首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Newly-metamorphosed individuals of some species of frogs and toads differ from adults in behavior, ecology, and physiology. These differences may be related to broader patterns of the life histories of different species of frogs. In particular, the length of larval life and the size of a frog at metamorphosis appear to be significant factors in post-metamorphic ontogenetic change. These changes in performance are associated with rapid post-metamorphic increases in oxygen transport capacity. Bufo americanus (American toads) and Rana sylvatica (wood frogs) spend only 2–3 months as tadpoles and metamorphose at body masses of 0.25 g or less. Individuals of these species improve endurance and aerobic capacity rapidly during the predispersal period immediately following metamorphosis. Increases in hematocrit, hemoglobin concentration, and heart mass relative to body mass are associated with this improvement in organismal performance. Rana clamitans (green frogs) spend from 3 to 10 months as larvae and weigh 3 g at metamorphosis. Green frogs did not show immediate post-metamorphic increases in performance. Rana palustris (pickerel frogs) are intermediate to wood frogs and green frogs in length of larval life and in size at metamorphosis, and they are intermediate also in their post-metamorphic physiological changes.American toads and wood frogs appear to delay dispersal from their natal ponds while they undergo rapid post-metamorphic growth and development, whereas green frogs disperse as soon as they leave the water, even before they have fully absorbed their tails. The very small body sizes of newly metamorphosed toads and wood frogs appear to limit the scope of their behaviors. The brief larval periods of these species permit them to exploit transient aquatic habitats, but impose costs in the form of a period of post-metamorphic life in which their activities are restricted in time and space compared to those of adults.  相似文献   

2.
The cane toad (Rhinella marina) is one of the most successful invasive species worldwide, and has caused significant negative impacts on Australian fauna. Experimental work in the laboratory and in mesocosms has shown that tadpoles of native frogs can affect survival, size at metamorphosis and duration of larval period of cane toad tadpoles. To test if these effects occur in nature, we conducted a field experiment using two temporary ponds where we set up enclosures with tadpoles of native green tree frogs (Litoria caerulea) and cane toads in treatments with a range of densities and combinations. The presence of green tree frog tadpoles significantly decreased the growth rate of toad tadpoles and increased the duration of their larval period in both ponds; in one pond, frog tadpoles also significantly reduced the body length and mass of metamorph toads. Toad tadpoles did not have any significant negative effects on green tree frog tadpoles, but there was strong intraspecific competition within the latter species: increased frog tadpole density resulted in increased larval period and reduced survival, growth rate and size at metamorphosis for frogs at one or both ponds. Our results are encouraging for the possibility of using native frogs as one component of an integrated approach to the biological control of cane toads.  相似文献   

3.
Hormonal control of post-embryonic morphogenesis is well established, but it is not clear how differences in developmental endocrinology between species may underlie animal diversity. We studied this issue by comparing metamorphic thyroid hormone (TH) physiology and gonad development across spadefoot toad species divergent in metamorphic rate. Tissue TH content, in vitro tail tip sensitivity to TH, and rates of TH-induced tail tip shrinkage correlated with species differences in larval period duration. Gonad differentiation occurred before metamorphosis in species with long larval periods and after metamorphosis in the species with short larval periods. These differences in TH physiology and gonad development, informed by phylogeny and ecology of spadefoot metamorphosis, provide evidence that selection for the short larval periods in spadefoot toads acted via TH physiology and led to dramatic heterochronic shifts in metamorphic climax relative to gonad development.  相似文献   

4.
Animals are exposed to different predators over their lifespan. This raises the question of whether exposure to predation risk in an early life stage affects the response to predators in subsequent life stages. In this study, we used wood frogs (Rana sylvatica) to test whether exposure to cues indicating predation risk from dragonfly larvae during the wood frog larval stage affected post‐metamorphic activity level and avoidance of garter snake chemical cues. Dragonfly larvae prey upon wood frogs only during the larval stage, whereas garter snakes prey upon wood frogs during both the larval stage and the post‐metamorphic stage. Exposure to predation risk from dragonflies during the larval stage caused post‐metamorphic wood frog juveniles to have greater terrestrial activity than juvenile wood frogs that were not exposed to larval‐stage predation risk from dragonflies. However, exposure to predation risk as larvae did not affect juvenile wood frog responses to chemical cues from garter snakes. Wood frogs exposed as larvae to predation risk from dragonfly larvae avoided garter snake chemical cues to the same extent as wood frog larvae not exposed to predation risk from dragonfly larvae. Our results demonstrate that while some general behaviors exhibit carry‐over effects from earlier life stages, behavioral responses to predators may remain independent of conditions experienced in earlier life stages.  相似文献   

5.
Organisms vary their rates of growth and development in response to environmental inputs. Such developmental plasticity may be adaptive and positively correlate with environmental heterogeneity. However, the evolution of developmental plasticity among closely related taxa is not well understood. To determine the evolutionary pattern of plasticity, we compared plasticity in time to and size at metamorphosis in response to water desiccation in tadpoles among spadefoot species that differ in breeding pond and larval period durations. Like most tadpoles, spadefoot tadpoles possess the remarkable ability to accelerate development in response to pond drying to avoid desiccation. Here, we hypothesize that desert spadefoot tadpoles have evolved reduced plasticity to avoid desiccation in ephemeral desert pools compared to their nondesert relatives that breed in long-duration ponds. We recorded time to and size at metamorphosis following experimental manipulation of water levels and found that desert-adapted species had much less plasticity in larval period and size at metamorphosis than nondesert species, which retain the hypothetical ancestral state of plasticity. Furthermore, we observed a correlation between degree of plasticity and fat body content that may provide mechanistic insights into the evolution of developmental plasticity in amphibians.  相似文献   

6.
Metamorphosis can disrupt the correlation structure between juvenile and adult traits, thus allowing relatively independent evolution in contrasting environments. We used a multiple experimental approach to investigate how diet quality and larval predation risk affected the rates of growth and development in painted frogs (Discoglossus galganoi), and how these changes influence post-metamorphic performance. A high-energy diet entailed growth advantages only if predation risk did not constrain energy acquisition, whereas diet quality affected primarily the extension of the larval period. Predation risk influenced juvenile shape, most likely via the effects on growth and differentiation rates. Juvenile frogs emerging from predator environments had shorter legs and longer bodies than those from the nonpredator tanks. However, these morphological changes did not translate into differences in relative jumping performance. Neither size-adjusted lipid storage nor fluctuating asymmetry was significantly influenced by food quality or predation risk. Our data suggest that the post-metamorphic costs of predator avoidance during the larval phase are mostly a consequence of small size at metamorphosis.  相似文献   

7.
Towards understanding the ontogeny of energy balance regulation in vertebrates we analyzed the responses of corticotropin-releasing factor (CRF) and corticosterone to food deprivation in the Western spadefoot toad (Spea hammondii) at three developmental stages: premetamorphic tadpole, prometamorphic tadpole, and juvenile. Corticosterone responses to 5 days of food deprivation varied among developmental stages. Both pre- and prometamorphic tadpoles increased whole-body corticosterone content with food deprivation, but the magnitude of the response of premetamorphic tadpoles was significantly greater. By contrast, juvenile toads decreased plasma corticosterone concentration. Similarly, brain CRF peptide content tended to increase in food-deprived tadpoles but did not change in food-deprived juveniles. Therefore, there is an ontogenetic difference in the way the hypothalamic-pituitary-interrenal (HPI) axis responds to food deprivation in amphibians. In tadpoles, the HPI axis is activated in response to fasting as is seen in birds and mammals, and may be associated with mobilization of stored fuels and increased foraging. Juvenile toads do not respond to food deprivation by activating the HPI axis, but instead pursue a strategy of energy conservation that involves a reduction in plasma corticosterone concentration.  相似文献   

8.
Many amphibian species exploit temporary or even ephemeral aquatic habitats for reproduction by maximising larval growth under benign conditions but accelerating development to rapidly undergo metamorphosis when at risk of desiccation from pond drying. Here we determine mechanisms enabling developmental acceleration in response to decreased water levels in western spadefoot toad tadpoles (Pelobates cultripes), a species with long larval periods and large size at metamorphosis but with a high degree of developmental plasticity. We found that P. cultripes tadpoles can shorten their larval period by an average of 30% in response to reduced water levels. We show that such developmental acceleration was achieved via increased endogenous levels of corticosterone and thyroid hormone, which act synergistically to achieve metamorphosis, and also by increased expression of the thyroid hormone receptor TRΒ, which increases tissue sensitivity and responsivity to thyroid hormone. However, developmental acceleration had morphological and physiological consequences. In addition to resulting in smaller juveniles with proportionately shorter limbs, tadpoles exposed to decreased water levels incurred oxidative stress, indicated by increased activity of the antioxidant enzymes catalase, superoxide dismutase, and gluthatione peroxidase. Such increases were apparently sufficient to neutralise the oxidative damage caused by presumed increased metabolic activity. Thus, developmental acceleration allows spadefoot toad tadpoles to evade drying ponds, but it comes at the expense of reduced size at metamorphosis and increased oxidative stress.  相似文献   

9.
We evaluated differences in larval habitats and life history of three species of spadefoot toads, then compared their life histories in a common garden study. Our field work defined the selective regime encountered by each species. Our Great Basin spadefoot (Spea intermontana) bred asynchronously in permanent streams and springs where there was no risk of larval mortality due to drying. The water chemistry remained fairly stable throughout the larval period. The western spadefoot toad, Sp. hammondii, bred fairly synchronously following heavy spring rains in temporary pools that remained filled an average of 81 d. Fifteen % of the breeding pools dried completely on or before the day the first larvae metamorphosed. The desert spadefoot toad, Scaphiopus couchii, bred synchronously after heavy summer showers in very short duration pools; 62% of the breeding pools dried completely on or before the day the first larvae metamorphosed. The concentration of ammonium nitrogen and CaCO3 increased markedly as the Sp. hammondii and S. couchii pools dried. S. couchii attained metamorphosis at a much earlier age and smaller size than the other two species. S. couchii also showed little variation in the age at metamorphosis but considerable variation in the size at metamorphosis, while the other two species varied in both age and size. The results identify some variables that could serve as cues of pool drying and demonstrate an association between breeding pool duration, breeding synchrony, development rate, and larval development. Our laboratory study yields information about the genetic basis of the differences in development and controlled comparisons of phenotypic plasticity. We manipulated food supply to study the plastic response of age and size at metamorphosis and hence construct the reaction norm for these variables as a function of growth rate. The growth rates ranged from below to above those observed in natural populations. As in the field, in the lab S. couchii attained metamorphosis at an earlier age and smaller size than the other two species. All three species had a similarly shaped reaction norm for size(y‐axis) and age (x‐axis) at metamorphosis, which was a concave upward curve. A consequence of this shape is that age at metamorphosis changes more readily at low levels of food availability and size at metamorphosis changes more readily at high levels of food availability. If we restrict our observations to just those growth rates that are seen in nature, then S. couchii has almost no variation in the age at metamorphosis but considerable variation in size at metamorphosis, while the other two species vary in both age and size at metamorphosis. All three species increased in size at metamorphosis with increased food levels. Our comparative reaction norm approach thus demonstrates that S. couchii has adapted to ephemeral environments by shifting its growth rate reaction norm so that age at metamorphosis is uniformly fast and is not associated with growth rate. The realized variation is concentrated in size rather than age at metamorphosis.  相似文献   

10.
Relyea RA  Hoverman JT 《Oecologia》2003,134(4):596-604
Studies of phenotypic plasticity typically focus on traits in single ontogenetic stages. However, plastic responses can be induced in multiple ontogenetic stages and traits induced early in ontogeny may have lasting effects. We examined how gray treefrog larvae altered their morphology in four different larval environments and whether different larval environments affected the survival, growth, development, and morphology of juvenile frogs at metamorphosis. We then reared these juveniles in terrestrial environments under high and low intraspecific competition to determine whether the initial differences in traits at metamorphosis affected subsequent survival and growth, whether the initial phenotypic differences converged over time, and whether competition in the terrestrial environment induced further phenotypic changes. Larval and juvenile environments both affected treefrog traits. Larval predators induced relatively deep tail fins and short bodies, but there was no impact on larval development. In contrast, larval competitors induced relatively short tails and long bodies, reduced larval growth, and slowed larval development. At metamorphosis, larval predators had no effect on juvenile growth or relative morphology while larval competitors produced juveniles that were smaller and possessed relatively shorter limbs and shorter bodies. After 1 month of terrestrial competition among the juvenile frogs, the initial differences in juvenile morphology did not converge. There were no differences in growth due to larval treatment but there were differences in survival. Individuals that experienced low competition as tadpoles experienced near perfect survival as juvenile frogs but individuals that experienced high competition as tadpoles suffered an 18% decrease in survival as juvenile frogs. There were also morphological responses to juvenile competition, but these changes appear to be due, at least in part, to allometric effects. Collectively, these results demonstrate that larval environments can have profound impacts on the traits and fitness of organisms later in ontogeny.  相似文献   

11.
Density-dependent population regulation is important in many natural populations, and in those populations, high population density is a likely stressor. In amphibians, previous laboratory studies with tadpoles suggest that corticosterone, the main glucocorticoid stress hormone, is one of the key regulators of density-dependent growth. To test this relationship in natural settings, we manipulated wood frog (Rana sylvatica) tadpole density at three levels in outdoor mesocosms and used a capture stress protocol to examine the hormonal stress response. In addition, we used the same capture protocol in six natural ponds (three high density and three low density). In the mesocosms, there was an increase in corticosterone levels in tadpoles following 1 h of confinement at weeks 1, 2, and 5. However, while tadpoles maintained at higher densities were smaller after metamorphosis, density did not alter mean levels of corticosterone obtained during confinement, and baseline levels of corticosterone did not differ between the densities. Similarly, in natural ponds, density did not correlate with baseline corticosterone or mean corticosterone levels obtained during confinement. We suggest that the physiological response to density may vary across the range of natural densities and that the role of corticosterone may be limited to periods of extreme high density, such as during pond-drying events.  相似文献   

12.
Larvae of certain species of blowflies (Calliphoridae) can cause myiasis in frogs and toads, but there are few reports from North American amphibians. Of these, most are from toads (bufonids). In this study, we observe primary myiasis in a population of juvenile wood frogs, Rana sylvatica, collected on 22-23 August 2003, from southeastern Wisconsin and compare our observations with previous studies on myiasis from toads. Two (5%) of 39 frogs were infected by the blow fly Bufolucilia silvarum, with an intensity of 28 and 31, whereas 1 (2.5%) of 39 frogs was infected by the blow fly Bufolucilia elongata with an intensity of 14. We found that (1) B. silvarum lay eggs on healthy wood frogs, (2) eggs hatch, with first-instar maggots penetrating under the skin, (3) maggots develop to mature third instars within 13-16 hr of egg hatching, (4) maggots kill the host within 7-47 hr of egg hatching, and (5) maggots consume the entire frog carcass reducing it to bones within 42-59 hr of egg hatching. Our observations on the time of death and how quickly carcasses of wood frogs were consumed by these maggots compared with previous studies on toads suggest that finding infected juvenile wood frogs may be uncommon. Therefore, myiasis by these flies on wood frogs and other small terrestrial anurans may be a phenomenon that is much more common than is currently observed. This is the first report of B. silvarum and B. elongata causing myiasis in wood frogs.  相似文献   

13.
Previous investigations have demonstrated the importance of predator diet in chemically mediated antipredator behaviour. However, there are few data on responses to life-stage-specific predator diets, which could be important for animals like amphibians that undergo metamorphosis and must respond to different suites of predators at different life-history stages. In laboratory choice tests, we investigated the chemically mediated avoidance response of juvenile western toads, Bufo boreas, to four different chemical stimuli: (1) live conspecific juveniles; (2) live earthworms; (3) snakes fed juvenile conspecifics; and (4) snakes fed larval conspecifics (tadpoles). Juvenile toads avoided chemical cues from snakes that had eaten juvenile conspecifics, but did not respond to the other three stimuli, including chemical cues from snakes fed larval conspecifics. In addition, the response to cues from snakes fed juveniles differed significantly from that of snakes fed larvae. To our knowledge, this is the first study to demonstrate the importance of diet in predator avoidance of juvenile anurans and the ability of juvenile toads to distinguish between chemical cues from predators that have consumed larval versus juvenile conspecifics. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

14.
Amphibian larvae respond to heterogeneous environments by varyingtheir rates of growth and development. Several amphibian speciesare known to accelerate metamorphosis in response to pond dryingor resource restriction. Some of the most extensive studiesto date on developmental responses to pond drying have beenconducted on species of spadefoot toads (family Pelobatidae).We have found that tadpoles of two species of spadefoot toadaccelerate metamorphosis when exposed to water volume reductionin the laboratory (to simulate a drying pond). Furthermore,Western spadefoot toad (Spea hammondii) tadpoles acceleratedmetamorphosis in response to food restriction, which was intendedto simulate a decline in resource availability in the larvalhabitat. Metamorphic acceleration was accompanied by increasedwhole body 3,5,3'-triiodothyronine and hindbrain corticotropin-releasinghormone content by 24 hr after transfer of tadpoles from highto low water. Food restriction for 4 day accelerated metamorphosisand elevated whole body thyroid hormone content. Although tadpolesaccelerated metamorphosis and activated their thyroid axis inresponse to the two environmental manipulations, the kineticsof the responses were greater for water volume reduction thanfor resource restriction. The modulation of hormone secretionand action by environmental factors provides a mechanistic basisfor plasticity in the timing of amphibian metamorphosis, andthe neuroendocrine stress axis may play a central role in developmentalplasticity.  相似文献   

15.
Harper EB  Semlitsch RD 《Oecologia》2007,153(4):879-889
Populations of species with complex life cycles have the potential to be regulated at multiple life history stages. However, research tends to focus on single stage density-dependence, which can lead to inaccurate conclusions about population regulation and subsequently hinder conservation efforts. In amphibians, many studies have demonstrated strong effects of larval density and have often assumed that populations are regulated at this life history stage. However, studies examining density regulation in the terrestrial stages are rare, and the functional relationships between terrestrial density and vital rates in amphibians are unknown. We determined the effects of population density on survival, growth and reproductive development in the terrestrial stage of two amphibians by raising juvenile wood frogs (Rana sylvatica) and American toads (Bufo americanus) at six densities in terrestrial enclosures. Density had strong negative effects on survival, growth and reproductive development in both species. We fitted a priori recruitment functions to describe the relationship between initial density and the density of survivors after one year, and determined the functional relationship between initial density and mass after one year. Animals raised at the lowest densities experienced growth and survival rates that were over twice as great as those raised at the highest density. All female wood frogs in the lowest density treatment showed signs of reproductive development, compared to only 6% in the highest density treatment. Female American toads reached minimum reproductive size only at low densities, and male wood frogs and American toads reached maturity only in the three lowest density treatments. Our results demonstrate that in the complex life cycle of amphibians, density in the terrestrial stage can reduce growth, survival and reproductive development and may play an important role in amphibian population regulation. We discuss the implications of these results for population regulation in complex life cycles and for amphibian conservation.  相似文献   

16.
Environmental change and habitat fragmentation will affect population densities for many species. For those species that have locally adapted to persist in changed or stressful habitats, it is uncertain how density dependence will affect adaptive responses. Anurans (frogs and toads) are typically freshwater organisms, but some coastal populations of green treefrogs (Hyla cinerea) have adapted to brackish, coastal wetlands. Tadpoles from coastal populations metamorphose sooner and demonstrate faster growth rates than inland populations when reared solitarily. Although saltwater exposure has adaptively reduced the duration of the larval period for coastal populations, increases in densities during larval development typically increase time to metamorphosis and reduce rates of growth and survival. We test how combined stressors of density and salinity affect larval development between salt‐adapted (“coastal”) and nonsalt‐adapted (“inland”) populations by measuring various developmental and metamorphic phenotypes. We found that increased tadpole density strongly affected coastal and inland tadpole populations similarly. In high‐density treatments, both coastal and inland populations had reduced growth rates, greater exponential decay of growth, a smaller size at metamorphosis, took longer to reach metamorphosis, and had lower survivorship at metamorphosis. Salinity only exaggerated the effects of density on the time to reach metamorphosis and exponential decay of growth. Location of origin affected length at metamorphosis, with coastal tadpoles metamorphosing slightly longer than inland tadpoles across densities and salinities. These findings confirm that density has a strong and central influence on larval development even across divergent populations and habitat types and may mitigate the expression (and therefore detection) of locally adapted phenotypes.  相似文献   

17.
Couch's spadefoot toads (Scaphiopus couchii) breed in ponds of uncertain duration. In natural ponds, larvae exhibit considerable variation in growth, size at metamorphosis, and development time. Phenotypic differences in development time may dramatically affect survivorship in these ponds. A quantitative-genetic analysis of larval traits was undertaken to determine the potential evolutionary relevance of phenotypic variation observed in the field. Additive genetic variance was detected for development time, but not for any other trait. Some variation in early growth was attributed to maternal effects; maternal effects, however, were not apparent for size at metamorphosis or development time. Nonadditive genetic effects were not statistically significant for any trait, but the nonsignificance of these effects must be interpreted cautiously, as the sample of females was relatively small and the mating design used is not very effective for detecting interactions. Genetic variation in development time in this population is most likely maintained by variability in the direction of selection as a consequence of variation in pond duration.  相似文献   

18.
We investigated the influences of natal-pool and metamorph characteristics on juvenile survival, age-specific breeding probabilities, and dispersal of wood frogs (Lithobates sylvatica) and used this information to infer how life history strategies of short-lived species may offset risks associated with breeding in highly variable habitats. We used multistate mark-recapture data from eight wood frog populations in Maryland, USA, to investigate the influences of natal-pond and metamorph characteristics on post-metamorphic demographics. We found that post-metamorphic juvenile survival was highly variable and negatively influenced by abiotic conditions experienced during development but showed little relationship to larval density or size at metamorphosis. Estimates of recruitment and dispersal probabilities indicated that males mature earlier than females, and a small percentage of each sex disperse to non-natal pools. Survival probabilities for adults during the non-breeding season were less variable than juvenile rates, lower for females, and negatively related to mean monthly precipitation. Survival of adults during the breeding season was generally very high. We provide the first robust estimates of post-metamorphic vital rates of wood frogs that allow for variation in capture probabilities. We found little evidence for an effect of metamorph traits on juvenile survival, suggesting that wood frogs may be able to overcome initial disadvantages to have similar post-metamorphic performance. Our study suggests that variation in the age of maturity for wood frogs may mitigate risks associated with breeding in a highly variable habitat to maximize lifetime fitness without increasing lifespan, and this strategy is minimally affected by carry-over effects from the larval stage.  相似文献   

19.
It has been hypothesized that freeze-tolerance in anurans evolved from a predisposition for dehydration tolerance. To test this hypothesis, we dehydrated summer/fall-collected and winter acclimated freeze-tolerant chorus frogs and dehydration-tolerant, but freeze-intolerant, Woodhouse's and Great Plains toads to 25% and 50% body water loss (BWL). Following treatments, we measured glucose, glycogen, and glycogen phosphorylase and glycogen synthetase (summer/fall only) activities in liver and leg muscle. Hepatic glucose levels were not significantly altered by dehydration in either summer/fall-collected frogs or toads. Conversely, winter acclimated frogs did show an increment (2.9-fold) in hepatic glucose with dehydration, accompanied by a reduction in hepatic glycogen levels. Winter acclimated toads did not mobilize hepatic glucose in response to dehydration. Further, hepatic glycogen and phosphorylase activities did not vary in any consistent manner with dehydration in winter toads. Mean leg muscle glucose values were elevated at 50% BWL relative to other treatments, significantly so compared to 25% BWL for summer/fall-collected frogs. The pattern of hepatic glucose mobilization with dehydration in winter frogs is consistent with that in other freeze-tolerant frog species, and provides additional support for the hypothesis that freezing tolerance evolved from a capacity for dehydration tolerance. However, the lack of hepatic glucose mobilization in response to dehydration in fall frogs suggests that a seasonal component to dehydration-induced regulation of glucose metabolism exists in chorus frogs. Furthermore, the absence of a dehydration-induced mobilization of hepatic glucose at both seasons in toads suggests that this dehydration response is not universal for terrestrial anurans.  相似文献   

20.
1. Within a community, different host species often exhibit broad variation in sensitivity to infection and disease. Because such differences can influence the strength and outcome of community interactions, it is essential to understand differential disease patterns and identify the mechanisms responsible. 2. In North American wetlands, amphibian species often exhibit extraordinary differences in the frequency of limb malformations induced by the digenetic trematode, Ribeiroia ondatrae. By coupling field studies with parasite exposure experiments, we evaluated whether such patterns were due to differences in (i) parasite encounter rate, (ii) infection establishment, or (iii) parasite persistence within hosts. 3. Field results underscored the broad variation in malformations and infection between host species; while nearly 60% (n = 618) of emerging American toads exhibited severe limb deformities such as bony triangles, skin webbings and missing limbs, fewer than 4% (n = 251) of Eastern gray treefrogs from the same pond were abnormal. Despite similarities in the phenology and larval development period of these species, they differed sharply in Ribeiroia infection. On average, toads supported 75x more metacercariae than did metamorphic treefrogs. 4. Experimental exposures of larval toads and treefrogs to a realistic range of Ribeiroia cercariae revealed strong differences in the sensitivity of these species to infection; exposed toads suffered elevated mortality (up to 95%), delayed metamorphosis, and severe limb malformations consistent with field observations. Treefrogs, in contrast, exhibited limited mortality and no malformations, regardless of exposure level. Ribeiroia cercariae were substantially less successful in locating and infecting Hyla versicolor larvae. 5. Our results indicate that the observed differences in infection and malformations owe to a lower ability of Ribeiroia cercariae to both find and establish within larval treefrogs, possibly stemming from a heightened immune response to infection. Because Ribeiroia is a highly pathogenic parasite with negative effects on larval and metamorphic amphibian survival, variation in infection resistance among species could have important implications for understanding patterns of species co-occurrence, competition, and community diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号