首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objective: Body fatness is partly under hypothalamic control with effector limbs, which include the endocrine system and the autonomic nervous system (ANS). In previous studies we have shown, in both obese and never‐obese subjects, that weight increase leads to increased sympathetic and decreased parasympathetic activity, whereas weight decrease leads to decreased sympathetic and increased parasympathetic activity. We now report on the involvement of such ANS mechanisms in the action of anti‐obesity drugs, independent of change in weight. Research Methods and Procedures: Normal weight males (ages 22 to 38 years) were fed a solid food diet, carefully measured to maintain body weight, for at least 2 weeks, as inpatients at the Rockefeller University General Clinical Research Center. In a single‐blind, placebo/drug/placebo design, eight subjects received dexfenfluramine, seven phentermine (PHE), and seven sibutramine (SIB). ANS measures of parasympathetic and sympathetic activity included: determination of amount of parasympathetic control (PC) and sympathetic control (SC) of heart period (interbeat interval), using sequential pharmacological blockade by intravenous administration of atropine and esmolol. These autonomic controls of heart period are used to estimate the overall level of parasympathetic and sympathetic activities. Norepinephrine, dopamine, and epinephrine levels in 24‐hour urine collections were measured and also resting metabolic rate (RMR). Results: Sufficient food intake maintained constant body weight in all groups. PHE and SIB produced significant increases in SC but no change in PC or in RMR. In contrast, dexfenfluramine produced marked decreases in SC, PC, and RMR. For all three drugs, the effects on urine catecholamines directly paralleled changes in cardiac measures of SC. Discussion: ANS responses to PHE and SIB were anticipated. The large, and unanticipated, response to dexfenfluramine suggests further study to determine whether there could be any relation of these ANS changes to the adverse cardiovascular effects of treatment with dexfenfluramine.  相似文献   

2.
Objective: Body fatness is partly under hypothalamic control with effector limbs that include the endocrine system and the autonomic nervous system (ANS). In previous studies of both obese and never‐obese subjects, we have shown that weight increase leads to increased sympathetic and decreased parasympathetic activity, whereas weight decrease leads to decreased sympathetic and increased parasympathetic activity. We now report on the effect of leptin, independent of weight change, on the ANS. Research Methods and Procedures: Normal weight males (ages 20–40 years) were fed a solid food diet, measured carefully to maintain body weight, for 3 weeks, as inpatients at the Rockefeller University General Clinical Research Center. In a single‐blind, 22‐day, placebo/drug/placebo design, six subjects received leptin 0.3 mg/kilogram subcutaneously for 6 days. ANS measures of amount of parasympathetic control and sympathetic control of heart period (interbeat interval) were made by sequential pharmacological blockade with intravenous atropine and esmolol. Norepinephrine, dopamine, and epinephrine levels in 24‐hour urine collections were also measured as well as resting metabolic rate. Results: Sufficient food intake maintained constant body weight in all subjects. There was no evidence that leptin administration led to changes in energy metabolism sufficient to require additional food intake or to alter resting metabolic rate. Likewise, leptin administration did not alter autonomic activity. Parasympathetic control and sympathetic control, as well as the urinary catecholamines, were not significantly affected by leptin administration. Glucose and insulin levels were increased by food intake as expected, but leptin had no affect on these levels before or after food intake. Discussion: ANS responses to changes in energy metabolism found when food intake and body weight are altered were not found in these never‐obese subjects given leptin for 6 days. Although exogenous leptin administration has profound effects on food intake and energy metabolism in animals genetically deprived of leptin, we found it to have no demonstrable effect on energy metabolism in never‐obese humans. The effects of longer periods of administration to obese individuals and to those who have lost weight demand additional investigation.  相似文献   

3.
This study was designed to validate the measures of heart period variability for assessing of autonomic nervous system control in calves. Eight calves received an injection of either 0.5 mg/kg atenolol (sympathetic tone blockade), 0.2 mg/kg atropine sulfate (parasympathetic tone blockade), 0.5 mg/kg atenolol + 0.2 mg/kg atropine sulfate (double autonomic blockade) or saline. In the time-domain, we calculated the mean instantaneous heart rate (HR), mean of RR intervals (MeanRR), standard deviation of RR intervals (SDRR) and that of the difference between adjacent intervals (RMSSD). In the frequency-domain, the power of the spectral band 0-1 Hz (TPW), the power of the 0-0.15 Hz band (LF), that of the 0.15-1 Hz band (HF), and the LF/HF ratio were considered. The net vago-sympathetic effect (VSE) was calculated as the ratio of MeanRR in a defined situation to MeanRR during the double blockade. Atenolol injection had no effect on cardiac activity, whereas atropine induced large modifications which were moderated when atenolol was administered at the same time. VSE, HR, MeanRR and RMSSD were found to be valid indicators of the parasympathetic tone of calves because of large variations due to the drug and low individual variations. No measure reflected the sympathetic tone.  相似文献   

4.
Obesity in humans has been associated with altered autonomic nervous system activity. The objective of this study was to examine the relationship between autonomic function and body fat distribution in 16 obese, postmenopausal women using power spectrum analysis of heart rate variability. Using this technique, a low frequency peak (0.04-0.12 Hz) reflecting mixed sympathetic and parasympathetic activity, and a high frequency peak (0.22-0.28 Hz) reflecting parasympathetic activity, were identified from 5-minute consecutive heart rate data (both supine and standing). Autonomic activity in upper body (UBO) vs. lower body obesity (LBO)(by waist-to-hip ratio) and subcutaneous vs. visceral obesity (by CT scan) was evaluated. Power spectrum data were log transformed to normalize the data. The results showed that standing, low-frequency power (reflecting sympathetic activity) and supine, high-frequency power (reflecting parasympathetic activity) were significantly greater in UBO than in LBO, and in visceral compared to subcutaneous obesity. Women with combined UBO and visceral obesity had significantly higher cardiac sympathetic and parasympathetic activity than any other subgroup. We conclude that cardiac autonomic function as assessed by heart rate spectral analysis varies in women depending on their regional body fat distribution.  相似文献   

5.
The effect of cholinomimetic stimulation by infusion of edrophonium chloride or muscarinic blockade by infusion of atropine sulfate on insulin and GIP secretion was studied in normal lean subjects during eu- and hyperglycemia. Cholinomimetic stimulation led to a slight non-significant increase and muscarinic blockade to a slight, non-significant suppression of both GIP and insulin. No modification of the insulin secretion pattern was observed under either condition during hyperglycemia. The effect of atropine infusion on fasting plasma insulin and GIP was subsequently studied in 11 obese patients and 10 lean subjects. Muscarinic antagonism by atropine led to a transient non-significant suppression of GIP and insulin in lean subjects, but to a significant, sustained suppression of these hormones in obese patients. Insulin and GIP levels were however, not suppressed to control values after atropine administration in obese patients. A positive correlation was found between fasting plasma insulin and maximal suppression of insulin attained during the 30 min following administration of atropine. It is concluded that part of the hyperinsulinemia observed in human obesity is under the control of the parasympathetic nervous system. An abnormal balance between sympathetic inhibitory and parasympathetic stimulatory tones on insulin secretion, as observed in the VMH lesioned rat, might be present in human obesity.  相似文献   

6.
The characteristics of autonomic nervous activity were examined on captive great cormorants Phalacrocorax carbo hanedae, using a power spectral analysis of heart rate variability. Heart rates were calculated from recordings of the electrocardiograms of the birds via embarked data loggers. We investigated the effects of blockades of the sympathetic or parasympathetic nervous systems using the indices of autonomic nervous activity such as high frequency (0.061–1.5 Hz) component, low frequency (0.02–0.060 Hz) component and the low frequency power component to high frequency power component ratio. Resting heart rate (85.5 ± 6.1 bpm) was lower than the intrinsic heart rate (259.2 ± 15.3 bpm). The heart rate drastically increased after the injection of the parasympathetic nervous blocker, on the other hand it slightly decreased after the injection of the sympathetic nervous blocker. The sympathetic, parasympathetic and net autonomic nervous tones calculated from heart rate with and without blockades were 40.9 ± 27.6, −44.5 ± 7.4 and −29.5 ± 9.0%, respectively. The effect of the parasympathetic nervous blockade on low frequency and high frequency power was greater than that of the sympathetic nervous blockade. Those data suggested that the parasympathetic nervous activity was dominant for great cormorants.  相似文献   

7.
Objective: The autonomic nervous system (ANS) plays an important role in regulating energy expenditure and body fat content; however, the extent to which the ANS contributes to pediatric obesity remains inconclusive. The aim of this study was to evaluate whether sympathetic and/or the parasympathetic nerve activities were altered in an obese pediatric population. We further examined a physiological association between the duration of obesity and the sympatho‐vagal activities to scrutinize the nature of ANS alteration as a possible etiologic factor of childhood obesity. Research Methods and Procedures: Forty‐two obese and 42 non‐obese healthy sedentary school children were carefully selected from 1080 participants initially recruited to this study. The two groups were matched in age, gender, and height. The clinical records of physical characteristics and development of the obese children were retrospectively reviewed to investigate the onset and progression of obesity. The ANS activities were assessed during a resting condition by means of heart rate variability power spectral analysis, which enables us to identify separate frequency components, i.e., total power (TP), low‐frequency (LF) power, and high‐frequency (HF) power. The spectral powers were then logarithmically transformed for statistical testing. Results: The obese children demonstrated a significantly lower TP (6.77 ± 0.12 vs. 7.11 ± 0.04 ln ms2, p < 0.05), LF power (6.16 ± 0.12 vs. 6.42 ± 0.05 ln ms2, p < 0.05), and HF power (5.84 ± 0.15 vs. 6.34 ± 0.07 ln ms2, p < 0.01) compared with the non‐obese children. A partial correlation analysis revealed that the LF and HF powers among 42 obese children were negatively associated with the duration of obesity independent of age (LF: partial r = ?0.55, p < 0.001; HF: partial r = ?0.40, p < 0.01). The obese children were further subdivided into two groups based on the length of their obesity. All three spectral powers were significantly reduced in the obese group with obesity of >3 years (n = 18) compared to the group with obesity of <3 years. Discussion: Our data indicate that obese children possess reduced sympathetic as well as parasympathetic nerve activities. Such autonomic depression, which is associated with the duration of obesity, could be a physiological factor promoting the state and development of obesity. These findings further imply that preventing and treating obesity beginning in the childhood years could be an urgent and crucial pediatric public health issue.  相似文献   

8.
Heart rate and the role of the autonomic nervous system in hypertensive conscious rats by subtotal nephrectomy were studied. Heart rate is significantly higher in the hypertensive rats. Sympathetic blockade with an intravenous injection of propranolol produces a higher decrease in heart rate of hypertensive rats than in control rats. Intravenous injection of atropine produces an increase in heart rate in both groups of animals. It is significantly higher in the control rats than in hypertensive animals. When the autonomic nervous system is blocked with atropine and propranolol, intrinsic heart rate is similar in both groups of animals. Similar results are obtained after blocking ganglionic transmission with hexamethonium. No significative differences are observed in heart rate after intracerebroventricular injection of hemicholinium-3 between both groups of rats. Results show an increased cardiac sympathetic tone, reduced parasympathetic activities, no alterations in the pacemaker activity and implications of central acetylcholine. These alterations in the autonomic nervous system have an important role in the maintenance of elevated heart rate in this experimental model of arterial hypertension.  相似文献   

9.
The degree of parasympathetic heart rate control, PC, was defined as the decrease in average heart period (RR interval) caused by the elimination of parasympathetically mediated influences on the heart while keeping sympathetic activity unchanged. By reviewing published results on the interaction of sympathetic and parasympathetic heart rate control, the prediction was made that PC should be directly proportional to VHP, the peak-to-peak variations in heart period caused by spontaneous respiration. In sevel chloralose/urethan-anesthetized dogs the vagi were reversibly blocked by cooling, and PC (the difference between average heart period before and after cooling) and VHP (without cooling) were determined under a variety of conditions that included a) increasing vagal activity by elevating the blood pressure b) sympathetic blockade, and c) parasympathetic blockade. The relationship between VHP and PC was linear with an average correlation coefficient of 0.969 +/- 0.024 (SD) and a PC-axis intercept of 15.2 +/- 25.9 ms. In each dog the correlation coefficient between VHP and PC was higher than between VHP and the average heart period (avg correlation coef: 0.914 +/- 0.044). These results suggest that the degree of respiratory sinus arrhythmia may be used as a noninvasive indicator of the degree of parasympathetic cardiac control.  相似文献   

10.
The purpose of this study was to determine the role of the autonomic nervous system's control of the heart in fitness-related differences in blood pressure regulation. The cardiovascular responses to progressive lower-body negative pressure (LBNP) were studied during unblocked (control) and full blockade (experimental) conditions in 10 endurance-trained (T) and 10 untrained (UT) men, aged 20-31 yr. The experimental conditions included beta 1-adrenergic blockade (metoprolol tartrate), parasympathetic blockade (atropine sulfate), or complete blockade (metoprolol and atropine). Heart rate, blood pressure, forearm blood flow, and cardiac output were measured at rest and -16 and -40 Torr LBNP. Forearm vascular resistance, peripheral vascular resistance, and stroke volume were calculated from these measurements at each stage of LBNP. Blood pressure was maintained, primarily by augmented vasoconstriction, equally in T and UT subjects during complete and atropine blockade. The fall in systolic and mean pressure from 0 to -40 Torr was greater (P less than 0.05) in the T subjects during the unblocked and metoprolol blockade conditions. This reduced blood pressure control during unblocked condition was attributable to attenuated vaso-constrictor and chronotropic responses in the T subjects. We hypothesize that an autonomic imbalance (elevated base-line parasympathetic activity) in highly trained subjects restricts reflex cardiac responses, which accompanied by an attenuated vasoconstrictor response, results in attenuated blood pressure control during a steady-state hypotensive stress.  相似文献   

11.
After periods of microgravity or bed rest, individuals often exhibit reduced Vo(2 max), hypovolemia, cardiac and vascular effects, and autonomic dysfunction. Recently, alterations in expression of vascular and central nervous system NO synthase (NOS) have been observed in hindlimb-unloaded (HU) rats, a model used to simulate physiological effects of microgravity or bed rest. We examined the effects of 14 days of hindlimb unloading on hemodynamic responses to systemic NOS inhibition in conscious control and HU rats. Because differences in NO and autonomic regulation might occur after hindlimb unloading, we also evaluated potential differences in resting autonomic tone and effects of NOS inhibition after autonomic blockade. Administration of nitro-L-arginine methyl ester (L-NAME; 20 mg/kg iv) increased mean arterial pressure (MAP) to similar levels in control and HU rats. However, the change in MAP in response to L-NAME was less in HU rats, that had an elevated baseline MAP. In separate experiments, atropine (1 mg/kg iv) increased heart rate (HR) in control but not HU rats. Subsequent administration of the ganglionic blocker hexamethonium (30 mg/kg iv) decreased MAP and HR to a greater extent in HU rats. Administration of L-NAME after autonomic blockade increased MAP in both groups to a greater extent compared with intact conditions. However, the pressor response to L-NAME was still reduced in HU rats. These data suggest that hindlimb unloading in rats reduces peripheral NO as well as cardiac parasympathetic tone. Along with elevations in sympathetic tone, these effects likely contribute to alterations in vascular control and changes in autonomic reflex function following spaceflight or bed rest.  相似文献   

12.
Objective: To investigate the cardiovascular autonomic function in pediatric obesity of different duration by using standard time domain, spectral heart rate variability (HRV), and nonlinear methods. Research Methods and Procedures: Fifty obese children (13.9 ± 1.7 years) were compared with 12 lean subjects (12.9 ± 1.6 years). Obese children were classified as recent obese (ROB) (<4 years), intermediate obese (IOB) (4 to 7 years), and long‐term obese (OB) (>7 years). In all participants, we performed blood pressure (BP) measurements, laboratory tests, and 24‐hour electrocardiogram/ambulatory BP monitoring. The spectral power was quantified in total power, very low‐frequency (LF) power, high‐frequency (HF) power, and LF to HF ratio. Total, long‐term, and short‐term time domain HRV were calculated. Poincaré plot and quadrant methods were used as nonlinear techniques. Results: All obese groups had higher casual and ambulatory BP and higher glucose, homeostasis model assessment, and triglyceride levels. All parameters reflecting parasympathetic tone (HF band, root mean square successive difference, proportion of successive normal‐to‐normal intervals, and scatterplot width) were significantly and persistently reduced in all obese groups in comparison with lean controls. LF normalized units, LF/HF, and cardiac acceleration (reflecting sympathetic activation) were significantly increased in the ROB group. In IOB and OB groups, LF, but not nonlinear, measures were similar to lean controls, suggesting biphasic behavior of sympathetic tone, whereas nonlinear analysis showed a decreasing trend with the duration of obesity. Long‐term HRV measures were significantly reduced in ROB and IOB. Discussion: Autonomic nervous system changes in adolescent obesity seem to be related to its duration. Nonlinear methods of scatterplot and quadrant analysis permit assessment of autonomic balance, despite measuring different aspects of HRV.  相似文献   

13.
ECG and EEG signals were simultaneously recorded in lizards, Gallotia galloti, both in control conditions and under autonomic nervous system (ANS) blockade, in order to evaluate possible relationships between the ANS control of heart rate and the integrated central nervous system activity in reptiles. The ANS blockers used were prazosin, propranolol, and atropine. Time-domain summary statistics were derived from the series of consecutive R-R intervals (RRI) of the ECG to measure beat-to-beat heart rate variability (HRV), and spectral analysis techniques were applied to the EEG activity to assess its frequency content. Both prazosin and atropine did not alter the power spectral density (PSD) of the EEG low frequency (LF: 0.5-7.5 Hz) and high frequency (HF: 7.6-30 Hz) bands, whereas propranolol decreased the PSD in these bands. These findings suggest that central beta-adrenergic receptor mechanisms could mediate the reptilian waking EEG activity without taking part any alpha(1)-adrenergic and/or cholinergic receptor systems. In 55% of the lizards in control conditions, and in approximately 43% of the lizards under prazosin and atropine, a negative correlation between the coefficient of variation of the series of RRI value (CV(RRI)) and the mean power frequency (MPF) of the EEG spectra was found, but not under propranolol. Consequently, the lizards' HRV-EEG-activity relationship appears to be independent of alpha(1)-adrenergic and cholinergic receptor systems and mediated by beta-adrenergic receptor mechanisms.  相似文献   

14.
Cu/Zn superoxide dismutase (SOD1) is implicated in various pathological conditions including Down's syndrome, neurodegenerative diseases, and afflictions of the autonomic nervous system (ANS). To assess the SOD1 contribution to ANS dysfunction, especially its influence on cardiac regulation, we studied the heart rate variability (HRV) and cardiac arrhythmias in conscious 12-month-old male and female transgenic mice for the human SOD1 gene (TghSOD1). TghSOD1 mice presented heart rate reduction as compared with control FVB/N individuals. All HRV parameters reflecting parasympathetic activity were increased in TghSOD1. Pharmacological studies confirmed that the parasympathetic tone was exacerbated and the sympathetic pathway was functional in TghSOD1 mice. A high frequency of atrioventricular block and premature ventricular contractions was observed in TghSOD1. By biochemical assays we found that SOD1 activities were multiplied by 9 and 4 respectively in the heart and brainstem of transgenic mice. A twofold decrease in cholinesterase activity was observed in the heart but not in the brainstem. We demonstrate that SOD1 overexpression induces an ANS dysfunction by an exacerbated vagal tone that may be related to impaired cardiac activity of the cholinesterases and may explain the high occurrence of arrhythmias.  相似文献   

15.
The purpose of this work was to show that regulation of the blood flow to the cochlea by the sympathetic nervous system occurs in humans at the level of the cochlear microcirculation during increases in blood pressure and that its involvement depends on the pressure level. Eight anaesthetized patients undergoing tympanoplasty for hearing disease took part in a pharmacological protocol of stimulation and inhibition of the autonomic nervous system (ANS) to provide variations in systolic blood pressure (BPS) and cochlear blood flow (CBF). The CBF was measured by laser-Doppler flowmetry. Changes in autonomic nerve activity were brought about by changes in baroreceptor activity (BR) initiated by the injection of an α adrenergic agent before and after sympathetic and parasympathetic blockade. The CBF variations (δCBF) were plotted against BPS increases at each stage of the ANS inhibition. The BR diminished significantly after α blockade, after α and β blockade, and after α and β blockade and atropine, by 50% (P < 0.01), 29% (P < 0.05), and 95% (P < 0.001) respectively. The BPS increased significantly (P < 0.01) by 36 (SD 9)%, 47 (SD 1)%, and 67 (SD 16)% respectively. The CBF response to an increase in BPS exhibited two opposing variations in the patients: CBF decreased significantly in one group, and increased significantly in the other group. In both groups, δCBF decrease and δCBF increase, respectively, were significant after ANS blockade; even so the decrease and increase, respectively, levelled off at BPS around 160 mmHg before ANS blockade. For BPS below 160 mmHg, correlations between δCBF and BPS were significant before inhibition and after inhibition of ANS. For BPS above 160 mmHg, BPS and δCBF were not correlated before inhibition of ANS, and were significantly correlated after inhibition of ANS. For BPS below 160 mmHg, CBF response to the BPS increase was the same before and after ANS blockade, i.e. ANS control did not predominate; even so, for BPS above 160 mmHg, the CBF response to BPS increase was different before and after ANS blockade: CBF varied significantly after ANS blockade as it varied for BPS below 160 mmHg, while it remained constant before ANS blockade that elicited ANS control of CBF. In conclusion, sympathetic nerve regulation via its vasomotor tone at the level of cochlear microcirculation occurred markedly when the blood pressure was above 160 mmHg; the autonomic nervous system would appear to control the cochlear blood flow against large variations in blood flow in response to hypertensive phenomena. Accepted: 7 October 1996  相似文献   

16.
17.
The ratio between low-frequency (LF) and high-frequency (HF) spectral power of heart rate has been used as an approximate index for determining the autonomic nervous system (ANS) balance. An accurate assessment of the ANS balance can only be achieved if clear separation of the dynamics of the sympathetic and parasympathetic nervous activities can be obtained, which is a daunting task because they are nonlinear and have overlapping dynamics. In this study, a promising nonlinear method, termed the principal dynamic mode (PDM) method, is used to separate dynamic components of the sympathetic and parasympathetic nervous activities on the basis of ECG signal, and the results are compared with the power spectral approach to assessing the ANS balance. The PDM analysis based on the 28 subjects consistently resulted in a clear separation of the two nervous systems, which have similar frequency characteristics for parasympathetic and sympathetic activities as those reported in the literature. With the application of atropine, in 13 of 15 supine subjects there was an increase in the sympathetic-to-parasympathetic ratio (SPR) due to a greater decrease of parasympathetic than sympathetic activity (P=0.003), and all 13 subjects in the upright position had a decrease in SPR due to a greater decrease of sympathetic than parasympathetic activity (P<0.001) with the application of propranolol. The LF-to-HF ratio calculated by the power spectral density is less accurate than the PDM because it is not able to separate the dynamics of the parasympathetic and sympathetic nervous systems. The culprit is equivalent decreases in both the sympathetic and parasympathetic activities irrespective of the pharmacological blockades. These findings suggest that the PDM shows promise as a noninvasive and quantitative marker of ANS imbalance, which has been shown to be a factor in many cardiac and stress-related diseases.  相似文献   

18.
We established characteristics of power spectral analysis of heart rate variability, and assessed the diurnal variations of autonomic nervous function in guinea pigs. For this purpose, an electrocardiogram (ECG) was recorded for 24 hr from conscious and unrestrained guinea pigs using a telemetry system. There were two major spectral components, at low frequency (LF) and high frequency (HF) bands, in the power spectrum of HR variability. On the basis of these data, we defined two frequency bands of interest: LF (0.07-0.7 Hz) and HF (0.7-3.0 Hz). The power of LF was higher than that of HF in the normal guinea pigs. Atropine significantly reduced power at HF. Propranolol also significantly reduced power at LF. Furthermore, the decrease in the parasympathetic mechanism produced by atropine was reflected in a slight increase in the LF/HF ratio. The LF/HF ratio appeared to follow the reductions of sympathetic activity produced by propranolol. Autonomic blockade studies indicated that the HF component reflected parasympathetic activity and the LF/HF ratio seemed to be a convenient index of autonomic balance. Nocturnal patterns, in which the values of heart rate in the dark phase (20:00-06:00) were higher than those in the light phase (06:00-20:00), were observed. However, the HF, LF and the LF/HF ratio showed no daily pattern. These results suggest that the autonomic nervous function in guinea pigs has no clear circadian rhythmicity. Therefore, this information may be useful for future studies concerning the autonomic nervous function in this species.  相似文献   

19.
A new approach to assess autonomic nervous system (ANS) activity and its response to drug action is presented. Our approach is based on the use of a cumulative plot of data obtained by power spectral analysis of heart rate variability, in defined frequency bands, during short time epochs (e.g., 2 min in rats). The substantial temporal variability in power evolving from the constant balancing nature of the ANS activity is minimized by this approach and produces a measurable index of ANS activity vs. time. The cumulative plot emphasizes the temporal response pattern of different components of the ANS and thereby facilitates the investigation of the kinetics of action of drugs affecting the ANS. We used this method to measure the activity of cholinergic drugs in freely moving Sabra rats. Bolus atropine doses between 0.5 and 2 mg/kg produced a similar magnitude of effect, reduction of the ascending slope by 0. 003 power units/h, whereas the duration of this effect was dose dependent. A lower atropine dose (0.1 mg/kg) or 0.5 mg/kg scopolamine elevated the slope (0.074 and 0.054 power units/h for 206 and 216 min, respectively). The method was used similarly to assess the interaction between cholinergic drugs. Pretreatment with pyridostigmine produced temporal blockage of the anticholinergic activity of atropine.  相似文献   

20.
Objective: The aim of this study was to test the hypothesis that baroreflex sensitivity (BRS), assessed by indirect measurement of aortic pressure, is blunted in obesity. Additionally, the potential effect of cardiac autonomic nervous system (ANS) activity, aortic compliance, and metabolic parameters on BRS of obese subjects was investigated. Research Methods and Procedures: A group of 30 women with BMI >30 kg/m2 and a group of 30 controls with BMI <25 kg/m2 were examined. BRS was estimated by the sequence technique, cardiac ANS activity by short‐term spectral analysis of heart rate variability (HRV), and aortic compliance by the method of applanation tonometry. Results: BRS was lower in obese women (9.18 ± 3.77 vs. 19.63 ± 9.16 ms/mm Hg, p < 0.001). The median values (interquartile range) of the power of both the high‐frequency and low‐frequency components of the HRV were higher in the lean than in the obese participants [1079.2 (202.7 to 1716.9) vs. 224.1 (72.7 to 539.6) msec2, p = 0.001 and 411.8 (199.3 to 798.0) vs. 235.8 (99.4 to 424.5) msec2, p = 0.01 respectively]. Low‐to‐high‐frequency ratio values were higher in the obese subjects [0.82 (0.47 to 2.1) vs. 0.57 (0.28 to 0.89), p = 0.02]. Aortic augmentation values were not significantly different between lean and obese subjects. Multivariate analysis demonstrated a significant and independent association between BRS and age (p = 0.003), BMI (p < 0.001), and high‐frequency power of HRV (p < 0.001). These variables explained 72% of the variation of BRS values. Discussion: BRS is severely reduced in obese subjects. BMI, age, and the parasympathetic nervous system activity are the main determinants of BRS. Baroreflex behavior is of clinical relevance because an attenuated BRS represents a negative prognostic factor in cardiovascular diseases, which are common in obesity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号