首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
A fluorescent chemoaffinity label o-phthalaldehyde (OPTA) was used to ascertain the conformational flexibility and polarity at the active site of xylanase I (Xyl I). The kinetics of inactivation of Xyl I with OPTA revealed that complete inactivation occurred due to the binding of one molecule of OPTA to the active site of Xyl I. The formation of a single fluorescent isoindole derivative corroborated these findings. OPTA has been known to form a fluorescent isoindole derivative by crosslinking the proximal thiol and amino groups of cysteine and lysine. The involvement of cysteine in the formation of a Xyl I-isoindole derivative has been negated by fluorometric and chemical modification studies on Xyl I with group-specific reagents and by amino-acid analysis. The kinetic analysis of diethylpyrocarbonate-modified Xyl I established the presence of an essential histidine at or near the catalytic site of Xyl I. Modification of histidine and lysine residues by diethylpyrocarbonate and 2,4,6-trinitrobenzenesulfonic acid, respectively, abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating that histidine and lysine participate in the formation of the isoindole complex. A mechanism for the reaction of OPTA with histidine and lysine residues present in the protein structure has been proposed. Experimental evidence presented here suggests for the first time that the active site of Xyl I is conformationally more flexible and more easily perturbed in the presence of denaturants than the molecule as a whole. The changes in the fluorescence emission maxima of a model compound (isoindole adduct) in solvents of different polarity were compared with the fluorescence behaviour of the Xyl I-isoindole derivative, leading to the conclusion that the active site is located in a microenvironment of low polarity.  相似文献   

2.
The spinach ribulose 1,5-bisphosphate carboxylase/oxygenase was labelled with o-phthalaldehyde, which forms a stable fluorescent isoindole adduct at the active site. The fluorescence behaviour of the labelled enzyme after activation to different levels by Mg2+ was compared with that of a synthetic isoindole adduct of o-phthalaldehyde, namely 1-(hydroxyethylthio)-2-beta hydroxyethylisoindole in solvents of different pH and polarity. The results suggest that the microenvironment at the catalytically incompetent active site of the unactivated Rubisco is highly acidic (pH less than 2) in nature. The activation by Mg2+ results in the conformational change such that the effective pH at the active site increases to greater than 8. The polarity of the active site of the activated enzyme was found to be similar to that of a mixture of hexane and toluene.  相似文献   

3.
Evidence was presented suggesting that the fluorescent isoindole produced by reaction of o-phthalaldehyde (OPA), ethanethiol, and primary amine was formed by initial imine formation followed by conversion to an alpha-alkylaminobenzylsulfide and subsequent ring closure to form the isoindole nucleus. This mechanism suggested that the minimum structural requirement for condensation to an isoindole was an o-diacyl benzene in which one of the carbonyl groups was aldehydic. A major drawback of OPA as an analytical reagent is the limited stability of the fluorescent 1,2-disubstituted isoindole. Since isoindole instability is related to autoxidation at C-3, the use of o-(formyl) arylketones as alternatives to OPA is attractive in increasing the lifetime of the fluorescent species in that such reagents would form 1,2,3-trisubstituted isoindoles. Two compounds, o-acetylbenzaldehyde (OAB) and o-benzoylbenzaldehyde (OBB), were synthesized and evaluated as potential fluorogenic reagents. Both formed fluorescent products. The rate of formation of isoindole from the latter was too slow to make it of practical analytical value; however, OAB formed isoindoles with t1/2 less than 10 s and offered markedly improved stability over that observed with OPA.  相似文献   

4.
Guo Q  Chen B  Wang X 《Biochemistry. Biokhimii?a》2004,69(12):1336-1343
Inactivation of arginine kinase (AK) of Stichopus japonicus by o-phthalaldehyde (OPTA) was investigated. The modified enzyme showed an absorption peak at 337 nm and a fluorescent emission peak at 410 nm, which are characteristic of an isoindole derivative formed by OPTA binding to a thiol and an amine group in proximity within the enzyme. Loss of enzymatic activity was concomitant with an increase in fluorescence intensity at 410 nm. Stoichiometry studies by Tsou's method showed that among the cysteine residues available for OPTA modification in the enzyme, only one was essential for the enzyme activity. This cysteine residue is located in a highly hydrophobic environment, presumably near ATP and ADP binding region. This conclusion was verified by 5,5 -dithiobis(2-nitrobenzoic acid) modification. In addition, these results were supported by means of electrophoresis and ultraviolet, fluorescence, circular dichroism spectroscopy and fast performance liquid chromatography. Sequence comparison suggested that this essential cysteine residue maybe the conservative Cys274.  相似文献   

5.
(-)-Epigallocatechin 3-O-gallate (EGCG) a molecule found in green tea and known for a plethora of bioactive properties is an inhibitor of heat shock protein 90 (HSP90), a protein of interest as a target for cancer and neuroprotection. Determination of the spectral properties of EGCG fluorescence in environments similar to those of binding sites found in proteins provides an important tool to directly study protein-EGCG interactions. The goal of this study is to examine the spectral properties of EGCG fluorescence in an aqueous buffer (AB) at pH=7.0, acetonitrile (AN) (a polar aprotic solvent), dimethylsulfoxide (DMSO) (a polar aprotic solvent), and ethanol (EtOH) (a polar protic solvent). We demonstrate that EGCG is a highly fluorescent molecule when excited at approximately 275 nm with emission maxima between 350 and 400 nm depending on solvent. Another smaller excitation peak was found when EGCG is excited at approximately 235 nm with maximum emission between 340 and 400 nm. We found that the fluorescence intensity (FI) of EGCG in AB at pH=7.0 is significantly quenched, and that it is about 85 times higher in an aprotic solvent DMSO. The Stokes shifts of EGCG fluorescence were determined by solvent polarity. In addition, while the emission maxima of EGCG fluorescence in AB, DMSO, and EtOH follow the Lippert-Mataga equation, its fluorescence in AN points to non-specific solvent effects on EGCG fluorescence. We conclude that significant solvent-dependent changes in both fluorescence intensity and fluorescence emission shifts can be effectively used to distinguish EGCG in aqueous solutions from EGCG in environments of different polarity, and, thus, can be used to study specific EGCG binding to protein binding sites where the environment is often different from aqueous in terms of polarity.  相似文献   

6.
The reactions of adenosine with malonaldehyde and glyoxal, and with malonaldehyde and methylglyoxal resulted in the formation of one malonaldehyde–glyoxal and one malonaldehyde–methylglyoxal conjugate adduct, respectively. These adducts were isolated and purified by reversed‐phase liquid chromatography, and structurally characterized by UV, 1H‐ and 13C‐NMR spectroscopy, and mass spectrometry. The malonaldehyde–glyoxal adduct was identified as 8‐(diformylmethyl)‐3‐(β‐D ‐ribofuranosyl)imidazo[2,1‐i]purine (M1Gx‐A), while the malonaldehyde–methylglyoxal one as 8‐(diformylmethyl)‐7‐methyl‐3‐(β‐D ‐ribofuranosyl)imidazo[2,1‐i]purine (M1MGx‐A). Both adducts were also observed in calf thymus DNA when incubated in the respective aldehydes under physiological pH and temperature. Moreover, in the reaction of methylglyoxal and malonaldehyde with adenosine, an additional adduct was formed. This adduct was found to consist of one unit derived from methylglyoxal and one unit from formaldehyde. The adduct was identified as N6‐(2,3‐dihydroxy‐2‐methylpropanoyl)‐9‐(β‐D ‐ribofuranosyl)purine (MGxFA‐A). Formaldehyde was found to originate from the commercial methylglyoxal in which it was present as an impurity.  相似文献   

7.
Anish R  Rao M 《Biochimie》2007,89(12):1489-1497
A bifunctional high molecular weight (Mr, 64,500 Da) beta-1-3, 1-4 glucan 4-glucanohydrolase was purified to homogeneity from Thermomonospora sp., exhibiting activity towards lichenan and xylan. A kinetic method was used to analyze the active site that hydrolyzes lichenan and xylan. The experimental data was in agreement with the theoretical values calculated for a single active site. Probing the conformation and microenvironment at active site of the enzyme by fluorescent chemo-affinity label, OPTA resulted in the formation of an isoindole derivative with complete inactivation of the enzyme to hydrolyse both lichenan and xylan confirmed the results of kinetic method. OPTA forms an isoindole derivative by cross-linking the proximal thiol and amino groups. The modification of cysteine and lysine residues by DTNB and TNBS respectively abolished the ability of the enzyme to form an isoindole derivative with OPTA, indicating the participation of cysteine and lysine in the formation of isoindole complex.  相似文献   

8.
The excellent optoelectronic properties demonstrated by hybrid organic/inorganic metal halide perovskites are all predicated on precisely controlling the exact nucleation and crystallization dynamics that occur during film formation. In general, high‐performance thin films are obtained by a method commonly called solvent engineering (or antisolvent quench) processing. The solvent engineering method removes excess solvent, but importantly leaves behind solvent that forms chemical adducts with the lead‐halide precursor salts. These adduct‐based precursor phases control nucleation and the growth of the polycrystalline domains. There has not yet been a comprehensive study comparing the various antisolvents used in different perovskite compositions containing cesium. In addition, there have been no reports of solvent engineering for high efficiency in all‐inorganic perovskites such as CsPbI3. In this work, inorganic perovskite composition CsPbI3 is specifically targeted and unique adducts formed between CsI and precursor solvents and antisolvents are found that have not been observed for other A‐site cation salts. These CsI adducts control nucleation more so than the PbI2–dimethyl sulfoxide (DMSO) adduct and demonstrate how the A‐site plays a significant role in crystallization. The use of methyl acetate (MeOAc) in this solvent engineering approach dictates crystallization through the formation of a CsI–MeOAc adduct and results in solar cells with a power conversion efficiency of 14.4%.  相似文献   

9.
The effects of o-phthalaldehyde (OPTA) on lactate dehydrogenase (LDH) have been studied by following changes in enzymatic activity, aggregation state and conformation. Treatment with OPTA resulted in pseudo first-order inactivation of LDH over a wide concentration range of the inhibitor, and the second-order rate constant was estimated to be 1.52 M−1 s−1. The loss of enzyme activity was concomitant with the increases in absorbance at 337 nm and fluorescence intensity at 405 nm. Complete loss of enzyme activity was accompanied by the formation of approximately 4 mol isoindole derivatives per mole LDH subunit. Cross-linking experiments verified enzyme dissociation during OPTA modification, which could be attributed to the modification of both thiol groups and lysine residues. Circular dichroism (CD) spectra showed that the secondary structure of the OPTA-modified enzyme decreased correspondingly. Comparison of the inactivation with the conformational changes of the enzyme suggests that the active site of the enzyme exhibits greater conformational flexibility than the enzyme molecule as a whole. It is concluded that OPTA modification has multiple effects on LDH, including its inactivation, dissociation and partial unfolding.  相似文献   

10.
Using conductivity detection, pulse radiolysis experiments showed that solvent protonation of the electron adducts of cytosine, 5-methyl cytosine and 2'-deoxycytidine occurs with rate constants k greater than or equal to 2 x 10(4) M-1S-1. The protonated electron adducts transfer an electron to p-nitroactetophenone (PNAP) with rate constants ranging from 3.5 x 10(9) to 5.3 x 10(9) M-1S-1. The transfer is quantitative (G = 2.7), as shown by conductometric and spectroscopic measurements. In the presence of O2 no electron transfer to O2 takes place, implying that O2 adds to the protonated electron adduct radicals. No electron transfer from the H- and OH-adducts of the cytosine derivatives, either to PNAP or to O2, takes place near neutral pH. It is suggested that the differences in the reaction behaviour of the H-adduct radicals and the protonated electron adduct radicals towards PNAP can be accounted for if different radicals are formed by H-addition and protonation of the electron adduct. The H atoms most probably add to the C-5-C-6 double bonds, whereas the electron adducts are protonated at N-3 and/or 0-2.  相似文献   

11.
 The non-covalent interaction between human serum albumin (HSA) and DOTA-like Gd(III) complexes containing hydrophobic benzyloxymethyl (BOM) substituents has been thoroughly investigated by measuring the solvent proton relaxation rates of their aqueous solutions. The binding association constants (K A) to HSA are directly related to the number of hydrophobic substituents present on the surface of the complexes. Furthermore, an estimation of ΔH° and ΔS° has been obtained by the temperature dependence of K A. Assays performed with the competitor probes warfarin and ibuprofen established that the complexes interact with HSA through two nearly equivalent binding sites located in the subdomains IIA and IIIA of the protein. Strong relaxation enhancements, promoted by the formation of slowly tumbling paramagnetic adducts, have been measured at 20 MHz for complexes containing two and three hydrophobic substituents. The macromolecular adduct with the latter species has a relaxivity of 53.2±0.7 mM–1 s–1, which represents the highest value so far reported for a Gd(III) complex. The temperature dependence of the relaxivity for the paramagnetic adducts with HSA indicates long exchange lifetimes for the water molecules dipolarly interacting with the paramagnetic centre. This is likely to be related to the formation, upon hydrophobic interaction of the complexes with HSA, of a clathrate-like, second-coordination-sphere arrangement of water molecules. Besides affecting the dissociative pathway of the coordinated water molecule, this water arrangement may itself significantly contribute to enhancement of the bulk solvent relaxation rate. Received: 6 November 1995 / Accepted: 17 April 1996  相似文献   

12.
A novel C3 symmetric peptide conjugate "Wheel-FKFE" consisting of three beta-sheet-forming peptides with wheel-like arrangement is developed, and the morphology of self-assembled peptide conjugates in aqueous solutions is observed at various pH. The CD spectra of Wheel-FKFE show the formation of beta-sheet structures in pH 6.9 phosphate buffer, whereas random structures are formed in aqueous HCl (pH 3.3) and NaOH (pH 11) solutions. In transmission electron microscopy, nanofibers with a uniform width of 3-4 nm and lengths of several micrometers are observed in pH 6.9 phosphate buffer, whereas nanorods with the width of several nanometers and the length of several tens of nanometers are observed for that of aqueous HCl (pH 3.3) and NaOH (pH 11) solutions. The uniform width (3-4 nm) of the fibers observed in neutral solution indicates formation of columnar self-assembly of Wheel-FKFEs. The fluorescence spectrum of polarity sensitive dye, sodium 8-anilino-1-naphthalenesulfonate (ANS), in the presence of Wheel-FKFE fibers revealed that the polarity inside the fibers corresponds to that of acetone, indicating that the internal space of the fibers possesses medium hydrophobic environment.  相似文献   

13.
Enantiomers of 3-O-acyloxazepam (oxazepam 3-acetate; OXA) underwent base-catalyzed hydrolysis and racemization. Kinetics of reaction products formed from an OXA enantiomer in buffered and unbuffered alkaline solutions were analyzed by chiral stationary phase high-performance liquid chromatography. Racemization occurred with varying rates in aqueous solutions with pH ranging from 7.5 to 14. Racemization mechanism was studied by the dependence of rates of hydrolysis and racemization on temperature and pH. Mass spectral analysis of racemization products derived from an OXA enantiomer in a deuterated solvent indicated that racemization was accompanied by a proton exchange with the solvent. The results indicated that a base-catalyzed keto-enol tautomerism between the C2-carbonyl group and the C3 carbon was responsible for the observed racemization. © 1994 Wiley-Liss, Inc.
  • 1 This article is a US Goverment work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    14.
    The interaction between deoxyguanosine (dG) and cis-dichlorodiammineplatinum(II) (cis-Pt) leads to the 2:1 and the 1:1 dG-Pt adducts. These adducts were separated on an Aminex A6 cationexchange column by use ot 0.01 M K2CO3 (pH 11) as an eluent. The stoichiometry of the adducts was determined from the 195mPt radioactivity and from the absorbance of the guanine chromophore at 280 nm. Time-course studies show that dG reacts initially with cis-Pt to form the 1:1 adduct, which then interacts with a second molecule of dG to form the 2:1 adduct. Acid hydrolysis (100°C in 88% formic acid for 5–15 min) of the 1:1 and 2:1 adducts results in their conversion to two new products, which elute differently from the column but which still contain Pt bound in the same stoichiometric ratio to dG as in the nonhydrolyzed adducts. The hydrolyzed adducts show a negative diphenylamine reaction indicative ot cleavage of the glycosidic bond. It is concluded that mild acid hydrolysis converts the 1:1 and 2:1 dG-Pt adducts into the corresponding guanine-Pt adducts, which are chromatographically distinguishable. This acid hydrolysis-high pressure liquid chromatography (HPLC) procedure has application to the identification of the Pt adducts formed in DNA.  相似文献   

    15.
    The aim of the present study is to determine the chemical structure and conformation of DNA adducts formed by incubation of the bioactive form of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-acetoxy-PhIP, with a single-stranded 11mer oligodeoxyribonucleotide. Using conditions optimized to give the C8-dG-PhIP adduct as the major product, sufficient material was synthesized for NMR solution structure determination. The NMR data indicate that in duplex DNA this adduct exists in equilibrium between two different conformational states. In the main conformer, the covalently bound PhIP molecule intercalates in the helix, whilst in the minor conformation the PhIP ligand is probably solvent exposed. In addition to the C8-dG-PhIP adduct, at least eight polar adducts are found after reaction of N-acetoxy-PhIP with the oligonucleotide. Three of these were purified for further characterization and shown to exhibit lowest energy UV absorption bands in the range 342–347 nm, confirming the presence of PhIP or PhIP derivative. Accurate mass determination of two of the polar adducts by negative ion MALDI-TOF MS revealed ions consistent with a spirobisguanidino-PhIP derivative and a ring-opened adduct. The third adduct, which has the same mass as the C8-dG-PhIP oligonucleotide adduct, may contain PhIP bound to the N2 position of guanine.  相似文献   

    16.
    Warfarin is the most common agent used for control and prevention of venous as well as arterial thromboembolism (blood clots). In aqueous media, warfarin forms inclusion complexes with a family of cyclic oligosaccharides, α, β, γ‐cyclodextrins (CD). The formation of these complexes results in enhancement of the fluorescence of warfarin. Such spectroscopic changes offer a venue for the development of bioanalytical methodologies for warfarin quantification in biological liquids. We characterized the photophysical properties of warfarin in solvents with varying polarity and viscosity. The fluorescence quantum yield of warfarin correlated: (1) strongly with the solvent viscosity (R = 0.979) and (2) weakly with the solvent polarity (R = 0.118). These findings indicate that it is the change of the viscosity, rather than polarity, of the microenvironment that causes the fluorescence enhancement of warfarin upon binding to β‐CD. Utilizing the observed fluorescence enhancement in fluorescence titration measurements, the binding constants of warfarin to β‐CD were obtained (2.6 × 102 M?1–3.7 × 102 M?1). Using multivariable linear analysis, we extracted the stoichiometry of warfarin‐β‐CD interaction (1:1). © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

    17.
    The two activities of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were inactivated by o-phthalaldehyde. Absorbance and fluorescence spectra of the modified enzyme were consistent with the formation of an isoindole derivative (1 mol/mol of enzyme subunit). The inactivation of 6-phosphofructo-2-kinase by o-phthalaldehyde was faster than the inactivation of fructose-2,6-bisphosphatase, which was concomitant with the increase in fluorescence. The substrates of 6-phosphofructo-2-kinase did not protect the kinase against inactivation, whereas fructose-2,6-bisphosphate fully protected against o-phthalaldehyde-induced inactivation of the bisphosphatase. Addition of dithiothreitol prevented both the increase in fluorescence and the inactivation of fructose-2,6-bisphosphatase, but not that of 6-phosphofructo-2-kinase. It is proposed that o-phthalaldehyde forms two different inhibitory adducts: a non-fluorescent adduct in the kinase domain and a fluorescent isoindole derivative in the bisphosphatase domain. A lysine and a cysteine residue could be involved in fructose-2,6-bisphosphate binding in the bisphosphatase domain of the protein.  相似文献   

    18.
    The acid–base equilibria of anthranilic acid have been characterized in terms of macro- and microdissociation constants (dissociation constants Ka1, Ka2 and tautomeric constant Kz). On the basis of spectrophotometric investigations the values of the distribution ratio D of anthranilic acid in the two-phase systems: aromatic solvent (benzene, ethylbenzene, toluene, chlorobenzene, bromobenzene)–aqueous solution were obtained. Employing the results of potentiometric titration in the two-phase systems: aromatic solvent–aqueous solution the distribution constant KD and dimerization constant Kdim values were calculated. The influence of organic solvent polarity and pH of the aqueous phase on the contents of the particular forms of the acid in the two-phase systems were analyzed.  相似文献   

    19.
    Rabbit liver fructose-1,6-bisphosphatase, a tetramer of identical subunits was rapidly and irreversibly inactivated by o-phthalaldehyde at 25 degrees C (pH 7.3). The second-order rate constant for the inactivation was 30 M-1s-1. Fructose-1,6-bisphosphatase was completely protected from inactivation by the substrate--fructose-1,6-diphosphate but not by the allosteric effector--adenosine monophosphate. The absorption spectrum (lambda max 337 nm) and, fluorescence excitation (lambda max 360 nm) and fluorescence emission spectra (lambda max 405 nm) were consistent with the formation of an isoindole derivative in the subunit between a cysteine and a lysine residue about 3A apart. About 4 isoindole groups per mol of the bisphosphatase were formed following complete loss of the phosphatase activity. This suggests that the amino acid residues of the biphosphatase participating in reaction with o-phthalaldehyde more likely reside at or near the active site instead of allosteric site. The molar transition energy of fructose-1,6-bisphosphatase--o-phthalaldehyde adduct was estimated 121 kJ/mol and compares favorably with 127 kJ/mol for the synthetic isoindole, 1-[(beta-hydroxyethyl)thio]-2-(beta-hydroxyethyl) isoindole in hexane. It is, thus, concluded that the cysteine and lysine residues participating in isoindole formation in reaction between fructose-1,6-bisphosphatase and o-phthalaldehyde are located in a hydrophobic environment.  相似文献   

    20.
    The influence of binding of square planar platinum complexes on tautomeric equilibria of the DNA bases guanine and adenine was investigated using the density functional B3LYP method. Neutral trans-dichloro(amine)-, +1 charged chloro(diamine)-, and +2 charged triamine-platinum(II) species were chosen for coordination to bases. Only the N7 interaction site of the bases was considered. The calculations demonstrate that the neutral platinum adduct does not change the tautomeric equilibria of the bases. Furthermore, N7 binding of the neutral Pt adduct moderately reduces the probability of protonation of the N1 position of adenine. Larger effects can be observed for +1 and mainly +2 adducts, but these can be rationalized by electrostatic effects. Since the electrostatic effects are expected to be efficiently compensated for by a charged backbone of DNA and counterions in a polar solvent, no dramatic increase in mispair formation is predicted for Pt(II) adducts, which is in agreement with experiment. The interaction energies between Pt adducts and the nucleobases were also evaluated. These interaction energies range from ca. 210 kJ/mol for neutral adducts, interacting with both bases and their tautomers, up to 500 kJ/mol for the +2 charged adducts, interacting with the keto-guanine tautomer and the anti-imino-adenine tautomer. The surprisingly large interaction energy for the latter structure is due to the strong H-bond between the NH3 ligand group of the metal adduct and the N6 nitrogen atom of the base. Received: 6 July 1999 / Accepted: 7 December 1999  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号