首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Duchenne muscular dystrophy (DMD) is a devastating muscle wasting disease caused by mutations in dystrophin, a muscle cytoskeletal protein. Utrophin is a homologue of dystrophin that can functionally compensate for its absence when expressed at increased levels in the myofibre, as shown by studies in dystrophin-deficient mice. Utrophin upregulation is therefore a promising therapeutic approach for DMD. The use of a small, drug-like molecule to achieve utrophin upregulation offers obvious advantages in terms of delivery and bioavailability. Furthermore, much of the time and expense involved in the development of a new drug can be eliminated by screening molecules that are already approved for clinical use.

Methodology/Principal Findings

We developed and validated a cell-based, high-throughput screening assay for utrophin promoter activation, and used it to screen the Prestwick Chemical Library of marketed drugs and natural compounds. Initial screening produced 20 hit molecules, 14 of which exhibited dose-dependent activation of the utrophin promoter and were confirmed as hits. Independent validation demonstrated that one of these compounds, nabumetone, is able to upregulate endogenous utrophin mRNA and protein, in C2C12 muscle cells.

Conclusions/Significance

We have developed a cell-based, high-throughput screening utrophin promoter assay. Using this assay, we identified and validated a utrophin promoter-activating drug, nabumetone, for which pharmacokinetics and safety in humans are already well described, and which represents a lead compound for utrophin upregulation as a therapy for DMD.  相似文献   

2.
Summary By a general survey in the hospitals of northeast Italy, Duchenne cases have been located and identified over a 20-year period.In a more restricted area screening for Duchenne carriers has been carried out in affected families. This procedure made possible an exact estimate of the incidence rate, prevalence rate, and mutation rate in a large sample of population. Prevalence rate was found to be 34x10-6, incidence rate about 28x10-5, while mutation rate was found lower than 50x10-6 by the direct method.The discrepancy between the results obtained by the Haldane formula and those obtained by the direct method for the estimate of the mutation rate is discussed.  相似文献   

3.
Duchenne muscular dystrophy   总被引:1,自引:0,他引:1  
Summary In an extensive epidemiological survey of Duchenne muscular dystrophy carried out in Venetia (Italy) the incidence was found to be 28.2×10-5 and female gamete mutation rate was estimated by the direct method between 61 and 35×10-6. The percentage of isolated cases was 0.54. Indirect and direct estimates of this proportion suggest, however, that only a minor fraction arises from maternal mutation (from 0.11 to 0.18 of the total number of cases). Studies on pedigrees collected in the course of the survey indicate that there is a higher frequency of Duchenne carrier females than normal females in affected sibships. Additional evidence supporting the hypothesis of a reproductive heterozygote advantage and gametic selection is reported.This work was supported by an MDA grant and by funds from the Italian Muscular Dystrophy Assoc. (UILDM)  相似文献   

4.
5.
6.
Griffin JL  Sang E  Evens T  Davies K  Clarke K 《FEBS letters》2002,530(1-3):109-116
Metabolic profiles from 1H nuclear magnetic resonance spectroscopy have been used to describe both one and two protein systems in four mouse models related to Duchenne muscular dystrophy using the pattern recognition technique partial least squares. Robust statistical models were built for extracts and intact cardiac tissue, distinguishing mice according to expression of dystrophin. Using metabolic profiles of diaphragm, models were built describing dystrophin and utrophin, a dystrophin related protein, expression. Increased utrophin expression counteracted some of the deficits associated with dystrophic tissue. This suggests the method may be ideal for following treatment regimes such as gene therapy.  相似文献   

7.
Duchenne muscular dystrophy   总被引:2,自引:0,他引:2  
Summary A segregation analysis on 135 Duchenne families from Venetia (Italy) suggests that the proportion of sporadic cases might be less than expected. Support for this view is also given by an analysis of a pooled sample including 284 additional sibships from comparable studies published previously. Several hypotheses were tested: the maximum likelihood was obtained for a segregation frequency p=0.46 and for a proportion of sporadic cases x=0.227±0.048.Dedicated to Professor G. Montalenti in the occasion of his 80th birthday  相似文献   

8.
We have studied by indirect immunofluorescence, using three different polyclonal antidystrophin antibodies raised against fusion proteins, the neuromuscular junctions (NMJs) in muscle biopsies from Duchenne muscular dystrophy (DMD) patients, from human controls and mutant "mdx" mice and normal mice. In controls the periphery of all muscle fibres was strongly labelled by the three dystrophin antibodies and there was a high concentration of labelling at the NMJs (where it was co-localized with acetylcholine receptor labelled by the alpha-bungarotoxin). In DMD and in "mdx" mice the NMJs were equally labelled whereas there was an absence of reaction at the periphery of all (DMD) or most ("mdx" mice) muscle fibers. These findings suggest that a dystrophin-like protein, which was identified by the antibodies we have used, is present at the NMJs in the Duchenne's myopathy and "mdx" mice.  相似文献   

9.
Duchenne型肌营养不良症是我国常见的X连锁隐性遗传性肌病。目前广泛应用的动物模型是mdx小鼠,但其没有很好地模拟人类疾病特点。最近,Sacco等报导了一个新的小鼠模型mdx/mTRG2,它不仅有抗肌萎缩蛋白的缺陷,还有端粒酶的缺失,较好地模拟了人类疾病的症状。通过该模型,人们认识到抗肌萎缩蛋白的缺陷引起肌细胞退化,肌肉干细胞被激活对抗其退化,但干细胞的过度增殖又导致端粒长度下降,引起肌肉干细胞增殖能力的衰竭,最终产生了肌营养不良的表型。该模型使人们对Duchenne型肌营养不良症的发病机制有了进一步的理解,为其治疗提供了新的研究平台。  相似文献   

10.
Duchenne muscular dystrophy.   总被引:2,自引:0,他引:2  
Progress in understanding the role of dystrophin raises promising hopes for a treatment for Duchenne muscular dystrophy. In addition, great improvements have been made in the ability to diagnose this disease using simple molecular methods.  相似文献   

11.
Duchenne muscular dystrophy (DMD) is a lethal X-linked muscular disorder. The biochemical defect remains unknown, but the gene responsible has been mapped to band Xp21. The gene has now been cloned in two laboratories solely from knowledge of its map location. L. M. Kunkel and his colleagues isolated genomic sequences (PERT 87) from within a large deletion causing DMD, whereas our group isolated genomic sequences (XJ) spanning the junction of an X-autosome translocation causing the disease. Chromosome walking by both groups has led to the isolation of over 400 kilobases of the PERT 87 and XJ region. Subclones of PERT 87 and XJ reveal restriction fragment length polymorphisms that segregate with the DMD gene in 95% of meioses, and fail to hybridize with DNA from about 8% of male patients. Selected subclones of PERT 87 and XJ contain exons that hybridize to muscle-derived complementary DNA (cDNA) clones. The cDNA clones detect a large (16 kilobase) message. Analysis of deletions, mutations and translocations suggests a DMD gene of between two million and three million base pairs. The clones obtained so far are useful for attempts to generate antibody against the gene product and for carrier identification and prenatal diagnosis.  相似文献   

12.
Although patients with Duchenne muscular dystrophy (DMD) have been shown to have decreased total body potassium levels, serum potassium levels have generally been though to be within normal limits. We report two siblings with DMD noted to be hypokalemic in conjunction with a respiratory illness. Hypokalemia may have exacerbated the pre-existing pulmonary insufficiency in these patients. The literature concerning hypokalemia and DMD is reviewed, and recommendations for the closer monitoring of serum potassium levels in patients with DMD are presented.  相似文献   

13.
14.
15.
16.
Germinal mosaicism in Duchenne muscular dystrophy   总被引:18,自引:4,他引:14  
Summary We have identified a Duchenne muscular dystrophy (DMD) pedigree where the disease is associated with a molecular deletion within the DMD locus. We have examined the meiotic segregation products of the common female ancestor using marker restriction fragment length polymorphisms (RFLPs) detected by probes that lie within this deletion. These studies show that this female has transmitted three distinet types of X chromosome to her offspring. This observation may be explained by postulating that the mutation arose as a postzygotic deletion within this common ancestor, who was consequently germinally mosaic.  相似文献   

17.
18.
Sporadic cases in Duchenne muscular dystrophy   总被引:2,自引:2,他引:0  
Summary A new estimation of the proportion of sporadic cases in Duchenne muscular dystrophy was attempted by means of segregation analysis in a sample of 988 sibships collected on a world-wide scale by different authors. Maximum likelihood estimates of ascertainment probability (), segregation frequency (p), and frequency of sporadic cases (x) were calculated by Morton's equations under different hypotheses. The best fit was found for p=0.454±0.024 and x=0.235±0.034. The possibility that the proportion of sporadic cases might be lower than the expected 1/3 is suggested.  相似文献   

19.
Duchenne muscular dystrophy: Pathogenetic aspects and genetic prevention   总被引:24,自引:0,他引:24  
H. Moser 《Human genetics》1984,66(1):17-40
Summary Duchenne muscular dystrophy (DMD) is the most common sex linked lethal disease in man (one case in about 4000 male live births). The patients are wheelchair bound around the age of 8–10 years and usually die before the age of 20 years. The mutation rate, estimated by different methods and from different population studies, is in the order of 7×10-5, which is higher than for any other X-linked genetic disease. Moreover, unlike other X linked diseases such as hemophilia A or Lesh-Nyhan's disease, there seems to be no sex difference for the mutation rates in DMD. Several observations of DMD in girls bearing X-autosomal translocations and linkage studies on two X chromosomal DNA restriction fragment length polymorphisms indicate that the DMD locus is situated on the short arm of the X chromosome, between Xp11 and Xp22. It may be of considerable length, and perthaps consisting of actively coding and non-active intervening DNA sequences. Thus unequal crossing over during meiosis in females could theoretically account for a considerable proportion of new mutations.However, there is no structurally or functionally abnormal protein known that might represent the primary gene product, nor has any pathogenetic mechanism leading to the observed biochemical and histological alterations been elucidated. Among the numerous pathogenetic concepts the hypothesis of a structural or/and functional defect of the muscular plasma membrane is still the most attractive. It would explain both the excess of muscular constituents found in serum of patients and carriers, such as creatine kinase (CK), as well as the excessive calcium uptake by dystrophic muscle fibres, which, prior to necrosis, could lead to hypercontraction, rupture of myofilaments in adjacent sarcomeres and by excessive Ca uptake to mitochondrial damage causing crucial energy loss.The results of studies on structural and functional memthrane abnormalities in cells other than muscle tissue, e.g., erythrocytes, lymphocytes and cultured fibroblasts, indicate that the DMD mutation is probably demonstrable in these tissues. However, most of the findings are still difficult to reproduce or even controversial.DMD is an incurable disease; therefore most effort, in research as well as in practical medicine, is concentrated upon its prevention. Unfortunately the disease cannot yet be diagnosed prenatally. Potential DMD carriers among female relatives of the patients may be identified by pathological heterozygote tests, of which determination of serum CK activity is probably still the most reliable method, allowing the detection of about 70% of adult and probably up to 90% of carriers at school age. Because of the high mutation rate, assessment of individual heterozygote risks in female relatives of isolated DMD cases is of special importance. For the calculations a maximum of genealogical and phenotype information on unaffected male and on heterozygote tests in female relatives is needed to obtain credible risk figures. However, estimating a consultand's risk and passing on this information is only one aspect of genetic counselling in DMD. At least as important is information on the medical, psychological and social impacts of the disease (burden) and the possibility of maintaining a long-term contact between the couples at risk and the team involved in medical, genetic and social problems of the disease. Neonatal CK screening for DMD, although without any therapeutical consequence, could theoretically lead to the prevention of secondary cases, accounting for some 15% of all DMD patients born, but an almost equal prevention rate of such cases would be achieved if CK examinations were limited to all boys with delayed motor development during the first 2 years of life. Finally, it is believed that the two most important preventive problems in DMD, carrier detection and prenatal diagnosis, will ultimately be solved by means of the rapidly advancing DNA technology.This work was dedicated to Professor P.E. Becker in honour of his 75th birthday  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号