首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protozoan and helminth parasites of humans in mainland China   总被引:1,自引:0,他引:1  
To date, 30 species of protozoa, 12 species of cestodes, 26 species of trematodes, 23 species of nematodes, two species of gordius and one acanthocephalan species hae been reported as parasites of man in mainland China.  相似文献   

2.
In humans as well as in animals, intestinal parasites can affect key stages of alimentation, digestion, and absorption. Selected examples of the effects of parasitic infection on food intake, intestinal propulsion and motility, organ function, epithelial structure and function, and intestinal circulation are presented. Malabsorption and nutrient loss can result from many of these common infections. Additional data are needed to determine the extent to which alterations in gastrointestinal structure and function vs. effects on appetite mediate the effects of parasites on host nutrition in humans.  相似文献   

3.
Macromolecular Physiology of Plastids   总被引:1,自引:0,他引:1  
The composition and amount of carotenoid pigments were determined in etiolated seedling leaves of 6 barley (Hordeum vulgare L.) mutants, comprising 1 xantha and 5 tigrina mutants. All mutants had on a mole basis approximately the same content of carotenoids as the wild type. The mutants xan-u21, tig-n32, and tig-33 contained significantly higher amounts of carotenes than the wild type, ranging from 32 to 68% of the total carotenoid content as compared to the 4–8% found in the wild type. In the mutants tig-b23 and tig-o34, only a slight increase in the amount of carotenes was notable. The carotene content and composition in tig-d12 was indistinguishable from that of the wild type. The carotenes extracted from xan-u21, tig-b23, tig-n32, tig-33, and tig-o34 were characterized by adsorption chromatography and spectrophotometry. Mutant xan-u21 is in the dark blocked in β-carotene synthesis, and accumulates the aliphatic polyenes: phytofluene, proneurosporene, poly-cis-lycopenes, neo-lycopene and lycopene. The other four mutants synthesize β-carotene, but accumulate in addition various higher saturated carotenes, the main components being ζ-carotene in tig-b23, a lycopenic pigment in tig-n32 and tig-33, and lycopene in tig-o34. Accumulation of higher saturated carotenes appears correlated with specific aberrations of the membrane structure in plastids. The regulation of carotene and protochlorophyllide syntheses in etioplasts are closely linked as shown by the single gene mutants which affect both pathways. However, several mutants have been identified which cause defects in protochlorophyllide synthesis only.  相似文献   

4.
Plastids with two bounding membranes--as exemplified by red algae, green algae, plants, and glaucophytes--derive from primary endosymbiosis; a process involving engulfment and retention of a cyanobacterium by a phagotrophic eukaryote. Plastids with more than two bounding membranes (such as those of euglenoids, dinoflagellates, heterokonts, haptopytes, apicomplexa, cryptomonads, and chlorarachniophytes) probably arose by secondary endosymbiosis, in which a eukaryotic alga (itself the product of primary endosymbiosis) was engulfed and retained by a phagotroph. Secondary endosymbiosis transfers photosynthetic capacity into heterotrophic lineages, has apparently occurred numerous times, and has created several major eukaryotic lineages comprising upwards of 42,600 species. Plastids acquired by secondary endosymbiosis are sometimes referred to as "second-hand." Establishment of secondary endosymbioses has involved transfer of genes from the endosymbiont nucleus to the secondary host nucleus. Limited gene transfer could initially have served to stabilise the endosymbioses, but it is clear that the transfer process has been extensive, leading in many cases to the complete disappearance of the endosymbiont nucleus. One consequence of these gene transfers is that gene products required in the plastid must be targeted into the organelle across multiple membranes: at least three for stromal proteins in euglenoids and dinoflagellates, and across five membranes in the case of thylakoid lumen proteins in plastids with four bounding membranes. Evolution of such targeting mechanisms was obviously a key step in the successful establishment of each different secondary endosymbiosis. Analysis of targeted proteins in the various organisms now suggests that a similar system is used by each group. However, rather than interpreting this similarity as evidence of an homologous origin, I believe that targeting has evolved convergently by combining and recycling existing protein trafficking mechanisms already existing in the endosymbiont and host. Indeed, by analyzing the multiple motifs in targeting sequences of some genes it is possible to infer that they originated in the plastid genome, transferred from there into the primary host nucleus, and subsequently moved into the secondary host nucleus. Thus, each step of the targeting process in "second-hand" plastids recapitulates the gene's previous intracellular transfers.  相似文献   

5.
6.
The Fine Structure of Avocado Plastids   总被引:2,自引:0,他引:2  
Ultrastructural studies of both young and harvest-ripe avocadofruits have established that the skin and outer green layersof flesh contain chloroplasts with an extensive thylakoid system.Etioplasts occur in the yellow flesh adjacent to the stone.The pale-green flesh contains plastids, intermediate betweenchloroplasts and etioplasts, which have prominent prolamellarbodies from which radiate grana. When segments of both the yellow and pale-green flesh of maturefruit (7 cm diam.) are cultured in the light their prolamellarbodies do not disperse although there is a change in their crystallinity.The palegreen tissues of immature (4 mm and 2 cm diam.) fruitsalso contain etioplasts but on culturing these differentiateinto chloroplasts. Both chlorophyll content and the ratio ofchlorophyll a to b varied in the different tissues of youngand mature fruits.  相似文献   

7.
The plastid is an organelle vital to all photosynthetic and some non-photosynthetic eukaryotes. In the model plant Arabidopsis thaliana, a number of nuclear genes encoding plastid proteins have been found to be necessary for embryo development. However, the exact roles of plastids in this process remain largely unknown. Here we use publicly available datasets to obtain insights into the relevance of plastid activities to A. thaliana embryogenesis. By searching the SeedGenes database (http://www.seedgenes.org) and recent literature, we found that, of the 339 non-redundant genes required for proper embryo formation, 108 genes likely encode plastid-targeted proteins. Nineteen of these genes are necessary for development of preglobular embryos and/or their conversion to globular embryos, of which 13 genes encode proteins involved in non-photosynthetic metabolism. By contrast, among 38 genes which are dispensable for globular embryo formation but necessary for further development, only one codes for a protein involved in metabolism. Products of 21 of the 38 genes play roles in plastid gene expression and maintenance. Examination of RNA profiles of embryos at distinct growth stages obtained in laser-capture microdissection coupled with DNA microarray experiments revealed that most of the identified genes are expressed throughout embryo morphogenesis and maturation. These findings suggest that metabolic activities are required at preglobular and throughout all stages of embryo development, whereas plastid gene expression becomes necessary during and/or after the globular stage to sustain various activities of the organelle including photosynthetic electron transport.  相似文献   

8.
Certain kinetoplastid (Leishmania spp. and Tryapnosoma cruzi) and apicomplexan parasites (Plasmodium falciparum and Toxoplasma gondii) are capable of invading human cells as part of their pathology. These parasites appear to have evolved a relatively expanded or diverse complement of genes encoding molecular chaperones. The gene families encoding heat shock protein 90 (Hsp90) and heat shock protein 70 (Hsp70) chaperones show significant expansion and diversity (especially for Leishmania spp. and T. cruzi), and in particular the Hsp40 family appears to be an extreme example of phylogenetic radiation. In general, Hsp40 proteins act as co-chaperones of Hsp70 chaperones, forming protein folding pathways that integrate with Hsp90 to ensure proteostasis in the cell. It is tempting to speculate that the diverse environmental insults that these parasites endure have resulted in the evolutionary selection of a diverse and expanded chaperone network. Hsp90 is involved in development and growth of all of these intracellular parasites, and so far represents the strongest candidate as a target for chemotherapeutic interventions. While there have been some excellent studies on the molecular and cell biology of Hsp70 proteins, relatively little is known about the biological function of Hsp70-Hsp40 interactions in these intracellular parasites. This review focuses on intracellular protozoan parasites of humans, and provides a critique of the role of heat shock proteins in development and pathogenesis, especially the molecular chaperones Hsp90, Hsp70 and Hsp40.  相似文献   

9.
10.
11.
Heinz-Dietmar Behnke 《Planta》1973,110(4):321-328
Summary Plastids have been identified in the sieve elements and/or companion cells of 14 monocotyledon species. In contrast to earlier reports, plastids are present in the sieve elements of Smilax and the companion cells of Tradescantia. The development and fine structure of the sieve-element plastids in Smilax do not differ from the type found in all of the 230 angiosperm species we have studied so far contain prominent plastids. The companion cells are easily identified by their specialized plasmatic connections with the sieve elements. The leucoplasts in the companion cells of Tradescantia are identical with those reported for many angiosperms.  相似文献   

12.
Peripheral vesicles in plastids have been observed repeatedly, primarily in proplastids and developing chloroplasts, in which they are suggested to function in thylakoid biogenesis. Previous observations of vesicles in mature chloroplasts have mainly concerned low temperature pretreated plants occasionally treated with inhibitors blocking vesicle fusion. Here, we show that such vesicle‐like structures occur not only in chloroplasts and proplastids, but also in etioplasts, etio‐chloroplasts, leucoplasts, chromoplasts and even transforming desiccoplasts without any specific pretreatment. Observations are made both in C3 and C4 species, in different cell types (meristematic, epidermis, mesophyll, bundle sheath and secretory cells) and different organs (roots, stems, leaves, floral parts and fruits). Until recently not much focus has been given to the idea that vesicle transport in chloroplasts could be mediated by proteins, but recent data suggest that the vesicle system of chloroplasts has similarities with the cytosolic coat protein complex II system. All current data taken together support the idea of an ongoing, active and protein‐mediated vesicle transport not only in chloroplasts but also in other plastids, obviously occurring regardless of chemical modifications, temperature and plastid developmental stage.   相似文献   

13.
ABSTRACT. Most of the coding capacity of primary plastids is reserved for expressing some central components of the photosynthesis machinery and the translation apparatus. Thus, for the bulk of biochemical and cell biological reactions performed within the primary plastids, many nucleus‐encoded components have to be transported posttranslationally into the organelle. The same is true for plastids surrounded by more than two membranes, where additional cellular compartments have to be supplied with nucleus‐encoded proteins, leading to a corresponding increase in complexity of topogenic signals, transport and sorting machineries. In this review, we summarize recent progress in elucidating protein transport across up to five plastid membranes in plastids evolved in secondary endosymbiosis. Current data indicate that the mechanisms for protein transport across multiple membranes have evolved by altering pre‐existing ones to new requirements in secondary plastids.  相似文献   

14.
15.
Non-green plastids (leucoplasts) isolated from pea roots are shown to be considerably active in forming aromatic amino acids by the shikimate pathway which, in contrast to the chloroplast pathway, is independent of light. Supply of phosphoenolpyruvate and 3-dehydroquinate, 3-dehydroshikimate, shikimate and quinate effectively enhances the formation of aromatic amino acids suggesting an intra- or/and intercellular intermediate transport.  相似文献   

16.
Peridinin-containing dinoflagellates are a group of generally marine and photosynthetic protists whose plastids display a number of unusual features. In particular, the plastid genome may be reduced to as few as a dozen genes, and it is not clear if all these genes are expressed. To begin to characterize the plastid proteins, we attempted to purify chloroplasts from the dinoflagellate Lingulodinium polyedrum. We tested several different protocols and found that the organelles were inherently fragile and difficult to isolate intact. In particular, standard purification protocols as described for higher plants produced only broken plastids, as judged by complete loss of the stromal protein RuBisCO. We found that small amounts of RuBisCO could be retained in the plastids if the cells were treated with cellulase prior to lysis. Finally, we report that almost all RuBisCO was retained in plastids prepared from cells subjected to a heat shock treatment, although cellular proteins were denatured by the treatment.  相似文献   

17.
18.
Recent progress in understanding the origins of plastids from endosymbiotic cyanobacteria is reviewed. Establishing when during geological time the endosymbiosis occurred remains elusive, but progress has been made in defining the cyanobacterial lineage most closely related to plastids, and some mechanistic insight into the possible existence of cryptic endosymbioses perhaps involving Chlamydia-like infections of the host have also been presented. The phylogenetic affinities of the host remain obscure. The existence of a second lineage of primary plastids in euglyphid amoebae has now been confirmed, but the quasipermanent acquisition of plastids by animals has been shown to be more ephemeral than initially suspected. A new understanding of how plastids have been integrated into their hosts by transfer of photosynthate, by endosymbiotic gene transfer and repatriation of gene products back to the endosymbiont, and by regulation of endosymbiont division is presented in context.Photosynthesis is biology’s equivalent of alchemy converting a common substance (CO2) into a precious one (reduced carbon compounds rich in chemical energy). Freely available light energy is initially converted to precious chemical energy in the form of ATP. This energy, and the reducing power generated by splitting water molecules to release electrons, is used to fix carbon from atmospheric CO2 and generate reduced carbon compounds that underpin the biosphere. It is estimated that plants and algae convert 258 billion tons of carbon dioxide into biomass by photosynthesis annually (Geider et al. 2001). Microfossils in ancient stromatolites indicate that cyanobacterium-like organisms had invented this process—or an early, perhaps nonoxygenic, version of it—at least 3.5 byo (billions of years old) (Lowe 1980; Walter et al. 1980; Schopf 1993). These photosynthetic prokaryotes substantially predate eukaryotes, which emerged much later (Rasmussen et al. 2008; Koonin 2010). The common ancestor of all eukaryotes entered into an endosymbiotic partnership with an α-proteobacterium that evolved into the mitochondrion, now the site of aerobic respiration in most eukaryotes (Gray 2012); animals and fungi are heterotrophic descendants of this partnership. Another lineage, which eventually produced the plants, entered into a second endosymbiotic partnership, this time with a cyanobacterium, which transplanted photosynthetic alchemy into eukaryotes to create plastids (Gray and Archibald 2012). This review will highlight recent progress in our understanding of the origin and evolution of plastids.  相似文献   

19.
LUX  A. 《Annals of botany》1986,58(4):547-550
Plastids (eoplasts) are present in meristematic cells of prospectivecentral metaxylem in the barley root. Starch starts to be formedin plastids precisely after the cessation of mitotic activityand at the beginning of endomitotic growth. During secondarywall formation, the starch is gradually lost. Cavities are formedin plastids and signs of plastid degeneration are present fromthis stage of cell development. However, some intact globularplastids without starch are present until shortly before thefinal step of ontogeny, i.e. total destruction of protoplast. Hordeum distichum L., root, xylem, plastids, endomitotic growth, starch  相似文献   

20.
No other theme in animal biology seems to be more central than the concept of employing strategies to survive and successfully reproduce. In nature, controlling or avoiding pathogens and parasites is an essential fitness strategy because of the ever-present disease-causing organisms. The disease-control strategies discussed here are: physical avoidance and removal of pathogens and parasites; quarantine or peripheralization of conspecifics that could be carrying potential pathogens; herbal medicine, animal style, to prevent or treat an infection; potentiation of the immune system; and care of sick or injured group members. These strategies are seen as also encompassing the pillars of human medicine: (i) quarantine; (ii) immune-boosting vaccinations; (iii) use of medicinal products; and (iv) caring or nursing. In contrast to animals, in humans, the disease-control strategies have been consolidated into a consistent and extensive medical system. A hypothesis that explains some of this difference between animals and humans is that humans are sick more often than animals. This increase in sickness in humans leading to an extensive, cognitively driven medical system is attributed to an evolutionary dietary transition from mostly natural vegetation to a meat-based diet, with an increase in health-eroding free radicals and a dietary reduction of free-radical-scavenging antioxidants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号