, microscopic uninucleate amoebae develop into macroscopic multinucleate plasmodia. In the mutant strain, RA614, plasmodium development is blocked. RA614 carries a recessive mutation (npfL1) in a gene that functions in sexual as well as apogamic development. In npfL+ apogamic development, binucleate cells arise from uninucleate cells by mitosis without cytokinesis at the end of an extended cell cycle. In npfL1 cultures, apogamic development became abnormal at the end of the extended cell cycle. The cells developed a characteristic rounded, vacuolated appearance, nuclear fusion and vigorous cytoplasmic motion occurred, and the cells eventually died. Nuclei were not visible by phase-contrast microscopy in most of the abnormally developing cells, but fluorescence microscopy after DAPI staining revealed intensely staining, condensed nuclei without nucleoli. Studies of tubulin organization during npfL1 development indicated a high frequency of abnormal mitotic spindles and, in some interphase cells, abnormally thick microtubules. Some of these features were observed at low frequency in the parental npfL+ strain and may represent a pathway of cell death, resembling apoptosis, that may be triggered in more than one way. Nuclear fusion occurred during interphase and mitosis in npfL1 cells, and multipolar spindles were also observed. None of these features were observed in npfL+ cells, suggesting that a specific effect of the npfL1 mutation may be an incomplete alteration of nuclear structure from the amoebal to the plasmodial state.  相似文献   

13.
During its life cycle, the amoebozoon Physarum polycephalum forms multinucleate plasmodial cells that can grow to macroscopic size while maintaining a naturally synchronous population of nuclei. Sporulation‐competent plasmodia were stimulated through photoactivation of the phytochrome photoreceptor and the expression of sporulation marker genes was analyzed quantitatively by repeatedly taking samples of the same plasmodial cell at successive time points after the stimulus pulse. Principal component analysis of the gene expression data revealed that plasmodial cells take different trajectories leading to cell fate decision and differentiation and suggested that averaging over individual cells is inappropriate. Queries for genes with pairwise correlated expression kinetics revealed qualitatively different patterns of co‐regulation, indicating that alternative programs of differential regulation are operational in individual plasmodial cells. At the single cell level, the response to stimulation of a non‐sporulating mutant was qualitatively different as compared to the wild type with respect to the differentially regulated genes and their patterns of co‐regulation. The observation of individual differences during commitment and differentiation supports the concept of a Waddington‐type quasipotential landscape for the regulatory control of cell differentiation. Comparison of wild type and sporulation mutant data further supports the idea that mutations may impact the topology of this landscape.  相似文献   

14.
SYNOPSIS. Studies comparing mitosis in amoebae and plasmodia of the true slime mold Didymium nigripes reveal that at the time of differentiation pronounced changes occur in the mitotic process. Not only does the amount of time required for division of the 2 stages differ, but plasmodial mitosis is characterized by persistence of the nuclear membrane and the apparent lack of centrioles. The origin of multinucleate plasmodia from uninucleate cells which have already undergone cytoplasmic differentiation is described. Division time in a population of amoebae becomes more uniform after those cells which are destined to form plasmodia have differentiated.
The observations and data presented indicated that differences in mitotic behavior also occur between amoebae of 3 stocks with differences in plasmodial structure and behavior. Comparison of mitosis in the plasmodia of these 3 stocks revealed no significant differences.  相似文献   

15.
Physarum displays two vegetative cell types, uninucleate myxamoebae and multinucleate plasmodia. Mutant myxamoebae of Physarum resistant to the antitubulin drug methylbenzimidazole-2-yl-carbamate (MBC) were isolated. All mutants tested were cross-resistant to other benzimidazoles but not to cycloheximide or emetine. Genetic analysis showed that mutation to MBC resistance can occur at any one of four unlinked loci, benA, benB, benC or benD. MBC resistance of benB and benD mutants was expressed in plasmodia, but benA and benC mutant plasmodia were MBC sensitive, suggesting that benA and benC encode myxamoeba-specific products. Myxamoebae carrying the recessive benD210 mutation express a β-tubulin with noval electrophoretic mobility, in addition to a β-tubulin with wild-type mobility. This and other evidence indicates that benD is a structural gene for β-tubulin, and that at least two β-tubulin genes are expressed in myxamoebae. Comparisons of the β-tubulins of wildtype and benD210 strains by gel electrophoresis revealed that, of the three (or more) β-tubulin genes expressed in Physarum, one, benD, is expressed in both myxamoebae and plasmodia, one is expressed specifically in myxamoebae and one is expressed specifically in plasmodia. However, mutation in only one gene, benD, is sufficient to confer MBC resistance on both myxamoebae and plasmodia.  相似文献   

16.
Messenger RNA levels of three ras-family genes (Ppras1, Ppras2, and Pprap1) were measured in different life forms and throughout the cell cycle of the slime mold Physarum polycephalum. All three genes are expressed at constant rates in the uninucleate amoebae and flagellates, regardless of the culture conditions (solid or liquid medium, particulate or dissolved nutrients). In the multinucleate stages (micro- and macroplasmodia) Ppras1 and Pprap1 mRNAs are somewhat less abundant, while Ppras2 is not expressed at all. The early stages of the amoeba-plasmodium transition proceed without any drop in Ppras2 expression. During the synchronous cell cycle in macroplasmodia Ppras1 and Pprap1 are expressed at a constant level.  相似文献   

17.
Genetic and cytochemical investigations of the origin, development, nuclear activity, and ploidy level of Plasmodia obtained from selfed clones S-2 and B1P-33 of the heterothallic myxomycete, Didymium iridis, are presented. To demonstrate that selfing did not result from contamination of the clones, or mutations at the mating-type locus, crosses were made between F1 clones and clones of known mating types. The data were inconsistent with these two possibilities. DNA was quantified by Feulgen-DNA microspectrophotometry. All cellular phases studied (logarithmic amoebae, swarmers, and encysted amoebae) appear to be haploid, with the nuclear DNA being in the replicated (2C) state. The plasmodia are in all cases diploid; however, the data indicate that the selfed Plasmodia are in an extended G1 condition. The nuclear DNA content of these is therefore 2C, whereas that of the cross Plasmodium is 4C. Sporangial nuclei exhibit DNA in diploid replicated (4C) category.  相似文献   

18.
Plasmodia are giant, multinucleate single cells which develop from mononucleate amoebae during the developmental cycle of Physarum polycephalum. In visible light, starving plasmodia lose their unlimited replicative potential and terminally differentiate into fruiting bodies (sporulation). Aiming at genetic dissection of the circuits controlling commitment and differentiation, we worked out a standardized procedure for the generation and screening of plasmodial mutants altered in sporulation by mutagenesis with ethylnitrosourea. To obtain a homogeneous population of cells of those strains which cannot grow axenically, we describe a protocol for preparing a suspension of flagellates to be used as starting material for mutagenesis. Flagellates can transform into plasmodia via the amoebal stage. Pilot phenotypic screening yielded plasmodial mutants altered in the photocontrol of sporulation or with disturbed developmental program. The existence of mutants with a disturbed developmental program indicates that the sequence and synchrony of morphogenetic steps of fruiting body formation can be uncoupled through mutation. Complementation testing by plasmodial fusion identified three complementation groups of non-sporulating mutants. The work described provides an experimental basis for performing mass screens for Physarum mutants altered in sporulation.  相似文献   

19.
Summary A replica plating method for isolating ts amoebal mutants of Physarum polycephalum has been devised. Temperature-sensitive mutations occur at a frequency after nitrosoguanidine mutagenesis of 10-3 per survivor, are stable but are not usually expressed in the plasmodia formed from these amoebae in clones. Some of these mutants appear to be cell-cycle stage specific.  相似文献   

20.
Cultures of amoebae of the mutant strain ATS23 isolated from strain CLd of Physarum polycephalum contain multinucleate cells and cells with increased nuclear DNA content. Plasmodia derived from ATS23 clones show abnormal morphology and defective sporulation. All abnormalities are enhanced by high incubation temperature (31 °C). Genetic analysis suggested that all the abnormalities were caused by a single mutation, denoted hts-23. The kinetics of plasmodium formation were followed in cultures of apogamic amoebae carrying hts-23 and hts+ (wild type) respectively. Results indicated that, relative to wild type, hts-23 did not increase the rate of plasmodium formation. There was evidence that, in both mutant and wild-type strains, commitment to plasmodium development occurred in uninucleate cells. Analysis of cell pedigrees by time-lapse cinematography indicated that the primary abnormal event in cultures of hts-23 amoebae was failure of cytokinesis; an apparently complete cleavage furrow was formed but cell separation failed, resulting in a binucleate cell. This event occurred randomly in pedigrees in which the majority of divisions were completed normally; its frequency increased during incubation at 31 °C. All other abnormalities in hts-23 amoebal cultures could be attributed to this primary event, assuming that DNA synthesis continued in the absence of cytokinesis and that the binucleate cells underwent the amoebal type of “open” mitosis, allowing the possibility of spindle fusion. This implies that the acquisition of “closed” mitosis is an essential early step in plasmodium development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号