首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Directed cell migration in tissues mediates various physiological processes and is guided by complex cellular factors such as chemoattractant gradients and electric fields. Direct current (DC) electric fields can be generated in physiological settings and the electric field guided migration of various cell types (i.e., electrotaxis) has been demonstrated both in vitro and in vivo. Although several mechanisms have been proposed for electrotaxis, there are so far very few quantitative models. Furthermore, because chemoattractant gradients and electric fields co-exist in tissues, it is important to understand how chemotaxis and electrotaxis interact for mediating cell migration and trafficking. In this study, we developed a mathematical model to investigate the role of electromigration of cell surface chemoattractant receptors in mediating electrochemical sensing and migration of cells. Our results show that electromigration of chemoattractant receptors enables cell electrotactic sensing and migration in the presence of a uniform chemoattractant field. Furthermore, in the physiologically-relevant range of receptor electromigration rates, application of electric fields overcomes chemical guiding signals for directional sensing and migration of cells in co-existing competing electric fields and chemoattractant gradients.  相似文献   

2.
Bier M 《Bioelectromagnetics》2005,26(7):595-609
The possible physiological effect of power frequency fields (60 Hz in the US, 50 Hz in most other countries) is still a hotly debated issue. These relatively slow fields distribute themselves across cell membranes and a common approach has been to compare the strength of these fields to the strength of the electric noise that the membrane generates itself through Brownian motion. However, there has been disagreement among researchers on how to evaluate the membrane electric noise. In the first part of this article three major models are discussed. In the second part an ab initio modeling of membrane electric fields finds that different manifestations of Brownian noise lead to an electric noise intensity that is many times larger than what conventional estimates have yielded. Finally, the legitimacy of gauging a nonequilibrium external signal against internal equilibrium noise is questioned.  相似文献   

3.
Exposure of a cell to an electric field results in inducement of a voltage across its membrane (induced transmembrane voltage, ΔΨ m) and, for sufficiently strong fields, in a transient increase of membrane permeability (electroporation). We review the analytical, numerical and experimental methods for determination of ΔΨ m and a method for monitoring of transmembrane transport. We then combine these methods to investigate the correlation between ΔΨ m and molecular transport through an electroporated membrane for isolated cells of regular and irregular shapes, for cells in dense suspensions as well as for cells in monolayer clusters. Our experiments on isolated cells of both regular and irregular shapes confirm the theoretical prediction that the highest absolute values of ΔΨ m are found in the membrane regions facing the electrodes and that electroporation-mediated transport is confined to these same regions. For cells in clusters, the location of transport regions implies that, at the field strengths sufficient for electroporation, the cells behave as electrically insulated (i.e., as individual) cells. In contrast, with substantially weaker, nonelectroporating fields, potentiometric measurements show that the cells in these same clusters behave as electrically interconnected cells (i.e., as one large cell). These results suggest that sufficiently high electric fields affect the intercellular pathways and thus alter the electric behavior of the cells with respect to their normal physiological state.  相似文献   

4.
Recent laboratory and epidemiological results have stimulated interest in the hypothesis that human beings may exhibit biological responses to magnetic and/or electric field transients with frequencies in the range between 100 Hz and 100 kHz. Much can be learned about the response of a system to a transient stimulation by understanding its response to sinusoidal disturbances over the entire frequency range of interest. Thus, the main effort of this paper was to compare the strengths of the electric fields induced in homogeneous ellipsoidal models by uniform 100 Hz through 100 kHz electric and magnetic fields. Over this frequency range, external electric fields of about 25–2000 V/m (depending primarily on the orientation of the body relative to the field) are required to induce electric fields inside models of adults and children that are similar in strength to those induced by an external 1 μT magnetic field. Additional analysis indicates that electric fields induced by uniform external electric and magnetic fields and by the nonuniform electric and magnetic fields produced by idealized point sources will not differ by more than a factor of two until the sources are brought close to the body. Published data on electric and magnetic field transients in residential environments indicate that, for most field orientations, the magnetic component will induce stronger electric fields inside adults and children than the electric component. This conclusion is also true for the currents induced in humans by typical levels of 60 Hz electric and magnetic fields in U.S. residences. Bioelectromagnetics 18:67–76, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
It is known that both natural and artificial electric fields (EF) affect plants physiological parameters as well as germination, growth and yield. The present article describes results of a preliminary experiment on the impact of electric field on aquatic plants biogeochemistry. The objective of the present study was the assessment of the influence exerted by the electric field on growth and trace metals content of Elodea canadensis. In a laboratory experiment plants were exposed to the field intensity of 54?kV m?1 for 7?days. The plants length was measured and the content of Fe, Mn, Ni, Pb, and Zn was determined using atomic absorption spectrometry (AAS). Results showed that the application of electric field slightly enhanced the growth of E. canadensis shoots. The content of Mn and Ni was significantly lower, and Pb and Zn significantly higher in plants exposed to the electric filed, while Fe content did not differ between control and EF treatment. This provides a rationale for further studies on biological effects of electric field in trace metal contaminated waters and application of an electrically enhanced phytoremediation.  相似文献   

6.
This study was designed to assess the neuroendocrine response of male Long-Evans rats to sustained or intermittent 60-Hz electric fields when exposed for 1 or 3 h at 100 kV/m. No significant differences were noted in corticosterone, prolactin, or thyrotropin levels between exposed and sham-exposed rats. A statistically significant increase (P less than .01) in growth hormone was noted in rats exposed to intermittent electric fields for 3 h. Emphasis was placed on good experimental design and the need to avoid standard laboratory stressors (excessive handling, temperature extremes, transportation, noise, etc.) known to be present in many biomedical studies. The importance of avoiding reactions due to extraneous factors in experiments predicated on investigating physiological function in relation to electric field exposure is discussed.  相似文献   

7.
Dietmar Prschke 《Biopolymers》1976,15(10):1917-1928
Single-stranded polynucleotides are used as model systems for the investigation of conformational changes induced by electric fields. It is demonstrated that the single-strand helix–coil transition in poly(A), poly(dA), and poly(C) can be induced by application of high electric fields. The transition is measured by UV absorbance using polarized light at an angle of 54.8° with respect to the vector of the electric field and by electrodichroism. A linear increase of the absorbance, reflecting the helix-to-coil transition, is observed at increasing field strength. When ions are added to the polymer, electric fields do not induce conformation changes, unless a threshold value of the electric field strength E0 is exceeded. At field strengths above this threshold, the degree of transition is a linear function of the increase in field strength. The threshold values E0 show a linear increase with the logarithm of the ion concentration. Bivalent ions cause thresholds at much lower ion concentrations than mo-novalent ions. The shielding efficiency of ions is correlated to the binding affinity of these ions to the polymer. The conformation changes induced by the field and the existence of thresholds can be explained on the basis of dissociation field effects. Similar threshold effects may be expected for other macromolecules as well as for membrane structures and may be important in the regulation of bioelectricity.  相似文献   

8.

Background  

Weak magnetic and electromagnetic fields can influence physiological processes in animals, plants and microorganisms, but the underlying way of perception is poorly understood. The ion cyclotron resonance is one of the discussed mechanisms, predicting biological effects for definite frequencies and intensities of electromagnetic fields possibly by affecting the physiological availability of small ions. Above all an influence on Calcium, which is crucial for many life processes, is in the focus of interest. We show that in Arabidopsis thaliana, changes in Ca2+-concentrations can be induced by combinations of magnetic and electromagnetic fields that match Ca2+-ion cyclotron resonance conditions.  相似文献   

9.
The physical mechanism by which cells transduce an applied electric field is not well understood. This article establishes for the first time a direct, quantitative model that links the field to cytoskeletal forces. In a previous article, applied electric fields of physiological strength were shown to produce significant mechanical torques at the cellular level. In this article, the corresponding forces exerted on the cytoskeleton are computed and found to be comparable in magnitude to mechanical forces known to produce physiological effects. In addition to the electrical force, the viscous drag force exerted by the surrounding medium and the restoring force exerted by the neighboring structures are considered in the analysis. For an applied electric field of 10 V/m, the force transmitted to the CD44 receptor of a hyaluronan chain in cartilage is about 1 pN at 10 Hz and 7 pN at 1 Hz. For an applied electric field of 100 V/m, the force transmitted to the cytoskeleton at one focus of the glycocalyx is about 0.5 pN at 10 Hz and 1.3 pN at 1 Hz. Mechanical forces of similar magnitude have been observed to produce physiological effects. Hence, this electromechanical transduction process is a plausible mechanism for the production of physiological effects by such electric fields. Bioelectromagnetics 31:77–84, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
Natural and anthropogenic static electric fields are commonly found in the environment and can have both beneficial and harmful effects on many animals. Here, we asked how the fruitfly responds to these fields and what the consequences of exposure are on the levels of biogenic amines in the brain. When given a choice in a Y-tube bioassay Drosophila avoided electric fields, and the greater the field strength the more likely Drosophila were to avoid it. By comparing wild-type flies, flies with wings surgically removed and vestigial winged flies we found that the presence of intact wings was necessary to produce avoidance behaviour. We also show that Coulomb forces produced by electric fields physically lift excised wings, with the smaller wings of males being raised by lower field strengths than larger female wings. An analysis of neurochemical changes in the brains showed that a suite of changes in biogenic amine levels occurs following chronic exposure. Taken together we conclude that physical movements of the wings are used by Drosophila in generating avoidance behaviour and are accompanied by changes in the levels of amines in the brain, which in turn impact on behaviour.  相似文献   

11.
Magnetic field therapy is an established technique in the treatment of pseudarthrosis. In cases of osteomylitis, palliation is also observed. This study focuses on the impact of different electric and electromagnetic fields on the growth of Staphylococcus aureus by in vitro technologies. Cultures of Staphylococcus aureus in fluid and gel‐like medium were exposed to a low‐frequency electromagnetic field, an electromagnetic field combined with an additional electric field, a sinusoidal electric field and a static electric field. In gel‐like medium no significant difference between colony‐forming units of exposed samples and non‐exposed references was detected. In contrast, Staphylococcus aureus concentrations in fluid medium could clearly be reduced under the influence of the four different applied fields within 24 h of experiment. The strongest effects were observed for the direct current electric field which could decrease CFU/ml of 37%, and the low‐frequency electromagnetic field with additional induced electric alternating field with a decrease of Staphylococci concentration by 36%. The effects of the electromagnetic treatment on Staphylococci within fluid medium are significantly higher than in gel‐like medium. The application of low‐frequency electromagnetic fields corroborates clinical situations of bone infections during magnetic field therapy. Bioelectromagnetics 30:270–279, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Surface magnetic and electric recordings were used to localize the sources of late pain-related magnetic fields and electric potentials, evoked by painful intracutaneous electric finger stimulation. We find that the source of the P90m component of the evoked magnetic field lies in the finger area of the primary somatosensory cortex; the sources of the N150m and P250m are found to reside in the frontal operculum. These findings are unexpected from the evoked electric potential data, which suggest a central location for these sources. We also note that the interpretation of the electric data was confounded by the presence of an alpha-like oscillation, which overlapped many components of the evoked potential.  相似文献   

13.
There are many experiments showing that weak, non-thermal electric fields influence living tissues. In many cases, biological effects display 'windows' in biologically effective parameters of electric fields: most dramatic is the fact that relatively intense electric fields sometimes do not cause appreciable effect, while smaller fields do. Linear resonant physical processes do not explain frequency windows in this case. Both frequency and amplitude windows are evident from experiments on human dermal fibroblasts in a collagen matrix. For this in vitro model of skin, exposure to extremely low frequency (ELF) electric fields in the frequency range 10-100 Hz and the amplitude range of 0-130 microA/cm(2) macroscopic current density demonstrates such unusual 'window' behavior. Amplitude window phenomena suggest a non-linear physical mechanism. We consider non-linear quantum-interference effects on protein-bound substrate ions: These ions experience, due to electric fields in the media or biological tissue as small as 1 mV/m, electric gradients produced by polarized binding ligand atomic shells. The electric gradients cause an interference of ion quantum states. This ion-interference mechanism predicts specific electric-field frequency and amplitude windows within which fibroblast proliferation occurs.  相似文献   

14.
Summary The biotic and abiotic electric phenomena in the habitat of the electrosensitive catfish,Ictalurus nebulosus LeS were investigated. Fish, insect larvae, tadpoles and snails proved to possess electric fields that can be described as stationary fields of the dipole type, upon which fluctuations, due to respiration or other movements, are superimposed. The frequency components of these fields fall within the DC to 10 Hz range, whereas the potential gradients are in the order of magnitude of 10 mV/m. The maximal potential differences found were several millivolts. These measurements were carried out in tap water with a specific resistance = 20 · m. Further, hydroelectric fields were measured in some find-localities ofIctalurus. Potential gradients up to 15 mV/m have been recorded in water with a specific resistance = 110 · m. These fields proved to be stationary, fairly constant in direction and strength, and strongly dependent on the structure of the bottom of the pool and the depth of the water. The possible significance of these biotic and abiotic fields toIctalurus is discussed.  相似文献   

15.
Elucidating biological processes has relied on the establishment of model organisms, many of which offer advantageous features such as rapid axenic growth, extensive knowledge of their physiological features and gene content, and the ease with which they can be genetically manipulated. The unicellular green alga Chlamydomonas reinhardtii has been an exemplary model that has enabled many scientific breakthroughs over the decades, especially in the fields of photosynthesis, cilia function and biogenesis, and the acclimation of photosynthetic organisms to their environment. Here, we discuss recent molecular/technological advances that have been applied to C. reinhardtii and how they have further fostered its development as a “flagship” algal system. We also explore the future promise of this alga in leveraging advances in the fields of genomics, proteomics, imaging, and synthetic biology for addressing critical future biological issues.  相似文献   

16.
Systemic treatment of biomaterial‐associated bacterial infections with high doses of antibiotics is an established therapeutic concept. The purpose of this in vitro study was to determine the influence of magnetic, electromagnetic, and electric fields on gentamicin‐based, antibiotic therapy. It has been previously reported that these fields are successful in the treatment of bone healing and reducing osteitis in infected tibia‐pseudarthroses. Four separate experimental setups were used to expose bacterial cultures of Staphylococcus aureus both in Mueller‐Hinton broth (MHB) and on Mueller‐Hinton agar (MHA), in the presence of gentamicin, to (1) a low‐frequency magnetic field (MF) 20 Hz, 5 mT; (2) a low‐frequency MF combined with an additional alternating electric field (MF + EF) 20 Hz, 5 mT, 470 mV/cm; (3) a sinusoidal alternating electric field (EF AC) 20 Hz, 470 mV/cm; and (4) a direct current electric field (EF DC) 588 mV/cm. No significant difference between samples and controls was detected on MHA. However, in MHB each of the four fields applied showed a significant growth reduction of planktonically grown Staphylococcus aureus in the presence of gentamicin between 32% and 91% within 24 h of the experiment. The best results were obtained by a direct current EF, decreasing colony‐forming units (CFU)/ml more than 91%. The application of electromagnetic fields in the area of implant and bone infections could offer new perspectives in antibiotic treatment and antimicrobial chemotherapy. Bioelectromagnetics 32:367–377, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

17.
ABSTRACT: Super-macromolecular complexes play many important roles in eukaryotic cells. Classical structural biological studies focus on their complicated molecular structures, physical interactions and biochemical modifications. Recent advances concerning intracellular electric fields generated by cell organelles and super-macromolecular complexes shed new light on the mechanisms that govern the dynamics of mitosis and meiosis. In this review we synthesize this knowledge to provide an integrated theoretical model of these cellular events. We suggest that the electric fields generated by synchronized oscillation of microtubules, centrosomes, and chromatin fibers facilitate several events during mitosis and meiosis, including centrosome trafficking, chromosome congression in mitosis and synapsis between homologous chromosomes in meiosis. These intracellular electric fields are generated under energy excitation through the synchronized electric oscillations of the dipolar structures of microtubules, centrosomes and chromosomes, three of the super-macromolecular complexes within an animal cell.  相似文献   

18.
Nowadays, due to the wide use of mobile phones, the possible biological effects of electromagnetic fields (EMF) become a public health general concern. Despite intensive research, there are no widely accepted theories about the interactions between EMFs and living cells, and the experimental data are often controversial. We examined the effects of mobile phones EMF (envelope frequency of 217 Hz, carrier frequency of 900 MHz and pulse duration of 580 μs) or its pure, low-frequency pulsed electric field component on fluid-phase endocytosis. In both cases, with exposures exceeding 10 min, an increase of the fluid-phase endocytosis rate was observed (≈1.5-fold), on three different cell types. This increase is an all-or-nothing type of response that is occurring for threshold values comprised between 1.3 and 2.6 W/kg for the delivered EMF powers and between 1.1 and 1.5 V/cm for the electric fields intensities depending upon the cell type. The electric component of these EMFs is shown to be responsible for the observed increase. Variations of frequency or pulse duration of the electric pulses are shown to be without effect. Thus, EMF, via their electrical component, can perturb one of the most fundamental physiological functions of the cells—endocytosis.  相似文献   

19.
【目的】探明静电喷雾与电动喷雾对噻虫嗪防治害虫效果及烟田昆虫群落的影响,为静电喷雾在烟草上的推广应用提供理论依据。【方法】利用静电喷雾与电动喷雾法喷施0.66 g·L~(-1)25%噻虫嗪水分散粒剂,施药1、3、7 d后,测定2种方法对烟蚜与斜纹夜蛾的防治效果、在烟株与土壤中的沉积以及对昆虫群落的影响。【结果】喷施25%噻虫嗪水分散粒剂1、3、7 d后,静电喷雾对烟蚜和斜纹夜蛾的防治效果均显著高于电动喷雾的防治效果,且防治效果均随时间的推移而升高。噻虫嗪在静电喷雾处理区烟叶上的沉积量高于电动喷雾处理区烟叶上的沉积量,而在静电喷雾处理区土壤中的沉积量低于电动喷雾处理区土壤中的沉积量,且都随时间的推移而降低。静电喷雾与电动喷雾均引起烟田昆虫群落的变化,静电喷雾引起的害虫和中性昆虫的数量变化大于电动喷雾,但天敌昆虫的数量变化小于电动喷雾,且静电喷雾区烟田的物种丰富度明显高于电动喷雾区,可见静电喷雾施药对烟田昆虫群落的影响小于电动喷雾施药。静电喷雾的S_t/S_i与S_n/S_p比值明显高于电动喷雾,说明静电喷雾烟田中昆虫群落稳定性高于电动喷雾烟田中昆虫群落的稳定性。【结论】相比电动喷雾,静电喷雾能够提高噻虫嗪在烟叶上的沉积量,从而提高噻虫嗪对害虫的防治效果,同时减少噻虫嗪在土壤中的沉积量,提高噻虫嗪的生态安全性,因此,静电喷雾在烟草病虫害防治上具有较好的应用前景。  相似文献   

20.
Much of the research and reviews on extremely low frequency (ELF) electric and magnetic fields (EMFs) have focused on magnetic rather than electric fields. Some have considered such focus to be inappropriate and have argued that electric fields should be part of both epidemiologic and laboratory work. This paper fills the gap by systematically and critically reviewing electric‐fields literature and by comparing overall strength of evidence for electric versus magnetic fields. The review of possible mechanisms does not provide any specific basis for focusing on electric fields. While laboratory studies of electric fields are few, they do not indicate that electric fields should be the exposure of interest. The existing epidemiology on residential electric‐field exposures and appliance use does not support the conclusion of adverse health effects from electric‐field exposure. Workers in close proximity to high‐voltage transmission lines or substation equipment can be exposed to high electric fields. While there are sporadic reports of increase in cancer in some occupational studies, these are inconsistent and fraught with methodologic problems. Overall, there seems little basis to suppose there might be a risk for electric fields, and, in contrast to magnetic fields, and with a possible exception of occupational epidemiology, there seems little basis for continued research into electric fields. Bioelectromagnetics 31:89–101, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号