首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experimental data suggest that atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) act locally as antifibrotic factors in heart. We investigated the interrelationships of natriuretic peptides and collagen markers in 93 patients receiving thrombolytic treatment for their first acute myocardial infarction (AMI). Collagen formation following AMI, evaluated as serum levels of amino terminal propeptide of type III procollagen, correlated with NH(2)-terminal proANP (r = 0.45, P < 0.001), BNP (r = 0.55, P < 0.001) and NH(2)-terminal proBNP (r = 0.50, P < 0.01) on day 4 after thrombolysis. Levels of intact amino terminal propeptide of type I procollagen decreased by 34% (P < 0.001), and levels of carboxy terminal cross-linked telopeptide of type I collagen (ICTP) increased by 65% (P < 0.001). ICTP levels correlated with NH(2)-terminal proBNP (r = 0.25, P < 0.05) and BNP (r = 0.28, P < 0.05) on day 4. Our results suggest that ANP and BNP may act as regulators of collagen scar formation and left ventricular remodeling after AMI in humans. Furthermore, degradation of type I collagen is increased after AMI and may be regulated by BNP.  相似文献   

2.
In addition to cardiac myocyte hypertrophy, proliferation and increased extracellular matrix production of cardiac fibroblasts occur in response to cardiac overload. This remodeling of the cardiac interstitium is a major determinant of pathologic hypertrophy leading to ventricular dysfunction and heart failure. Atrial and brain natriuretic peptides (ANP and BNP) are cardiac hormones produced primarily by the atrium and ventricle, respectively. Plasma ANP and BNP concentrations are elevated in patients with hypertension, cardiac hypertrophy, and acute myocardial infarction, suggesting their pathophysiologic roles in these disorders. ANP and BNP exhibit diuretic, natriuretic, and vasodilatory activities via a guanylyl cyclase-coupled natriuretic peptide receptor subtype (guanylyl cyclase-A or GC-A). Here we report the generation of mice with targeted disruption of BNP (BNP-/- mice). We observed focal fibrotic lesions in ventricles from BNP-/- mice with a remarkable increase in ventricular mRNA expression of ANP, angiotensin converting enzyme (ACE), transforming growth factor (TGF)-beta3, and pro-alpha1(I) collagen [Col alpha1(I)], which are implicated in the generation and progression of ventricular fibrosis. Electron microscopic examination revealed supercontraction of sarcomeres and disorganized myofibrils in some ventricular myocytes from BNP-/- mice. No signs of cardiac hypertrophy and systemic hypertension were noted in BNP-/- mice. In response to acute cardiac pressure overload induced by aortic constriction, massive fibrotic lesions were found in all the BNP-/- mice examined, accompanied by further increase of mRNA expression of TGF-beta3 and Col alpha1(I). We postulate that BNP acts as a cardiocyte-derived antifibrotic factor in the ventricle.  相似文献   

3.

Aims

Atrial natriuretic petide (ANP), brain natriuretic peptide (BNP) and endothelin-1 (ET-1) may reflect the severity of right ventricular dysfunction (RVD) in patients with pulmonary embolism (PE). The exact nature and source of BNP, ANP and ET-1 expression and secretion following PE has not previously been studied.

Methods and Results

Polystyrene microparticles were injected to induce PE in rats. Gene expression of BNP, ANP and ET-1 were determined in the 4 cardiac chambers by quantitative real time polymerase chain reaction (QPCR). Plasma levels of ANP, BNP, ET-1 and cardiac troponin I (TNI) were measured in plasma. PE dose-dependently increased gene expression of ANP and BNP in the right ventricle (RV) and increased gene expression of ANP in the right atrium (RA). In contrast PE dose-dependently decreased BNP gene expression in both the left ventricle (LV) and the left atrium (LA). Plasma levels of BNP, TNI and ET-1 levels dose-dependently increased with the degree of PE.

Conclusion

We found a close correlation between PE degree and gene-expression of ANP, and BNP in the cardiac chambers with a selective increase in the right chambers of the heart.The present data supports the idea of natriuretic peptides as valuable biomarkers of RVD in PE.  相似文献   

4.
Cardiac fibroblasts (CFs) participate in cardiac remodeling after hypoxic cardiac damage, and remodeling is thought to be mediated by CF synthesis of brain natriuretic peptide (BNP). It is unknown whether the peroxisome proliferator-activated receptors (PPARs), which mediate cellular signaling for growth and migration, affect BNP synthesis and whether PPARs participate in regulation of extracellular matrix protein (ECM) expression for remodeling. We examined the production of BNP in cultured neonatal ventricular CFs and its signaling system on collagen synthesis and on activation of matrix metalloproteinases (MMPs) in reoxygenation after hypoxia. BNP mRNA was detected in CFs, and a specific BNP protein, BNP1-32, was secreted into the media. Abundance of collagen I and III was increased in the media at reoxygenation. mRNA and protein levels for MMP-2 and the tissue inhibitor of metalloproteinase (TIMP)-1 were enhanced in CFs at reoxygenation. These observations also were noted in CFs after incubation with angiotensin II (10 μM) for 24 h. Pretreatment with pioglitaozone (0.1–10 μM) attenuated BNP mRNA and protein abundance of collagen III, MMP-2, and TIMP-1 in CFs at reoxygenation. The secreted BNP was also decreased by pioglitaozone in the media. Furthermore, PPAR activators inhibited reoxygenation-induced activation of nuclear factor (NF)-kB. These results demonstrate that PPAR activators inhibit BNP synthesis in CFs and imply that PPAR activators may regulate ECM remodeling partially through the NF-kB-mediated pathway.  相似文献   

5.
Atrial natriuretic peptide (ANP) was recently shown to promote triacylglycerol hydrolysis in human white adipocytes both in vitro and in vivo through a cGMP-dependent pathway. The ANP-stimulated lipolytic effect is known to be specific to primates. In this study, we compared the lipolytic effect of different natriuretic peptides obtained from several species, including ANP from human, rat, chicken, frog, and eel, brain natriuretic peptide (BNP) from porcine and rat, C-type natriuretic peptide (CNP) from human, chicken, and frog, Dendroaspis natriuretic peptide (DNP), urodilatin, and des-[Gln18, Ser19, Gly20, Leu21, Gly22]-ANP (C-ANP), on human and rat adipocytes. We also compared the amount of intracellular cGMP produced in both human and rat adipocytes that were treated with natriuretic peptides. Among these NPs, rat ANP, as well as porcine and rat BNP, DNP and urodilatin showed the ability to elevate intracellular cGMP and to stimulate lipolysis as human ANP. No natriuretic peptide showed the ability to stimulate lipolysis in rat adipocytes, though some of them induced significant elevation of intracelluar cGMP concentrations. These results suggest that ANP and BNP from species close to human have the ability to induce lipolysis in human adipocytes. Jiahua Yu and Yeon Jun Jeong contributed equally.  相似文献   

6.
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are cardiac hormones that regulate blood pressure and volume, and exert their biological actions via the natriuretic peptide receptor-A gene (Npr1). Mice lacking Npr1 (Npr(-/-)) have marked cardiac hypertrophy and fibrosis disproportionate to their increased blood pressure. This study examined the relationships between ANP and BNP gene expression, immunoreactivity and fibrosis in cardiac tissue, circulating ANP levels, and ANP and BNP mRNA during embryogenesis in Npr1(-/-) mice. Disruption of the Npr1 signaling pathway resulted in augmented ANP and BNP gene and ANP protein expression in the cardiac ventricles, most pronounced for ANP mRNA in females [414 +/- 57 in Npr1(-/-) ng/mg and 124 +/- 25 ng/mg in wild-type (WT) by Taqman assay, P < 0.001]. This increased expression was highly correlated to the degree of cardiac hypertrophy and was localized to the left ventricle (LV) inner free wall and to areas of ventricular fibrosis. In contrast, plasma ANP was significantly greater than WT in male but not female Npr1(-/-) mice. Increased ANP and BNP gene expression was observed in Npr1(-/-) embryos from 16 days of gestation. Our study suggests that cardiac ventricular expression of ANP and BNP is more closely associated with local hypertrophy and fibrosis than either systemic blood pressure or circulating ANP levels.  相似文献   

7.
1. The cardiac responses of isolated frog (Rana tigrina) atria to peptide hormones were studied.2. Calcitonin gene-related peptide (CGRP), arginine vasotocin (AVT), bovine parathyroid hormone fragment (bPTH-(1–34)) and oxytocin (OXY) produced dose-related positive chronotropic and inotropic responses; atrial natriuretic peptide (ANP) was negative chronotropic and inotropic; cholecystokinin (CCK), vasoactive intestinal peptide (VIP) were without effects.3. The dose-related responses under bPTH-(1–34) stimulation but not CGRP or AVT were attenuated in the presence of ANP (300 ng/ml, ≈0.98 × 10−7 M). As expected ANP decreased the basal AR and AT responses of the isolated atria and the inhibitory effects were dose-dependent.4. As shown previously, propranolol blocked the atrial tension stimulated by bPTH (1–34) but did not alter the cardiac responses to CGRP and AVT.5. In the presence of β-adrenergic blocker (propranolol 10−7M) or ANP (10−7M), the AR and AT changes under ISO stimulation in the frog were also decreased.6. These cardiac changes suggest the cardiac inhibitory effects of ANP are related to β-adrenoceptor activity and ANP might be a β antagonist.  相似文献   

8.
Summary We examined the distribution of binding sites for alpha-atrial natriuretic peptide (125I-ANP1–28) and the recently discovered porcine brain natriuretic peptide (125I-pBNP) on immunocytochemically identified cells in dissociated culture preparations of the rat trachea. Specific binding sites for both 125I-ANP1–28 and 125I-pBNP were evenly distributed over distinet subpopulations of smooth muscle myosin-like immunoreactive muscle cells, fibronectin-like immunoreactive fibroblasts and S-100-like immunoreactive glial cells. Neither keratin-like immunoreactive epithelial cells nor protein gene product 9.5-like immunoreactive paratracheal neurones expressed natriuretic peptide binding sites, although autoradiographically labelled glial cells were seen in close association with both neuronal cell bodies and neurites. The binding of each radiolabelled peptide was abolished by the inclusion of either excess (1 M) unlabelled rat ANP or excess unlabelled porcine BNP, suggesting that ANP and BNP share binding sites in the trachea. Furthermore, the ring-deleted analogue, Des-[Gln18, Ser19, Gly20, Leu21, Gly22]-ANF4–23-NH2, strongly competed for specific 125I-ANP1–28 and 125I-pBNP binding sites in the tracheal cultures; this suggests that virtually all binding sites were of the clearance (ANP-C or ANF-R2) receptor subtype.  相似文献   

9.
Both atrial (ANP) and brain (BNP) natriuretic peptide affect development of cardiac hypertrophy and fibrosis via binding to natriuretic peptide receptor (NPR)-A in the heart. A putative clearance receptor, NPR-C, is believed to regulate cardiac levels of ANP and BNP. The renin-angiotensin system also affects cardiac hypertrophy and fibrosis. In this study we examined the expression of genes for the NPRs in rats with pressure-overload cardiac hypertrophy. The ANG II type 1 receptor was blocked with losartan (10 mg.kg(-1).day(-1)) to investigate a possible role of the renin-angiotensin system in regulation of natriuretic peptide and NPR gene expression. The ascending aorta was banded in 84 rats during Hypnorm/Dormicum-isoflurane anesthesia; after 4 wk the rats were randomized to treatment with losartan or placebo. The left ventricle of the heart was removed 1, 2, or 4 wk later. Aortic banding increased left ventricular expression of NPR-A and NPR-C mRNA by 110% (P < 0.001) and 520% (P < 0.01), respectively, after 8 wk; as expected, it also increased the expression of ANP and BNP mRNAs. Losartan induced a slight reduction of left ventricular weight but did not affect the expression of mRNAs for the natriuretic peptides or their receptors. Although increased gene expression does not necessarily convey a higher concentration of the protein, the data suggest that pressure overload is accompanied by upregulation of not only ANP and BNP but also their receptors NPR-A and NPR-C in the left ventricle.  相似文献   

10.
Cardiac fibroblasts (CFs) regulate myocardial remodeling by proliferating, differentiating, and secreting extracellular matrix (ECM) proteins. B‐type natriuretic peptide (BNP) is anti‐fibrotic, inhibits collagen production, augments matrix metalloproteinases, and suppresses CF proliferation. Recently, we demonstrated that the ECM protein fibronectin (FN) augmented production of BNP's second messenger, 3′, 5′ cyclic guanosine monophosphate (cGMP) in CFs, supporting crosstalk between FN, BNP, and its receptor, natriuretic peptide receptor A (NPR‐A). Here, we address the specificity of FN to augment cGMP generation by investigating other matrix proteins, including collagen IV which contains RGD motifs and collagen I and poly‐L ‐lysine, which have no RGD domain. Collagen IV showed increased cGMP generation to BNP similar to FN. Collagen I and poly‐L ‐lysine had no effect. As FN also interacts with integrins, we then examined the effect of integrin receptor antibody blockade on BNP‐mediated cGMP production. On FN plates, antibodies blocking RGD‐binding domains of several integrin subtypes had little effect, while a non‐RGD domain interfering integrin αvβ3 antibody augmented cGMP production. Further, on uncoated plates, integrin αvβ3 blockade continued to potentiate the BNP/cGMP response. These studies suggest that both RGD containing ECM proteins and integrins may interact with BNP/NPR‐A to modulate cGMP generation. J. Cell. Physiol. 225: 251–255, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

11.
The aim of the study was to evaluate effects of cardiac natriuretic peptides on splanchnic circulation, especially to the pancreatic islets. Pentobarbital-anesthetized rats were infused intravenously (0.01 ml/min for 20 min) with saline, atrial natriuretic peptide (ANP; 0.25 or 0.5 microg/kg BW/min), brain natriuretic peptide (BNP; 0.5 microg/kg BW/min) or C-type natriuretic peptide (CNP; 0.5 or 2.0 microg/kg BW/min). Splanchnic blood perfusion was then measured with a microsphere technique. Mean arterial blood pressure was decreased by ANP and BNP, but not by CNP. The animals given the highest dose of ANP became markedly hypoglycemic, whilst no such effects were seen in any of the other groups of animals. Total pancreatic blood flow was decreased by the highest dose of CNP, whereas no change was seen after administration of the other peptides. Islet blood flow was increased by the highest dose of ANP. Neither BNP nor CNP affected islet blood flow. None of the natriuretic peptides influenced duodenal, colonic or arterial hepatic blood flow. It is concluded that cardiac natriuretic peptides exert only minor effects on splanchnic blood perfusion in anesthetized rats. However, islet blood perfusion may be influenced by ANP.  相似文献   

12.
In order to elucidate biosynthesis and secretion of natriuretic peptides in the early phase of acute myocardial infarction (AMI), we measured the plasma level of brain natriuretic peptide (BNP), a novel cardiac hormone secreted from the ventricle, in patients with AMI and compared with that of atrial natriuretic peptide (ANP). The plasma level of BNP increased rapidly (within hours from the onset of AMI) and markedly (greater than 100 times the normal level) as compared to that of ANP. The plasma ANP level correlated with pulmonary capillary wedge pressure (PCWP), whereas the plasma BNP level did not correlate with PCWP but highly correlated inversely with cardiac index. These results indicate that BNP is secreted from the heart much more acutely and prominently than ANP in the early phase of AMI, in association with left ventricular dysfunction.  相似文献   

13.
The natriuretic peptides (NPs), atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and C-type natriuretic peptide (CNP), have vasoactive functions that concern humans and most animals, but their specific effects on cerebral circulation are poorly understood. We therefore examined the responsiveness of cerebral arteries to different doses of the natriuretic peptides in animals and humans. We conducted a dose-response experiment in guinea pigs (in vitro) and a double-blind, three-way cross-over study in healthy volunteers (in vivo). In the animal experiment, we administered cumulative doses of NPs to pre-contracted segments of cerebral arteries. In the main study, six healthy volunteers were randomly allocated to receive two intravenous doses of ANP, BNP or CNP, respectively, over 20 min on three separate study days. We recorded blood flow velocity in the middle cerebral artery (VMCA) by transcranial Doppler. In addition, we measured temporal and radial artery diameters, headache response and plasma concentrations of the NPs. In guinea pigs, ANP and BNP but not CNP showed significant dose-dependent relaxation of cerebral arteries. In healthy humans, NP infusion had no effect on mean VMCA, and we found no difference in hemodynamic responses between the NPs. Furthermore, natriuretic peptides did not affect temporal and radial artery diameters or induce headache. In conclusion, natriuretic peptides in physiological and pharmacological doses do not affect blood flow velocity in the middle cerebral artery or dilate extracerebral arteries in healthy volunteers.  相似文献   

14.
Atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP) are cardiac hormones synthesized in and secreted from the heart. ANP and BNP bind the common receptor guanylyl cyclase-A (GC-A) and possess biological actions. Based on their diuretic, natriuretic, and vasodilating activities, they are now widely used as therapeutic agents for heart failure. Roles of endogenous ANP and BNP have been investigated using mice lacking the gene encoding GC-A. Here we describe the recent understanding of roles of GC-A in the cardiovascular system.  相似文献   

15.
Cardiac hormone atrial natriuretic peptide (ANP) and its receptor natriuretic peptide receptor-A (NPR-A) system acts as an intrinsic negative regulator of abnormal extracellular matrix (ECM) remodeling in the heart. However, the underlying mechanism by which ANP/NPR-A system opposes the ECM remodeling in the diseased heart is not well understood. Here, we investigated the anti-fibrotic mechanism of ANP/NPR-A in fibrotic agonist Angiotensin- II (ANG II)-treated adult cardiac fibroblast (CF) cells. Normal and NPR-A-suppressed adult CF cells were treated with ANG II (10?7 M) in the presence and absence of ANP (10?8 M) for 24 h. Total collagen concentration, activity and expression of MMP-2 and MMP-9, and nuclear translocation of Nuclear factor-kappaB (NF-κB-p50) were studied. NPR-A-suppressed adult CF cells exhibited a more pronounced increase in collagen production, ROS generation, and NF-κB-p50 nuclear translocation as compared to adult CF cells treated with agonist alone. ANP co-treatment significantly reverses the agonist-induced above changes in normal adult CF cells, while it failed to reverse the agonist-induced collagen synthesis in the NPR-A-suppressed adult CF cells. The cGMP analog (8-bromo-cGMP) treatment significantly attenuated the agonist-induced collagen synthesis both in normal and NPR-A-suppressed adult cells. The results of this study suggest that ANP/NPR-A signaling system antagonizes the agonist-induced collagen synthesis via suppressing the activities of MMP-2, MMP-9, ROS generation, and NF-κB nuclear translocation mechanism.  相似文献   

16.
Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are cardiac hormones that are involved in water and electrolyte homeostasis in heart failure. Although both hormones exert almost identical biological actions, the differential regulation of cardiac ANP and BNP mRNA in compensated and overt heart failure is not known. To study the hypothesis that cardiac BNP is more specifically induced in overt heart failure, a large aortocaval shunt of 30 days duration was produced in rats and compared with compensated heart failure. Compensated heart failure was induced either by a small shunt of 30 days duration or by a large shunt of 3 days duration. Both heart failure models were characterized by increased cardiac weight, which was significantly higher in the large-shunt model, and central venous pressure. Left ventricular end-diastolic pressure was elevated only in the overt heart failure group (control: 5.7 +/- 0. 7; small shunt: 8.6 +/- 0.9; large shunt 3 days: 8.5 +/- 1.7; large shunt 30 days: 15.9 +/- 2.6 mmHg; P < 0.01). ANP and BNP plasma concentrations were elevated in both heart failure models. In compensated heart failure, ANP mRNA expression was induced in both ventricles. In contrast, ventricular BNP mRNA expression was not upregulated in any of the compensated heart failure models, whereas it increased in overt heart failure (left ventricle: 359 +/- 104% of control, P < 0.001; right ventricle: 237 +/- 33%, P < 0.01). A similar pattern of mRNA regulation was observed in the atria. These data indicate that, in contrast to ANP, cardiac BNP mRNA expression might be induced specifically in overt heart failure, pointing toward the possible role of BNP as a marker of the transition from compensated to overt heart failure.  相似文献   

17.
Atrial natriuretic peptide (ANP), brain type natriuretic peptide (BNP) and C-type natriuretic peptide (CNP) comprise a family of natriuretic peptides that mediate their biological effects through three natriuretic peptide receptor subtypes, NPR-A (ANP, BNP), NPR-B (CNP) and NPR-C (ANP, BNP, CNP). Several reports have provided evidence for the expression of ANP and specific binding sites for ANP in the pancreas. The purpose of this study was to identify the ANP receptor subtype and to localize its expression to a specific cell type in the human pancreas. NPR-C immunoreactivity, but neither ANP nor NPR-A, was detected in human islets by immunofluorescent staining. No immunostaining was observed in the exocrine pancreas or ductal structures. Double-staining revealed that NPR-C was expressed mainly in the glucagon-containing alpha cells. NPR-C mRNA and protein were detected in isolated human islets by RT-PCR and Western blot analysis, respectively. NPR-C expression was also detected by immunofluorescent staining in glucagonoma but not in insulinoma. ANP, as well as BNP and CNP, stimulated glucagon secretion from perifused human islets (1,111 ± 55% vs. basal [7.3 fmol/min]; P < 0.001). This response was mimicked by cANP(4–23), a selective agonist of NPR-C. In conclusion, the NPR-C receptor is expressed in normal and neoplastic human alpha cells. These findings suggest a role for natriuretic peptides in the regulation of glucagon secretion from human alpha cells.  相似文献   

18.
19.
Hydrogen sulphide (H2S) has been shown to play a crucial role in cardiovascular physiology and disease. However, there is no information about the possible role of H2S in cardiomyocyte hypertrophy (CH). Our results showed that pretreatment with NaHS, an H2S donor, significantly reduced [3H]-leucine incorporation, cell surface area, mRNA expression of brain natriuretic peptide (BNP), intracellular reactive oxygen species (ROS), miR-21 and increased atrial natriuretic peptide (ANP) and miR-133a expression in hypertrophic cardiomyocytes. Anti-miR133a inhibitor transfection partly reduced the anti-hypertrophic effect of NaHS. In conclusion, H2S is a direct inhibitor of CH; it acts by increasing miR-133a and inhibiting the increase in intracellular ROS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号