首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microperoxidase 8 (MP8) is able to react with alkyl- and aryl-isonitriles (RNC) both in its reduced and oxidized states, to form MP8Fe(II)- and MP8Fe(III)-CNR complexes. The coordination and spin states of these complexes have been fully characterized by UV-visible and resonance Raman spectroscopies. Both MP8Fe(II)- and MP8Fe(III)-CNR complexes are hexacoordinate low-spin complexes, which bear a single RNC ligand on the distal face of the heme and keep the His 18 ligand on its proximal face, trans to the RNC ligand. A comparison of these characteristics with those of the Fe-CNR complexes of other hemoproteins suggests that both MP8Fe(II)- and MP8Fe(III)-CNR complexes present a Fe-C-N linear arrangement. This may be due to the lack of any interactions of the RNC ligand with the octapeptide of MP8 that is mainly located over the opposite face of the heme. Finally the formation of hexacoordinate low-spin MP8Fe(II)- and MP8Fe(III)-CNR complexes constitutes a new example of the reactivity of MP8 with a new class of weak sigma-donating and strong pi-accepting ligands, which adds to its already very rich coordination chemistry.  相似文献   

2.
The earliest stage in the development of neuronal polarity is characterized by extension of undifferentiated “minor processes” (MPs), which subsequently differentiate into the axon and dendrites. We investigated the role of the myosin II motor protein in MP extension using forebrain and hippocampal neuron cultures. Chronic treatment of neurons with the myosin II ATPase inhibitor blebbistatin increased MP length, which was also seen in myosin IIB knockouts. Through live‐cell imaging, we demonstrate that myosin II inhibition triggers rapid minor process extension to a maximum length range. Myosin II activity is determined by phosphorylation of its regulatory light chains (rMLC) and mediated by myosin light chain kinase (MLCK) or RhoA‐kinase (ROCK). Pharmacological inhibition of MLCK or ROCK increased MP length moderately, with combined inhibition of these kinases resulting in an additive increase in MP length similar to the effect of direct inhibition of myosin II. Selective inhibition of RhoA signaling upstream of ROCK, with cell‐permeable C3 transferase, increased both the length and number of MPs. To determine whether myosin II affected development of neuronal polarity, MP differentiation was examined in cultures treated with direct or indirect myosin II inhibitors. Significantly, inhibition of myosin II, MLCK, or ROCK accelerated the development of neuronal polarity. Increased myosin II activity, through constitutively active MLCK or RhoA, decreased both the length and number of MPs and, consequently, delayed or abolished the development of neuronal polarity. Together, these data indicate that myosin II negatively regulates MP extension, and the developmental time course for axonogenesis. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

3.
In order to evaluate the steric and electronic effects of mixed axial ligations on the heme c structure, lysine (Lys) and N-acetylmethionine (AcMet) complexes of ferric and ferrous microperoxidase-8 (MP8(III) and MP8(II), respectively) are characterized by absorption and resonance Raman (RR) spectroscopies. Spectrophotometric titrations establish that MP8(III) binds one molecule of exogenous ligand while MP8(II) forms mono(ligated) and bis(ligated) compounds. The Soret-excited RR spectra of the six-coordinated low-spin MP8(III) complexes show that the macrocycle can adopt different structures between planar and ruffled conformations. The ferriheme c conformation is primarily determined by the ionization state of the His side chain of MP8(III) and, secondarily, by the bonding and nonbonding heme-ligand interactions. As far as the RR spectra of the MP8(II) complexes are concerned, they permit us to conclude that the mixed His/Lys and His/AcMet coordinations induce a nonplanar heme conformation, the extent of deformation again depending on the ionization state of the endogenous His ligand. In contrast, the RR spectra of the bis(Lys) and bis(AcMet) compounds are associated with a planar heme structure. When the His of MP8 is bound to heme c, the stabilization of distorted heme conformations is thus associated with constraints exerted by the Cys-Ala-Gln-Cys-His-peptide on the porphyrin macrocycle. More generally, the spectroscopic data obtained in this study can be used to predict both the axial coordination and the structure of heme in c-type cytochromes. Received: 19 January 1998 / Revised version: 23 March 1998 / Accepted: 27 March 1998  相似文献   

4.
fasiclin II (fas II), a member of the immunoglobulin superfamily, was previously characterized and cloned in grasshopper. To analyze the function of this molecule, we cloned the Drosophila fas II homolog and generated mutants in the gene. In both grasshopper and Drosophila, fasciclin II is expressed on the MP1 fascicle and a subset of other axon pathways. In fas II mutant Drosophila embryos, the CNS displays no gross phenotype, but the MP1 fascicle fails to develop. The MP1, dMP2, and vMP2 growth cones fail to recognize one another or other axons that normally join the MP1 pathway. During their normal period of axon out-growth, these growth cones stall and do not join any other neighboring pathway. Thus, fasciclin II functions as a neuronal recognition molecule for the MP1 axon pathway. These studies serve as molecular confirmation for the existence of functional labels on specific axon pathways in the developing nervous system.  相似文献   

5.
Myosin phosphatase target subunit: Many roles in cell function   总被引:1,自引:0,他引:1  
Phosphorylation of myosin II is important in many aspects of cell function and involves a myosin kinase, e.g. myosin light chain kinase, and a myosin phosphatase (MP). MP is regulated by the myosin phosphatase target subunit (MYPT1). The domain structure, properties, and genetic analyses of MYPT1 and its isoforms are outlined. MYPT1 binds the catalytic subunit of type 1 phosphatase, delta isoform, and also acts as an interactive platform for many other proteins. A key reaction for MP is with phosphorylated myosin II and the first process shown to be regulated by MP was contractile activity of smooth muscle. In cell division and cell migration myosin II phosphorylation also plays a critical role and these are discussed. However, based on the wide range of partners for MYPT1 it is likely that MP is implicated with substrates other than myosin II. Open questions are whether the diverse functions of MP reflect different cellular locations and/or specific roles for the MYPT1 isoforms.  相似文献   

6.
The purpose of this study was to investigate the presence of a practice effect on the Wingate anaerobic test (WAnT). Twenty-five young adult men (mean age = 20 years) performed 2 trials of the WAnT, which were separated by 7 days. Mean peak power (PP) and mean power (MP) for trials I and II were compared using a 1-way repeated measures analysis of variance to determine if a practice effect existed. Mean PP and MP scores were significantly higher (p < 0.025) on trial II (867.64 and 634.68 W for PP and MP, respectively) than on trial I (764.48 and 604.92 W), indicating that a practice effect occurred. Effect size (Cohen's d) for PP and MP was 0.72 and 0.35, indicating a large effect and small effect, respectively. Therefore, at least 1 full administration should be performed prior to a baseline power output measurement.  相似文献   

7.
Microperoxidase 8 (MP8) is a heme octapeptide, obtained by enzymatic hydrolysis of heart cytochrome c, in which a histidine is axially coordinated to the heme iron, and acts as its fifth ligand. It exhibits two kinds of activities: a peroxidase-like activity and a cytochrome P450-like activity. We here show that MP8 is not only able to oxidize various aliphatic and aromatic hydroxylamines with the formation of MP8-Fe(II)-nitrosoalkane or -arene complexes absorbing around 414 nm, but also that these complexes can be obtained by reduction of nitroalkanes. This is the first example of fully characterized iron(II)-metabolite complexes of MP8. Such complexes constitute good models for those obtained upon oxidation of amphetamine or macrolids by cytochromes P450. In addition, this is a new catalytic activity of MP8, which validates the use of this mini-enzyme as a convenient model for hemoproteins of interest in toxicology and pharmacology such as cytochromes P450 and peroxidases.  相似文献   

8.
D Bai  G J Scoles  D R Knott 《Génome》1994,37(3):410-418
Six accessions of Triticum triaristatum (Willd) Godr. &Gren. (syn. Aegilops triaristata) (6x, UUMMUnUn), having good resistance to both leaf rust (Puccinia recondita f.sp. tritici Rob. ex Desm) races and stem rust (P. graminis f.sp. tritici Eriks. &Henn.) races, were successfully crossed with both susceptible durum wheats (T. turgidum var. durum L., 2n = 28, AABB) and bread wheats (T. aestivum, 2n = 42, AABBDD). In some crosses, embryo rescue was necessary. The T. triaristatum resistance was expressed in all F1 hybrids. Backcrossing of the F1 hybrids to their wheat parents to produce BC1F1 plants was more difficult (seed set 0-7.14%) than to produce F1 hybrids (seed set 12.50-78.33%). The low female fertility of the F1 hybrids was due to low chromosome pairing. Only gametes with complete or nearly complete genomes from the F1 hybrids were viable. In BC2F4 populations from the cross MP/Ata2//2*MP, monosomic or disomic addition lines (2n = 21 II + 1 I or 22 II) with resistance to leaf rust race 15 (IT 1) were selected. In BC2F2 populations from the crosses CS/Ata4//2*MP and MP/Ata4//2*MP, monosomic or disomic addition lines with resistance to either leaf rust race 15 or stem rust race 15B-1 (both IT 1) were selected. Rust tests and cytology on the progeny of the disomic addition lines confirmed that the genes for rust resistance were located on the added T. triaristatum chromosomes. The homoeologous groups of the T. triaristatum chromosomes in the addition lines from the crosses MP/Ata2//2*MP, CS/Ata4//2*MP, and MP/Ata4//2*MP were determined to be 5, 2, and 7, respectively, through the detecting of RFLPs among genomes using a set of homoeologous group specific wheat cDNA probes. The addition lines with resistance to leaf rust race 15 from the crosses MP/Ata2//2*MP and CS/Ata4//2*MP were resistant to another nine races of leaf rust and the addition line with resistance to stem rust race 15B-1 from the cross MP/Ata4//2*MP was resistant to another nine races of stem rust as were their T. triaristatum parents. Since such genes provide resistance against a wide spectrum of rust races they should be very valuable in wheat breeding for rust resistance.  相似文献   

9.
The purpose of this study was to elucidate the biochemical basis of the enhanced hydrogen peroxide (H2O2) production by guinea pig peritoneal macrophages (MP) cultured in lymphokine (LK)-containing medium. The markedly augmented H2O2 generation by these cells, demonstrable by the horseradish peroxidase (HRP)-catalyzed oxidation of phenol red, is distinguished by its lack of dependence on a second stimulus. We demonstrate that H2O2 production is truly spontaneous and is not caused by a stimulant present among the H2O2 assay reagents. The principal candidate for such a role was HRP type II (a mixture of five isoenzymes) that was reported to be capable of eliciting an oxidative burst in MP. Four distinct HRP isoenzymes that were found incapable of provoking an oxidative response were nevertheless adequate for demonstrating H2O2 production by LK-activated MP. Blocking the MP receptor for mannose by the addition of mannan to the assay system resulted in enhanced detection of H2O2 by low concentrations of HRP type II and by three out of four HRP isoenzymes. Treatment of MP with LK-containing medium for 72 hr did not result in a significant change in the activity of cellular superoxide dismutase (SOD) compared with MP cultured for the same length of time in control medium. By using the specific inhibitor of copper, zinc-containing SOD, sodium diethyldithiocarbamate (DDC), and the universal SOD inhibitor, sodium nitroprusside, we found that the predominant enzyme in guinea pig peritoneal MP is probably manganese-containing SOD. Incubation of LK-activated MP with nitroprusside resulted in almost total inhibition of H2O2 production and a simultaneous switch to superoxide (O2-) liberation. Similar exposure to DDC had no effect. These data indicate that H2O2 produced by LK-activated MP is derived exclusively by enzymatic dismutation of O2- mediated by a manganese-containing SOD. The increase in spontaneous H2O2 production induced by LK is therefore secondary to augmented O2- production that occurs at a cellular location where O2- is accessible to SOD. The enzymatic basis of the enhanced oxygen radical production was investigated by determining the kinetic parameters of the O2- -forming NADPH oxidase of resting LK-treated MP in a cellfree system in which O-2 production was induced by sodium dodecyl sulfate. The Km for NADPH and the Vmax of the enzyme of LK-treated MP were not different from those of the enzyme of MP incubated in control medium. We conclude that LK treatment of MP does not modulate the NADPH oxidase itself but, most likely, a process related to activation of the enzyme.  相似文献   

10.
Phosphorylation of myosin II plays an important role in many cell functions, including smooth muscle contraction. The level of myosin II phosphorylation is determined by activities of myosin light chain kinase and myosin phosphatase (MP). MP is composed of 3 subunits: a catalytic subunit of type 1 phosphatase, PPlc; a targeting subunit, termed myosin phosphatase target subunit, MYPT; and a smaller subunit, M20, of unknown function. Most of the properties of MP are due to MYPT and include binding of PP1c and substrate. Other interactions are discussed. A recent discovery is the existence of an MYPT family and members include, MYPT1, MYPT2, MBS85, MYPT3 and TIMAP. Characteristics of each are outlined. An important discovery was that the activity of MP could be regulated and both activation and inhibition were reported. Activation occurs in response to elevated cyclic nucleotide levels and various mechanisms are presented. Inhibition of MP is a major component of Ca2+-sensitization in smooth muscle and various molecular mechanisms are discussed. Two mechanisms are cited frequently: (1) Phosphorylation of an inhibitory site on MYPT1, Thr696 (human isoform) and resulting inhibition of PP1c activity. Several kinases can phosphorylate Thr696, including Rho-kinase that serves an important role in smooth muscle function; and (2) Inhibition of MP by the protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17). Examples where these mechanisms are implicated in smooth muscle function are presented. The critical role of RhoA/Rho-kinase signaling in various systems is discussed, in particular those vascular smooth muscle disorders involving hypercontractility.  相似文献   

11.
Schmid D  Münz C 《Autophagy》2007,3(2):133-135
The adaptive immune system is orchestrated by CD4+ T cells. These cells detect peptides presented on Major Histocompatibility Complex (MHC) class II molecules, which are loaded in late endosomes with products of lysosomal proteolysis. One pathway by which proteins gain access to degradation in lysosomes is macroautophagy. We recently showed that constitutive macroautophagy can be detected in cells relevant for the immune system, including dendritic cells. In these antigen presenting cells, autophagosomes frequently fused with MHC class II antigen loading compartments and targeting of Influenza matrix protein 1 (MP1) for macroautophagy enhanced MHC class II presentation to MP1-specific CD4+ T cell clones up to 20 fold. Our findings indicate that macroautophagy is a constitutive and efficient pathway of antigen delivery for MHC class II presentation. We suggest that this pathway samples intracellular proteins for immune surveillance and induction of tolerance in CD4+ T cells, and could be targeted for improved MHC class II presentation of vaccine antigens.  相似文献   

12.
 This study describes the catalytic properties of manganese microperoxidase 8 [Mn(III)MP8] compared to iron microperoxidase 8 [Fe(III)MP8]. The mini-enzymes were tested for pH-dependent activity and operational stability in peroxidase-type conversions, using 2-methoxyphenol and 3,3′-dimethoxybenzidine, and in a cytochrome P450-like oxygen transfer reaction converting aniline to para-aminophenol. For the peroxidase type of conversions the Fe to Mn replacement resulted in a less than 10-fold decrease in the activity at optimal pH, whereas the aniline para-hydroxylation is reduced at least 30-fold. In addition it was observed that the peroxidase type of conversions are all fully blocked by ascorbate and that aniline para-hydroxylation by Fe(III)MP8 is increased by ascorbate whereas aniline para-hydroxylation by Mn(III)MP8 is inhibited by ascorbate. Altogether these results indicate that different types of reactive metal oxygen intermediates are involved in the various conversions. Compound I/II, scavenged by ascorbate, may be the reactive species responsible for the peroxidase reactions, the polymerization of aniline and (part of) the oxygen transfer to aniline in the absence of ascorbate. The para-hydroxylation of aniline by Fe(III)MP8, in the presence of ascorbate, must be mediated by another reactive iron-oxo species which could be the electrophilic metal(III) hydroperoxide anion of microperoxidase 8 [M(III)OOH MP8]. The lower oxidative potential of Mn, compared to Fe, may affect the reactivity of both compound I/II and the metal(III) hydroperoxide anion intermediate, explaining the differential effect of the Fe to Mn substitution on the pH-dependent behavior, the rate of catalysis and the operational stability of MP8. Received: 29 September 1998 / Accepted: 16 February 1999  相似文献   

13.
Myosin phosphatase (MP) is a major phosphatase responsible for the dephosphorylation of the regulatory light chain of myosin II. MYPT1, a target subunit of smooth and nonmuscle MP, is responsible for activation and regulation of MP. To identity the physiological roles of MP, we have generated MYPT1-deficient mice by gene targeting. The heterozygous mice showed no changes in expression levels of MYPT1 and no distinct phenotype compared to wild-type mice was observed. None of the F2 mice were homozygous for the MYPT1 deletion, indicating that the targeted disruption of the MYPT1 gene resulted in embryonic lethality. The point of embryonic lethality is before 7.5 dpc. These findings indicate that MYPT1 is essential for mouse embryogenesis.  相似文献   

14.
Gallic acid, methyl gallate, dehydrodigallic acid, three tannic constituents named MP–2, MP–3, MP–4 and a related substance MP–10 were isolated from chestnut galls by solvent fractionation and column chromatography. Hydrolysis with tannase revealed the components of these tannic substances as follows, MP–2: d-glucose, gallic acid and compound I (3,4, 5-trihydroxybenzyl alcohol); MP–3 and MP–4: d-glucose, compound I and compound II (dehydrodigallic acid); MP–10: d-glucose and compound I.  相似文献   

15.
vMIP-ⅡN端重组肽的表达纯化及活性鉴定   总被引:1,自引:0,他引:1  
病毒巨噬细胞炎症蛋白-Ⅱ (viral macrophage inflammatory protein-Ⅱ,vMIP-Ⅱ)由卡波西肉瘤疱疹病毒编码,前期研究证明了vMIP-II N端21肽(NT21MP)选择性的阻断趋化因子CXCR4,从而抑制乳腺癌细胞趋化的活性。通过化学合成法获得编码vMIP-ⅡN末端的基因序列,与pGEX-KG(克隆位点的N 端有谷胱甘肽转移酶GST标签序列)连接构建原核表达载体,重组质粒在大肠杆菌E.coli BL21(DE3)中获得表达,免疫印迹显示重组蛋白GST-NT21MP主要在细菌裂解液上清中表达,可溶性部分经亲和层析、超滤、快速蛋白液相色谱(fast protein liquid chromatography,FPLC)纯化获得高纯度的GST-NT21MP蛋白。利用Transwell趋化试验测定GST-NT21MP的活性。结果显示,重组蛋白GST-NT21MP能够抑制乳腺癌细胞SK-BR-3的趋化活性,可作为治疗乳腺癌转移的潜在性靶向药物。  相似文献   

16.
Bacterial strains capable of utilizing methylphosphonic acid (MP) or glyphosate (GP) as the sole sources of phosphorus were isolated from soils contaminated with these organophosphonates. The strains isolated from MP-contaminated soils grew on MP and failed to grow on GP. One group of the isolates from GP-contaminated soils grew only on MP, while the other one grew on MP and GP. Strains Achromobacter sp. MPS 12 (VKM B-2694), MP degraders group, and Ochrobactrum anthropi GPK 3 (VKM B-2554D), GP degraders group, demonstrated the best degradative capabilities towards MP and GP, respectively, and were studied for the distribution of their organophosphonate catabolism systems. In Achromobacter sp. MPS 12, degradation of MP was catalyzed by C–P lyase incapable of degrading GP (C–P lyase I). Adaptation to growth on GP yielded the strain Achromobacter sp. MPS 12A, which retained its ability to degrade MP via C–P lyase I and was capable of degrading GP with formation of sarcosine, thus suggesting the involvement of a GP-specific C–P lyase II. O. anthropi GPK 3 also degraded MP via C–P lyase I, but degradation of GP in it was initiated by glyphosate oxidoreductase, which was followed by product transformation via the phosphonatase pathway.  相似文献   

17.
In order to estimate the size of the cavity remaining around the heme of the 3A3-microperoxidase 8 (MP8) hemoabzyme, the formation of 3A3-MP8-Fe(II)-nitrosoalkane complexes upon oxidation of N-monosubstituted hydroxylamines was examined. This constituted a new reaction for hemoabzymes and is the first example of fully characterized Fe(II)-metabolite complexes of antibody-porphyrin. Also, via a comparison of the reactions with N-substituted hydroxylamines of various size and hydrophobicity, antibody 3A3 was confirmed to bring about a partial steric hindrance on the distal face of MP8. Subsequently, the influence of the antibody on the stereoselectivity of the S-oxidation of sulfides was examined. Our results showed that MP8 alone and the antibody-MP8 complex catalyze the oxidation of thioanisole by H(2)O(2) and tert-butyl hydroperoxide, following a peroxidase-like two-step oxygen-transfer mechanism involving a radical-cation intermediate. The best system, associating H(2)O(2) as oxidant and 3A3-MP8 as a catalyst, in the presence of 5% tert-butyl alcohol, led to the stereoselective S-oxidation of thioanisole with a 45% enantiomeric excess in favour of the R isomer. This constitutes the highest enantiomeric excess reported to date for the oxidation of sulfides catalyzed by hemoabzymes.  相似文献   

18.
Cryptococcosis is a leading cause of death among individuals with compromised T cell function. Soluble Cryptococcus neoformans mannoproteins (MP) have emerged as promising vaccine candidates due to their capacity to elicit delayed-type hypersensitivity and Th type 1-like cytokines, both critical to the clearance of this pathogenic yeast. In this study, the mechanisms responsible for the potent immunostimulatory properties of MP were explored. Using Chinese hamster ovary cells expressing human macrophage mannose receptor (MMR), we determined that MP is a MMR ligand. Functionally, competitive blockade of multilectin mannose receptors (MR) on APCs diminished MP-dependent stimulation of primary T cells from immunized mice and the MP-reactive CD4(+) T cell hybridoma, P1D6, by 72 and 99%, respectively. Removal of O-linked saccharides from MP by beta-elimination inhibited MP-dependent stimulation of P1D6 and primary T cells by 89 and 90%, respectively. In addition, MP-dependent stimulation of P1D6 was abrogated after digestion with proteinase K, suggesting the protein core of MP contributed the antigenic moiety presented by APC. Stimulation of P1D6 by MP also was abolished using APC obtained from invariant chain-deficient mice, demonstrating Ag presentation was MHC class II restricted. Our data suggest that MP is a ligand for the MMR and that T cell stimulation is functionally inhibited either by competitive blockade of MR or by removal of carbohydrate residues critical for recognition. The demonstration that efficient T cell responses to MP require recognition of terminal mannose groups by MMR provides both a molecular basis for the immunogenicity of cryptococcal MP and support for vaccination strategies that target MR.  相似文献   

19.
We have studied the oxidation of microperoxidase-8 (MP-8) by H2O2 and the subsequent reaction of the intermediates with substrate by stopped-flow experiments. Oxidation of MP-8 by H2O2 gives two intermediates, I and II. The observed rate constant for the formation of I is linearly dependent on [H2O2] and exhibits a bell-shaped dependence on pH with pKa values of 8.90 and 10.60, which are attributed to the deprotonation of MP-bound H2O2 and H2O, respectively. The observed rate constant for the conversion of I to II is independent of [H2O2], but increases sharply at pH>9.0. The predominant forms of the intermediate at pH 7.0 and 10.7 are I and II, respectively. Addition of substrate to the intermediates at pH 9.0 gives rise to three distinct stages, corresponding to the three steps (in decreasing order of rate): I-->II*, II-->MP, and II*-->MP. The rates of these steps are all linearly dependent on the substrate concentration and each individual rate constant has been determined. Substrate reactivity at pH 10.7 covers over two orders of magnitude, ranging from 1.36 x 10(7) M(-1) s(-1) for 1-naphthol to 4.03 x 10(4) M(-1) s(-1) for ferrocyanide. The substrate reactivity is linearly correlated with its reduction potential, indicating that an electron transfer process is involved in the rate-limiting step.  相似文献   

20.
叶片出生动态是小麦生长发育进程及其协调状况的重要表现,研究发现,小科叶片出生与播后累积GDD(fgrowing degree days after sowing)的关系遵循两段(阶段Ⅰ快于阶段Ⅱ)线性模式,护颖分化期为两段模式的分界点,这一规律在正常发育的冬性和春性品种的7主茎及分蘖中表现一致,冬性品种播期1(9月30日)、播期3(3月2日)的主茎及冬、春性品种各播期的T3分蘖,因生长发育异常而”  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号