首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostaglandin E1 stimulates glucose oxidation in isolated rat adipocytes in a time and concentration dependent manner. Maximal stimulation requires 2 hours exposure to prostaglandin, although effects can be detected by 0.5 hours or earlier. In contrast to prostaglandin E1, prostaglandin F2α has essentially no effect on glucose oxidation. Maximal stimulation by prostaglandin E1 at all ages tested occurs at concentrations of 10?5 ? 10?4M. Stimulation is greatest in cells of mature (10–12 month old) animals at 81 ± 9% above basal levels of glucose oxidation. This is to reduced to 48 ± 8% in cells of senescent (23–26 month old) animals, and at 23 ± 18% in cells of young (2–3 month old) rats is not significantly different from basal oxidation in most animals. These results are consistent with data for adipocytes and other cell types indicating that responsiveness to certain hormones is altered during maturation and aging.  相似文献   

2.
Objective: Recent data have suggested that the insulin resistance observed with aging may be more related to adiposity than aging per se. We asked whether the insulin resistance observed in aged rats was comparable (both in magnitude and location) to that of fat‐fed rats. Research Methods and Procedures: We performed hyperinsulinemic (5 mU/min per kg) euglycemic clamps with tracer in conscious, 6‐hour fasted young (YL), fat‐fed young (YF), fat‐fed old (OF), and calorically restricted old (OL) rats. Results: Intraabdominal fat measurements showed that OF and YF rats were more obese than YL (p ≤ 0.001; YF > OF > YL). Caloric restriction not only prevented age‐related obesity but also reduced the ratio of intraabdominal fat to lean body mass (LBM) compared with YL (OL: 0.59 ± 0.05 vs. YL: 1.07 ± 0.04; p = 0.017). Despite similar incremental insulin, YF and OF rats required 40% less infused glucose to maintain euglycemia than YL and OL rats (p < 0.001). Insulin‐stimulated glucose uptake (SiRd: ΔRd/(ΔInsulin × GlucoseSS) was impaired in OF rats (OF: 14.03 ± 1.79 vs. YL: 23.08 ± 1.87 × 103 dL/min × kg LBM per pM; p = 0.004) and improved in OL rats (29.41 ± 1.84 × 103 dL/min × kg LBM per pM; p = 0.031) compared with YL. Despite greater obesity, YF rats did not exhibit lower SiRd compared with OF rats (p = 0.58). In contrast, the ability of insulin to suppress endogenous glucose production (EGP; SiEGP: ΔEGP/(ΔInsulin × GlucoseSS) was not impaired in OF rats (OF vs. YL; p = 0.61) but was markedly impaired in YF rats by ~75% (1.72 ± 0.66 × 103 dL/min × kg per pM; p = 0.013). Surprisingly, separate regression analysis for old and young animals revealed that old rats exhibited a significantly steeper regression between Si (Rd and EGP) and adiposity than young rats (p < 0.05). Thus, older rats showed a proportionately greater decrement in insulin sensitivity with an equivalent increase in adiposity. Discussion: These data suggest that, in rodents, youth affords significant protection against obesity‐induced insulin resistance.  相似文献   

3.
Lactate, an important metabolic substrate for peripheral tissues and the liver, is released in significant amounts from adipose tissue. Using a perifusion system, we measured lactate production from glucose and response to insulin in isolated mesenteric and epididymal adipocytes removed from fed or fasted male Wistar rats at two stages of growth and development: (a) lean rats (7 weeks to 9 weeks old, weighing ~250 g), and (b) fatter rats (6 months to 8 months old, weighing ~550 g). The results show that lactate production in perifused adipocytes is regulated by the prior nutritional state of the animals, by the adipose tissue region, and by the presence of insulin in the perifusate. In fat cells from lean rats, basal lactate production was significantly higher (p<0.05) in mesenteric cells when compared with epididymal cells, both in the fed state (7.8 nmol/107 fat cells per minute vs. 2.9 nmol/107 fat cells per minute) and after 2 days of fasting (13.6 nmol vs. 3.5 nmol). When the response to 1 mU/mL insulin was studied, however, the relative increase in lactate production produced by insulin was greater in the epididymal cells than in the mesenteric cells, in both the fed (194% vs. 91% over basal, respectively) and fasted (360% vs. 55% over basal, p<0.05) state. When larger epididymal adipocytes from fatter rats were compared with an equal number of smaller epididymal cells from leaner rats, the larger cells produced 4.99 nmol of lactate/107 fat cells per minute, whereas the smaller cells produced 2.93 nmol (p=0.08). Large fat cells showed a small and nonsignificant response to insulin in either type of cell (epididymal vs. mesenteric) or nutritional state (fed vs. fasted). This study indicates that distinct regional differences exist in lactate production and response to insulin. Mesenteric adipose tissue, which drains directly into the portal vein and provides substrates to the liver, may be an important source of lactate for the hepatic processes of gluconeogenesis and glycogenesis.  相似文献   

4.
The lipolytic effects of norepinephrine (a non-selective β-agonist) and BRL 37344 (a selective β3-agonist) were compared in isolated rat brown and white adipocytes. Norepinephrine and BRL 37344 maximally stimulated lipolysis in brown and white adipocytes, approximately 10 times above basal values. However, adipocyte sensitivity for BRL 37344 was greater than that for norepinephrine, particularly in brown adipocytes [the EC50 values (nM) for BRL 37344 and norepinephrine were 5 ± 1 and 103 ± 31 in brown adipocytes (P <0.01) versus 56 ± 9 and 124 ± 17 in white adipocytes (P <0.05), respectively]. On the other hand, the lipolytic effects of norepinephrine were totally blocked by 20–40 times superior concentrations of propranolol or bupranolol in brown as well as in white adipocytes. In contrast, the lipolytic effects of BRL 37344 were fully inhibited by concentrations of propranolol or bupranolol that were 200–1000 superior to the β3 agonist concentration. The results demonstrate that: (1) the (β3-agonist BRL 37344 is as effective as norepinephrine for maximally stimulating lipolysis in rat brown and white adipocytes, (2) both adipocyte types are more sensitive to the lipolytic effects of BRL 37344 than to those of norepinephrine, (3) although bupranolol is a better antagonist than propranolol on BRL 37344-stimulated lipolysis, it cannot be considered as a specific β3-antagonist, (4) brown adipocytes are 10 times more sensitive than white adipocytes to the lipolytic effects of BRL 37344, suggesting an important role of β3-receptors in brown adipose tissue.  相似文献   

5.
In this study we examined whether the levels of gene expressions of the three β- adrenergic receptor (βAR) subtypes, β1, β2, and β3, contribute to age-related increase in βAR density. Liver membranes and total RNA were prepared from young (4- to 6-month-old) and old (24-month-old) male Fischer 344 rats. βAR density (Bmax) in liver membranes was measured by a radioligand receptor binding assay using the receptor subtype nonselective βAR antagonist 125I-pindolol as the radioligand. Steady-state levels of β2AR mRNA in rat liver were measured by Northern blot analysis; because of the low abundance of β1AR and β3AR mRNA in rat liver, the expressions of these genes were measured by a semiquantitative RT-PCR or an RT-PCR. Scatchard analysis of saturation binding curves of the binding assay confirmed an age-related increase in Bmax (young: 7.1?±?0.8?fmol/mg protein vs. old: 18.1?±?4.3?fmol/mg protein). No age-related differences were found in the levels of β2AR mRNA. However, semiquantitative RT-PCR revealed an approximately twofold increase in β1AR mRNA level between young and old rats (P?<?0.05). β1AR mRNA levels were also correlated with Bmax values for 125I-pindolol binding sites in individual rats (r = 0.67; P?=?0.012). β3AR mRNA, which was demonstrable in rat white adipose tissue by RT-PCR, was generally not detected in livers from young or old rats, with the exception of two old rats with the highest Bmax. These results suggest that an age-related increase of β1AR gene expression contributes to increased βAR density and β adrenergic responsiveness in rat liver during aging.  相似文献   

6.
To determine which subtype of α1-adrenergic receptors plays a role in the regulation of blood pressure, with α1--adrenergic receptor-mediated vasoconstriction in perfused hindlimb as a control, we compared the inhibitory effects of various aradrenergic receptor selective antagonists on the vasopressure responses to phenylephrine between the mean arterial pressure and hindlimb perfusion pressure in anesthetized rats. In Normotensive Wistar rats, the results showed that the inhibitory effects (dose ratios of ED50, Dr) of α-1adrenoceptor selective antagonist (prazosin, Dr 13.5 ± 3.6 vs. 15.1 ± 4.3, n = 11), /ga1A-adrenoceptor selective antagonist (5-methyl-urapidil, Dr 2.4 ± 0.9 vs. 3.7 ± 2.3, n = 12; RS-17053, Dr 3.2 ± 1.6 vs. 4.4 ± 3.3, n =12) and α1D- adrenoceptor selective antagonist (BMY7378, Dr 1.9 ±0.9 vs. 2.2 ± 0.8, n = 8) on phenylephrineinduced increases of perfusion pressure in the autoperfused femoral beds were the same as that in the mean arterial blood pressure in normotensive Wistar rats. The inhibitory effects of antagonists (RS-17053, Dr 3.4 ± 0.6 vs. 4.3 ± 0.9, n = 5; BMY7378, Dr 1.7 ± 0.5 vs. 1.7 ± 0.5, n = 8) in spontaneous hypertensive rats were similar with the Wistar rats. These results suggest that the mean arterial pressure induced by phenylephrine was mainly mediated by α1A-adrenergic receptor in both the anesthetized Wistar rats and spontaneous hypertensive rats.  相似文献   

7.
The cardiac β-adrenergic coupled adenylate cyclase system was examined in young and old male Wistar rats. The concentration of binding sites for (?) 3H-DHA in membranes prepared from cardiac ventricles was 21.1 ± 2.78 (SD) fmoles/mg protein in 3–4 month old rats (young rats) and 31.2 ± 2.20 fmoles/mg protein in 24 month old rats (old rats). The dissociation constant, KD was 4.3 ± 1.8 nM and 6.7 ± 1.7 nM for young and old rats, respectively. Various compounds were used to study the characteristics of activation of adenylate cyclase in homogenates from cardiac ventricles. Basal adenylate cyclase was reduced 30% in old animals compared to young (6.1 pmoles/min/mg protein in 24 month vs. 8.6 pmoles/min/mg protein in 3–4 month). (?)Isoproterenol (10?5M) alone stimulated adenylate cyclase greater than two-fold in young rats (10.6 pmoles/min/mg protein above basal) and this stimulation was 34% lower in old animals. GppNHp (100 μM), fluoride (10 mM), and forskolin (100 μM) activation of adenylate cyclase above basal was reduced 38, 37, and 34%, respectively, in the old animals. No significant changes between the two groups were noted in the apparent affinity of GppNHp either alone or in the presence of (?)isoproterenol nor in the affinities of catecholamine agonists for activation of cyclase. These results suggest a reduction in the amount of functional regulatory protein or possibly cyclase in 24 month old rat ventricular tissue compared to 3–4 month old tissue. However, this data does not rule out the possibility of altered molecular interactions of a full complement of regulatory protein (s) with β-adrenergic receptor and/or catalytic adenylate cyclase.  相似文献   

8.
Labelled steroid hormones,3H-hydrocortisone and14C-testosterone, being injected in the gray matter of theL 5L 6 spinal cord segments were shown to be transported via ventral and dorsal root fibers (antero- and retrograde directions, respectively) of old (25 to 28 months) rats with a lower velocity than in adult young (6 to 11 months) animals. The averaged maximum velocities of axon transport (AT) through the ventral and dorsal roots were: for3H-hydrocortisone, 756±63 and 738±46 mm per day, and for14H-testosterone, 624±54 and 608±80 mm per day, respectively. Therefore, in old rats the AT velocities for3H-hydrocortisone and14C-testosterone were about four and seven-eight times lower than those in adult rats. In the course of anterograde, AT through the ventral roots in old rats the inclusion of3H-hydrocortisone is sharply suppressed (by more than an order of magnitude), as compared with than in adult animals. The doses of non-labelled steroid hormones within a 10−7 – 10−6 range, injected into the lumbar spinal segments, resulted in hyperpolarization of muscle fibers of themm. gastrocnemius anddeltoideus, but this phenomenon developed in old rats much later than in adult rats. It is obvious that AT of steroid hormones can be considered one of the mechanisms of their effects on the tissue of an organism, and this mechanism undergoes extremely intensive modifications with aging.  相似文献   

9.
We tested the hypothesis that superoxide signaling within aortic perivascular adipose tissue (PVAT) contributes to large elastic artery stiffening in old mice. Young (4–6 months), old (26–28 months), and old treated with 4‐Hydroxy‐2,2,6,6‐tetramethylpiperidine 1‐oxyl (TEMPOL), a superoxide scavenger (1 mm in drinking water for 3 weeks), male C57BL6/N mice were studied. Compared with young, old had greater large artery stiffness assessed by aortic pulse wave velocity (aPWV, 436 ± 9 vs. 344 ± 5 cm s‐1) and intrinsic mechanical testing (3821 ± 427 vs. 1925 ± 271 kPa) (both P < 0.05). TEMPOL treatment in old reversed both measures of arterial stiffness. Aortic PVAT superoxide production was greater in old (P < 0.05 vs. Y), which was normalized with TEMPOL. Compared with young, old controls had greater pro‐inflammatory proteins in PVAT‐conditioned media (P < 0.05). Young recipient mice transplanted with PVAT from old compared with young donors for 8 weeks had greater aPWV (409 ± 7 vs. 342 ± 8 cm s‐1) and intrinsic mechanical properties (3197 ± 647 vs. 1889 ± 520 kPa) (both P < 0.05), which was abolished with TEMPOL supplementation in old donors. Tissue‐cultured aortic segments from old in the presence of PVAT had greater mechanical stiffening compared with old cultured in the absence of PVAT and old with PVAT and TEMPOL (both, P < 0.05). In addition, PVAT‐derived superoxide was associated with arterial wall hypertrophy and greater adventitial collagen I expression with aging that was attenuated by TEMPOL. Aging or TEMPOL treatment did not affect blood pressure. Our findings provide evidence for greater age‐related superoxide production and pro‐inflammatory proteins in PVAT, and directly link superoxide signaling in PVAT to large elastic artery stiffness.  相似文献   

10.
Corticosteroid Modulation of Signal Transduction in the CATH.a Cell Line   总被引:1,自引:0,他引:1  
Abstract: Noradrenergic neuronal networks originating in the locus coeruleus have been implicated in the stress response. In order to study this system in vitro, we have employed a locus coeruleus-like cell line, CATH.a, and have determined the effect of dexamethasone on receptor-mediated second messenger responses. The CATH.a cell line produced increases in intracellular cyclic AMP conversion in response to corticotrophin-releasing factor (EC50 = 6.93 ± 1.26 nM, maximum conversion = 4.11 ± 0.20%) and vasoactive intestinal polypeptide (EC50 = 240 ± 40 nM, maximum conversion = 8.92 ± 1.24%). Forskolin (10 µM) increased conversion from 0.48 ± 0.05 to 6.39 ± 0.38%. The α2-adrenoceptor agonist 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK14304) inhibited the forskolin response with an IC50 of 6.76 ± 0.11 nM. Carbachol increased total 3H-labelled inositol phosphate accumulation to a maximum of 3.01 ± 0.79 fold basal (EC50 = 7.94 ± 0.14 µM). Bradykinin produced a maximum 1.81 ± 0.05 fold basal stimulation of phosphoinositide hydrolysis (EC50 = 9.12 ± 0.16 nM). Both carbachol and bradykinin increased intracellular Ca2+ concentration probably via a combination of mobilisation of intracellular stores and gating of extracellular Ca2+. Incubation for 24 h with the glucocorticoid receptor agonist, dexamethasone (1 µM), significantly potentiated the receptor-mediated phosphoinositide responses to all the agents tested; however, of the receptor-mediated increases in cyclic AMP conversion, only the vasoactive intestinal polypeptide response was potentiated. These results show that the CATH.a cell line displays some of the properties expected of locus coeruleus neurons and that glucocorticoid receptor stimulation selectively modulates receptor-mediated increases in second messenger formation.  相似文献   

11.
Objective: Recent studies in rats suggest an important effect of α1‐adrenoreceptor stimulation on glucose uptake in white adipocytes. It is not known if α1‐adrenoreceptor stimulation elicits similar metabolic effects in humans. Research Methods and Procedures: Three microdialysis catheters in abdominal subcutaneous adipose tissue were perfused with 0.00, 0.01, 0.10, 1.00, and 10.00 μM isoproterenol, phenylephrine, or phenylephrine plus 100 μM propranolol. Dialysate concentrations of ethanol, glycerol, glucose, and lactate were measured for estimating blood flow (ethanol‐dilution technique), lipolysis, and glycolysis, respectively. Results: Phenylephrine, with or without propranolol, did not elicit a change in ethanol ratio. In contrast, the ethanol ratio decreased markedly with isoproterenol. Dialysate glucose concentration decreased with phenylephrine with and without propranolol and increased with isoproterenol. Phenylephrine caused a dose‐dependent increase in dialysate glycerol concentration, with a maximal effect similar to that of isoproterenol. The effect was attenuated with propranolol. Discussion: Our findings suggest that α1‐adrenoreceptor stimulation by phenylephrine increases glucose uptake and metabolism in human abdominal adipose tissue. Furthermore, phenylephrine elicits a marked increase in lipolytic activity in white adipose tissue through β‐adrenoreceptor activation.  相似文献   

12.
The functioning of the mitochondrial permeability transition pore (mPTP) is involved in the mechanism of programmed cell death and mitochondrial dysfunction observed with aging. In this work, the functional state of heart mitochondria isolated from young (mature and 2–3-month-old) and old (20–22-month-old) rats under conditions of mPTP opening was studied. In the mitochondria of old rats, the rates of Ca2+ and TPP+ absorption decreased by 40 and 42%, respectively, the threshold concentration of Ca2+ decreased by 20%, and the swelling rate of mitochondria from old animals was by 40% higher than that of mitochondria from young ones. In the heart mitochondria of old animals, the content and production of reactive oxygen species (ROS) varied, the superoxide anion content was increased, and the level of hydroperoxide (H2O2) increased at a threshold calcium concentration. Electron microscopy revealed a decrease in the number of cristae in mitochondria of the rat heart during aging. To study the potential role of proteins modulating the mPTP functioning, the content of 2',3'-cyclonucleotide-3'-phosphodiesterase (CNPase) and translocator protein (TSPO) in the heart mitochondria of rats of different ages was measured. A significant age-related decrease in the level of CNPase and an increase in the amount of TSPO were detected. The role of these proteins in mitochondrial dysfunction observed during aging is discussed.  相似文献   

13.
We evaluated the potential of a granular formulation of Metarhizium brunneum F52 containing microsclerotia (MbMSc granules) for control of Aedes aegypti by targeting eggs. MbMSc granules produced infective conidia within 14 days after application to 2.5?g moist potting soil, producing 5.9?×?105, 2.08?×?106 and 6.85?×?106 conidia from 1, 5 and 25?mg MbMSc granules, respectively. Application of MbMSc triggered premature eclosion of eggs (EC50?=?12?mg) with percentages as high as 31?±?2.9% and 67?±?4.3% of the eggs treated with 5 and 25?mg MbMSc granules, respectively, after 14 days on moist filter paper. Premature eclosion of eggs started at 3 days subsequent to MbMSc granule application and survival of larvae was significantly reduced for granule treated eggs (74?±?2.2%, 39?±?2.0% and 23?±?4.9% larvae survived for 1, 5 and 25?mg granule treatments, respectively, EC50?=?4.9?mg). When MbMSc granules were applied in moist potting soil with mosquito eggs, rates of 1, 5 and 25?mg of MbMSc granules significantly reduced adult emergence with only 81?±?2.1%, 47?±?1.9%, and 34?±?2.1% emergence, respectively (EC50?=?7?mg). Eggs treated with increasing concentrations of fungal conidia enhanced premature eclosion of eggs with an EC50?=?1.6?×?106 conidia/mL. Our results demonstrate that MbMSc granules are a promising candidate for control of A. aegypti and that fermentative production of Mb F52 microsclerotia as the active propagule has the potential for use for mosquito control.  相似文献   

14.
We previously reported a significant derangement of intracellular free calcium ion concentration in the isolated perfused kidney of adult spontaneously hypertensive rat (SHR) (J. Biol. Chem. 267, 3637–3643, 1992). In order to investigate whether an abnormality in intracellular free calcium or another ion precedes the development of elevated blood pressure in SHR, we have now compared intracellular free Ca2+, Na+ and pH, using 31P, 19F, and triple quantum-filtered (TQ) 23Na NMR, in perfused kidneys from prehypertensive young SHR and normotensive young Wistar-Kyoto (WKY) rats (5–6 weeks old) which showed no significant difference in blood pressure B.P.=120±5 mmHg and 115±3 mmHg, for SHR and WKY rats, respectively). Like the adult kidney, no significant differences in intracellular ATP concentration or intracellular pH were found between young prehypertensive SHR and normotensive WKY rat kidneys. The TQ 23Na NMR signal was 47% higher in the SHR kidney, but, due to biological variability and measurement errors, this difference could not be shown to be statistically significant. However, a significant (40%; P<0.05) increase was found in O2 consumption rate, a measure of the Na+/K+-ATPase activity, of the young prehypertensive SHR kidney in comparison to the age-matched WKY rat kidney (7.25±0.75 for SHR vs. 5.17±0.18 μmola O2/min g for WKY rat, n = 6). Furthermore, a highly significant (92%; P<0.02) increase in intracellular free Ca2+ concentration was observed in kidneys from young SHR that had noy yet been developed high blood pressure in comparison to the kidneys from young normotensive WKY rats (648±76 nM vs. 339±39 nM, n = 4, despite the fact that there was no significant difference in blood pressure. Increased intracellular free Ca2+ thus appears to be part of a primary defect, in the prehypertesive young SHR kidney, which may, by way of increased release of arachidonic acid, and subsequent increased production of vasoconstricting arachidonic acid metabolites via the cytochrome P450 pathway, induce elevated blood pressure in the adult SHR.  相似文献   

15.
Grey mould, caused by the fungus Botrytis cinerea, is one of the most destructive diseases in greenhouses for which serious fungicide resistance has developed. Between 2003 and 2005, 213 isolates of B. cinerea from two geographical regions were characterised for baseline sensitivity to kresoxim‐methyl. In the absence of salicylhydroxamic acid (SHAM), the mean 50% effective concentration (EC50) values were 6.67 ± 0.61 (mean ± SD) and 0.37 ± 0.10 mg L?1 during growth and germination, respectively. In the presence of 100 mg L?1 SHAM, baseline sensitivities were distributed as unimodal curves with mean EC50 values of 2.38 ± 0.21 and 0.28 ± 0.09 mg L?1 for inhibiting growth and inhibiting germination, respectively. The mixture of kresoxim‐methyl and boscalid showed good control efficacy against strawberry grey mould disease. After the mixture was extensively used on strawberry for 2 years, 50 isolates were collected and determined for their sensitivity to kresoxim‐methyl and boscalid, respectively. The mean EC50 of germination inhibition by boscalid was 0.39 ± 0.08 mg L?1. The mean EC50 of germination inhibition by kresoxim‐methyl was 0.26 ± 0.07 mg L?1 in the presence of 100 mg L?1 SHAM. Sensitivities of B. cinerea to both kresoxim‐methyl and boscalid did not show any significant decrease. These results suggest that their mixture is a satisfactory alternative candidate for management of grey mould disease in greenhouses.  相似文献   

16.
Objective: We have reported that glucose utilization regulates leptin expression and secretion from isolated rat adipocytes. In this study, we employed two antidiabetic agents that act to increase glucose uptake by peripheral tissues, metformin and vanadium, as pharmacological tools to examine the effects of altering glucose utilization on leptin secretion in primary cultures of rat adipocytes. Research Methods and Procedures: Isolated adipocytes (100 μL of packed cells per well) were anchored in a defined matrix of basement membrane components (Matrigel) with media containing 5.5 mM glucose and incubated for 96 hours with metformin or vanadium. Leptin secretion, glucose utilization, and lactate production were assessed. Results: Metformin (0.5 and 1.0 mM) increased glucose uptake in the presence of 0.16 nM insulin by 37 ± 10% (p < 0.005) and 62 ± 8% (p < 0.0001) over insulin alone, respectively. Metformin from 0.5 to 5.0 mM increased lactate production by 105 ± 43% (p < 0.025) to 202 ± 52% (p < 0.0025) and at 1.0 and 5.0 mM increased the proportional rate of glucose conversion to lactate by 78 ± 18% (p < 0.005) and 166 ± 41% (p < 0.0025), respectively. At concentrations less than 0.5 mM, metformin did not affect leptin secretion, but at 0.5 mM, the only concentration that significantly increased glucose utilization without increasing glucose conversion to lactate, leptin secretion was modestly stimulated (by 20 ± 9%; p < 0.05). Concentrations from 1.0 to 25 mM inhibited leptin secretion by 25 ± 8% (p < 0.005) to 89 ± 4% (p < 0.0001). Across metformin doses, leptin secretion was inversely related to the percentage of glucose taken up and released as lactate (r = ?0.74; p < 0.0001). Vanadium (5 to 20 μM) increased glucose uptake from 20 ± 7% (p < 0.01) to 34 ± 13% (p < 0.02) and increased lactate production at 5 μM by 17 ± 8% (p < 0.025) and 10 μM by 61 ± 20% (p < 0.02) but did not alter the conversion of glucose to lactate. Vanadium (5 to 50 μM) inhibited leptin secretion by 33 ± 6% (p < 0.0025) to 61 ± 8% (p < 0.0001). Discussion: Both metformin and vanadium increase glucose uptake and inhibit leptin secretion from cultured adipocytes. The inhibition of leptin secretion by metformin is related to an increase in the metabolism of glucose to lactate. The inhibition by vanadium most likely involves direct effects on cellular phosphatases. We hypothesize that the effect of glucose utilization to stimulate leptin production involves the metabolism of glucose to a fate other than anaerobic lactate production, possibly oxidation or lipogenesis.  相似文献   

17.
The relationship of physical activity and aging, two processes with a high production of oxygen-free radicals to the ascorbate and superoxide anion (O 2 - ) contents of peritoneal macrophages was studied in two animal species: guinea-pig (in which ascorbic acid is a vitamin) and mouse (in which ascorbic acid is not a vitamin). The effects of exhaustive exercise were examined in young and old animals. The results show that macrophages from old animals have a lower ascorbate content than those from young ones, whereas with exercise the ascorbate content increased in both old and young animals. This increase was higher in young than in old animals, and more evident in mice than in guinea-pigs. Aging also resulted in an increase in the O 2 - levels of macrophages. With exercise these levels decreased in young mice but increased in young guinea-pigs. In old animals the exhaustive exercise did not change the O 2 - levels. The results suggest in general a lack of correlation between the intracellular ascorbate and O 2 - levels in relation to both physical exercise and aging.Abbreviations PBS phosphate buffered saline - NBT nitroblue tetrazolium - PEC peritoneal exudate cells - PMN polymorphonuclear  相似文献   

18.
Plasma estradiol and cytosolic estradiol receptor levels of testes were determined in a group of young (2–3 months) and old (24 months) Sprague-Dawley rats. Estradiol binding sites for the young rats averaged 5.6 ± 0.3 fmol/mg protein (x ± SE, n=12), which was comparable to that of the old rats, 5.7 ± 0.3 fmol/mg protein (n=12). Using Scatchard analyses, the association constants at equilibrium of estradiol receptor binding of the old and young rats were the same, 6.1 × 1010M?1. Plasma estradiol levels were also similar in both groups-19.6 ± 2.8 pg/ ml (n=14) for the young and 19.2 ± 2.6 pg/ml (n=10) for the old rats. Our results suggest that impaired testosterone biosynthesis in old rats was not due to elevated plasma estradiol levels or to differences in testicular estradiol receptor content.  相似文献   

19.
Mass and energy fluxes were measured over a field of Agave tequilana in Mexico using eddy covariance (EC) methodology. Data were gathered over 252 d, including the transition from wet to dry periods. Net ecosystem exchanges (FN,EC) displayed a crassulacean acid metabolism (CAM) rhythm that alternated from CO2 sink at night to CO2 source during the day, and partitioned canopy fluxes (FA,EC) showed a characteristic four‐phase CO2 exchange pattern. Results were cross‐validated against diel changes in titratable acidity, leaf‐unfurling rates, energy exchange fluxes and reported biomass yields. Projected carbon balance (g C m?2 year?1, mean ± 95% confidence interval) indicated the site was a net sink of ?333 ± 24, of which contributions from soil respiration were +692 ± 7, and FA,EC was ?1025 ± 25. EC estimated biomass yield was 20.1 Mg (dry) ha?1 year?1. Average integrated daily FA,EC was ?234 ± 5 mmol CO2 m?2 d?1 and persisted almost unchanged after 70 d of drought conditions. Regression analyses were performed on the EC data to identify the best environmental predictors of FA. Results suggest that the carbon acquisition strategy of Agave offers productivity and drought resilience advantages over conventional semi‐arid C3 and C4 bioenergy candidates.  相似文献   

20.
The purpose of this study was to test the hypothesis that endothelial cells from resistance arteries and epicardial conduit coronary arteries differ in their expression of nitric oxide synthase (NOS) and calcium metabolism, and that these differences contribute to the mechanism underlying disparate physiological vasodilator responses observed between the two populations of vessels. The functional vasodilator responses of isolated resistance arteries and epicardial conduit coronary arteries were compared in vitro using both the receptor-independent agonist A23187 ionophore to increase intracellular calcium and the receptor-dependent agonist bradykinin. Constitutive NOS (cNOS) activity in monocultures of endothelial cells derived from resistance arteries and conduit arteries was assayed using a fibroblast-reporter cell method. Intracellular calcium concentration was assessed using fura-2 microfluorometry. Nitric oxide production was determined using a chemiluminescence technique, while cNOS protein was quantitated by Western blot analysis. A23187 was a less potent vasodilator of resistance arteries studied in vitro, compared to epicardial conduit arteries (EC50 = 1.6 μM, resistance artery vs. EC50 = 0.03 μM, conduit artery); however, bradykinin was more potent in resistance arteries (EC50 = 0.3 nM, resistance artery vs. EC50 = 2 nM, conduit artery). In pure monocultures of endothelium, nitric oxide production measured by chemiluminescence both basally and in response to A23187 was significantly less in resistance arteries (6.1 ± 0.5, basal vs. 10.80 ± 0.55, stimulated nmol/μg protein), compared to conduit arteries (7.7 ± 0.5, basal vs. 17.00 ± 1.52, stimulated nmol/μg protein; P < 0.05 resistance artery endothelium vs. conduit artery endothelium). cNOS enzyme activity assessed by cGMP production in reporter cell fibroblasts was also lower in resistance arteries compared to conduit arteries (0.17 ± 0.03 vs. 0.33 ± 0.05 fmol cGMP/μg protein, respectively; P < 0.05 resistance artery endothelium vs. conduit artery endothelium). Conduit arteries expressed 2.1 × more cNOS protein than resistance arteries, as assessed by Western blotting of cellular homogenates. No significant differences were found with microfluorimetry in either basal or ionophore-stimulated intracellular calcium concentrations. The results signified that porcine resistance arteries expressed less NOS and produced less nitric oxide than epicardial conduit arteries both basally and in response to an increase in intracellular calcium. This difference was reflected functionally as a decreased vasodilatory response to increased intracellular calcium in resistance arteries that could not be explained on the basis of differences in the metabolism of intracellular calcium. In contrast, the functional vasodilator response of intact vessels to a receptor-mediated agonist was enhanced in resistance arteries compared to conduit arteries, suggesting an important role of signal transduction mechanisms in specific physiological responses. Thus, the ability of the endothelium to regulate on a regional basis the expression of NOS and integrate receptor-mediated responses with these differences may provide a mechanism for diverse vasomotor responses in different populations of vessels. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号