首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Oxidative damage to mitochondria is a central mechanism of apoptosis induced by many toxic chemicals. Thioredoxin family proteins share a conserved Cys-X-X-Cys motif at their active center and play important roles in control of cellular redox state and protection against oxidative damage. In addition to the well studied cytosolic and extracellular form (Trx1), rat and avian mitochondrial forms of thioredoxin (mtTrx) have been reported. In this study, we cloned the full-length human mtTrx cDNA and performed localization and functional studies in 143B human osteosarcoma cells. The coding sequence of human mtTrx consists of a region with homology to Trx1 as well as a putative mitochondrial localization signal (MLS) at its N terminus. In stably transfected cell lines, mtTrx had a mitochondrial localization as measured by subcellular fractionation studies and by confocal fluorescence microscopy. Deletion of the MLS rendered mtTrx to be solely expressed in the cytosolic fraction. On SDS-PAGE, transfected mtTrx had the same apparent molecular weight as the MLS truncated form, indicating that the leader sequence is cleaved during or after mitochondrial import. Treatment with the oxidant tert-butylhydroperoxide induced apoptosis in 143B cells. This oxidant-induced apoptosis was inhibited by overexpressing the full-length mtTrx in 143B cells. Thus, human mtTrx is a member of the thioredoxin family of proteins localized to mitochondria and may play important roles in protection against oxidant-induced apoptosis.  相似文献   

2.
We have examined the expression of three alternative oxidase (aox) genes in two types of maize mitochondrial mutants. Nonchromosomal stripe (NCS) mutants carry mitochondrial DNA deletions that affect subunits of respiratory complexes and show constitutively defective growth. Cytoplasmic male-sterile (CMS) mutants have mitochondrial DNA rearrangements, but they are impaired for mitochondrial function only during anther development. In contrast to normal plants, which have very low levels of AOX, NCS mutants exhibit high expression of aox genes in all nonphotosynthetic tissues tested. The expression pattern is specific for each type of mitochondrial lesion: the NADH dehydrogenase-defective NCS2 mutant has high expression of aox2, whereas the cytochrome oxidase-defective NCS6 mutant predominantly expresses aox3. Similarly, aox2 and aox3 can be induced differentially in normal maize seedlings by specific inhibitors of these two respiratory complexes. Translation-defective NCS4 plants show induction of both aox2 and aox3. AOX2 and AOX3 proteins differ in their ability to be regulated by reversible dimerization. CMS mutants show relatively high levels of aox2 mRNAs in young tassels but none in ear shoots. Significant expression of aox1 is detected only in NCS and CMS tassels. The induction pattern of maize aox genes could serve as a selective marker for diverse mitochondrial defects.  相似文献   

3.
《BBA》2023,1864(2):148947
The mitochondrial respiratory chain or electron transport chain (ETC) facilitates redox reactions which ultimately lead to the reduction of oxygen to water (respiration). Energy released by this process is used to establish a proton electrochemical gradient which drives ATP formation (oxidative phosphorylation, OXPHOS). It also plays an important role in vital processes beyond ATP formation and cellular metabolism, such as heat production, redox and ion homeostasis. Dysfunction of the ETC can thus impair cellular and organismal viability and is thought to be the underlying cause of a heterogeneous group of so-called mitochondrial diseases. Plants, yeasts, and many lower organisms, but not insects and vertebrates, possess an enzymatic mechanism that confers resistance to respiratory stress conditions, i.e., the alternative oxidase (AOX). Even in cells that naturally lack AOX, it is autonomously imported into the mitochondrial compartment upon xenotopic expression, where it refolds and becomes catalytically engaged when the cytochrome segment of the ETC is blocked. AOX was therefore proposed as a tool to study disease etiologies. To this end, AOX has been xenotopically expressed in mammalian cells and disease models of the fruit fly and mouse. Surprisingly, AOX showed remarkable rescue effects in some cases, whilst in others it had no effect or even exacerbated a condition. Here we summarize what has been learnt from the use of AOX in various disease models and discuss issues which still need to be addressed in order to understand the role of the ETC in health and disease.  相似文献   

4.
5.
Methods and approaches to study plant mitochondrial alternative oxidase   总被引:1,自引:0,他引:1  
The alternative oxidase is a non-proton motive 'alternative' to electron transport through the cytochrome pathway. Despite its wasteful nature in terms of energy conservation, the pathway is likely present throughout the plant kingdom and appears to be expressed in most plant tissues. A small alternative oxidase gene family exists, the members of which are differentially expressed in response to environmental, developmental and other cell signals. The alternative oxidase enzyme possesses tight biochemical regulatory properties that determine its ability to compete with the cytochrome pathway for electrons. Studies show that alternative oxidase can be a prominent component of total respiration in important crop species. All these characteristics suggest this pathway plays an important role in metabolism and/or other aspects of cell physiology. This brief review is an introduction to experimental methods and approaches applicable to different areas of alternative oxidase research. We hope it provides a framework for further investigation of this fascinating component of primary plant metabolism.  相似文献   

6.
Different cell types, organs and tissues shape their mitochondrial proteome according to the cellular environment that is dictated by differentiation, development and metabolic status. Under each circumstance, members of multigenic families that encode mitochondrial proteins are differentially expressed to meet the mitochondrial metabolic demand. However, the mitochondrial proteome may drastically change in response to stress conditions. Examples of the changes in mitochondrial protein expression caused by stress are represented by the energy-dissipating mitochondrial uncoupling protein (UCP) and alternative oxidase (AOx). UCP and AOx belong to multigenic families in plants, and their members, which are expressed in a time/tissue specific manner, respond differentially to stress conditions. In general, UCP and AOx are not expressed at the same levels concurrently in the same tissue, and the level of each protein varies in each stress condition. In addition, under non-stress conditions, UCP is expressed at much higher levels compared with AOx. The role of their differential expression in plant growth, development and response to stress is discussed.  相似文献   

7.
Treatment of tobacco (Nicotiana tabacum L. cv Petit Havana SR1) cells with cysteine (Cys) triggers a signal pathway culminating in a large loss of mitochondrial cytochrome (cyt) pathway capacity. This down-regulation of the cyt path likely requires events outside the mitochondrion and is effectively blocked by cantharidin or endothall, indicating that protein dephosphorylation is one critical process involved. Generation of reactive oxygen species, cytosolic protein synthesis, and Ca(2+) flux from organelles also appear to be involved. Accompanying the loss of cyt path is a large induction of alternative oxidase (AOX) protein and capacity. Induction of AOX allows the cells to maintain high rates of respiration, indicating that the lesion triggered by Cys is in the cyt path downstream of ubiquinone. Consistent with this, transgenic (AS8) cells unable to induce AOX (due to the presence of an antisense transgene) lose all respiratory capacity upon Cys treatment. This initiates in AS8 a programmed cell death pathway, as evidenced by the accumulation of oligonucleosomal fragments of DNA as the culture dies. Alternatively, wild-type cells remain viable and eventually recover their cyt path. Induction of AOX in response to a chemical inhibition of the cyt path (by antimycin A) is also dependent upon protein dephosphorylation and the generation of reactive oxygen species. Common events required for both down-regulation of the cyt path and induction of AOX may represent a mechanism to coordinate the biogenesis of these two electron transport paths. Such coordinate regulation may be necessary, not only to satisfy metabolic demands, but also to modulate the initiation of a programmed cell death pathway responsive to mitochondrial respiratory status.  相似文献   

8.
The mitochondrial alternative oxidase (AOX) and the plastid terminal oxidase (PTOX) are two similar members of the membrane-bound diiron carboxylate group of proteins. AOX is a ubiquinol oxidase present in all higher plants, as well as some algae, fungi, and protists. It may serve to dampen reactive oxygen species generation by the respiratory electron transport chain. PTOX is a plastoquinol oxidase in plants and some algae. It is required in carotenoid biosynthesis and may represent the elusive oxidase in chlororespiration. Recently, prokaryotic orthologues of both AOX and PTOX proteins have appeared in sequence databases. These include PTOX orthologues present in four different cyanobacteria as well as an AOX orthologue in an alpha-proteobacterium. We used PCR, RT-PCR and northern analyses to confirm the presence and expression of the PTOX gene in Anabaena variabilis PCC 7120. An extensive phylogeny of newly found prokaryotic and eukaryotic AOX and PTOX proteins supports the idea that AOX and PTOX represent two distinct groups of proteins that diverged prior to the endosymbiotic events that gave rise to the eukaryotic organelles. Using multiple sequence alignment, we identified residues conserved in all AOX and PTOX proteins. We also provide a scheme to readily distinguish PTOX from AOX proteins based upon differences in amino acid sequence in motifs around the conserved iron-binding residues. Given the presence of PTOX in cyanobacteria, we suggest that this acronym now stand for plastoquinol terminal oxidase. Our results have implications for the photosynthetic and respiratory metabolism of these prokaryotes, as well as for the origin and evolution of eukaryotic AOX and PTOX proteins.  相似文献   

9.
10.
11.
Expression of free short peptides could potentially be used to modulate biochemical cascades and consequently to change cellular phenotypes. Here we demonstrate that expression of a short peptide of 15 amino acids, including the pseudo-substrate site of the baculovirus-apoptosis inhibitor P35, Asp-Gln-Met-Asp (DQMD), leads to abrogation of the apoptotic cascade. Treatment of cells, expressing the DQMD peptide with two apoptosis inducers, etoposide and sodium nitroprusside, (SNP) results in blocking of the apoptotic cascade, indicated by DNA fragmentation and caspase activation. Consequently, stable expression of the DQMD peptide led to protection of cells, following induction of apoptosis and to the outgrowth and enrichment of resistant cell colonies. The results presented in this work demonstrate for the first time the feasibility of expressing in cells functional short peptides that block apoptotic cascade, and to rescue the phenotypically altered cells in a stable fashion. This approach is general and could be applied to the study of other peptides and the respective biochemical cascades.  相似文献   

12.
To survive, plants possess elaborate defence mechanisms to protect themselves against virus or pathogen invasion. Recent studies have suggested that plant mitochondria may play an important role in host defence responses to biotic stresses. In contrast with animal mitochondria, plant mitochondria possess a unique respiratory pathway, the cyanide‐insensitive alternative pathway, which is catalysed by the alternative oxidase (AOX). Much work has revealed that the genes encoding AOX, AOX protein and the alternative respiratory pathway are frequently induced during plant–pathogen (or virus) interaction. This raises the possibility that AOX is involved in host defence responses to biotic stresses. Thus, a key to the understanding of the role of mitochondrial respiration under biotic stresses is to learn the function and regulation of AOX. In this article, we focus on the theoretical and experimental progress made in the current understanding of the function and regulation of AOX under biotic stresses. We also address some speculative aspects to aid further research in this area.  相似文献   

13.
Mitochondrial alternative oxidase (AOX), the unique respiratory terminal oxidase in plants, catalyzes energy wasteful cyanide (CN)-resistant respiration and plays a role in optimizing photosynthesis. Recent studies from our group indicated that AOX plays a crucial role in chloroplast protection under extreme environments, such as high light (HL). Genetic data suggest that AOX is upregulated by light that was mediated by photoreceptors (phytochromes, phototropins and cryptochromes), and it also might have a particular role in relieving the overreduction of chloroplasts. Physiological analyses further suggest that AOX is essential for the dark-tolight transition, especially in the course of de-etiolation. In this mini-review, we highlight recent progress in understanding the beneficial interaction between photosynthesis and mitochondria metabolism and discuss the possible role and mechanism of AOX in dissipation of excess reduced equivalents for chloroplasts under high light condition.Key words: alternative oxidase (AOX), excess light, NAD(P)H dehydrogenases (NDs), photoreceptors, reactive oxygen species (ROS)  相似文献   

14.
15.
Attempts to complement the defect in the mitomycin C (MMC)-sensitive Chinese hamster ovary (CHO) mutant MMC3 led to the isolation of hybrids with high resistance to the cytotoxic action of the drug. Hybrid cells selected with MMC after fusion of MMC3 cells to human diploid fibroblasts were approximately five times more resistant to MMC than wild-type CHO cells but retained the original MMC3 sensitivity to another DNA cross-linking agent, diepoxybutane. To confirm that the MMC resistance was genetically determined and was of human origin, DNA from the resistant hybrids was introduced into MMC3 cells, and transfectants were selected in MMC. These cells had the same level of MMC resistance as the hybrids. Thus we have identified a human gene that can confer MMC resistance to CHO cells. Identification of the gene should help understand the mechanisms of MMC resistance in mammalian cells.  相似文献   

16.
17.
Baculovirus has many advantages as vectors for gene transfer. We demonstrated that recombinant baculovirus vectors expressing p35 (Ac-CMV-p35) and eGFP (Ac-CMV-GFP) could be transduced into human kidney 293 cells efficiently. The level of transgene expression was viral dose dependent and high-level expression of the target gene could be achieved under the heterogonous promoter. MTT assay suggested that both Ac-CMV-p35 and Ac-CMV-GFP did not have cytotoxic effect on human embryo kidney 293 cells. Cell growth curve showed the Ac-CMV-p35 and Ac-CMV-GFP transduced and non-transduced cells had similar proliferation rate, so baculovirus-mediated p35 expression had no adverse effect on cell proliferation. In addition, baculovirus-mediated p35 gene expression protected human embryo kidney 293 cells against apoptosis induced by various apoptosis inducers such as Actinomycin D, UV or serum-free media. These results suggested that the baculovirus vector mediated p35 gene expression was functional and it could be widely used in molecular research and even gene therapy. Foundation items: National Nature Science Foundations of China (30325002, 30670077) and Innovative Foundations Wuhan Institute of Virology, CAS (020208)  相似文献   

18.
Shewanella oneidensis is able to respire on a variety of organic and inorganic substrates, including nitrate and nitrite. Conversion of nitrate to nitrite and nitrite to ammonium is catalysed by periplasmic nitrate and nitrite reductases (NAP and NRF) respectively. Global regulator Crp (c yclic AMP r eceptor p rotein) is essential for growth of S. oneidensis on both nitrate and nitrite. In this study, we discovered that crp mutants are not only severely deficient in nitrate or nitrite respiration, but are also hypersensitive to nitrite. This hypersusceptibility phenotype is independent of nitrite respiration. Using random transposon mutagenesis, we obtained 73 Δcrp suppressor strains resistant to nitrite. Transposon insertion sites in 24 suppressor strains were exclusively mapped in the region upstream of the cyd operon encoding a cytochrome bd oxidase, resulting in expression of the operon now driven by a Crp‐independent promoter. Further investigation indicated that the promoter in suppressor strains comes from the transposon. Mutational analysis of the cydB gene (encoding the essential subunit II of the bd oxidase) confirmed that the cytochrome bd oxidase confers nitrite resistance to S. oneidensis.  相似文献   

19.
The plasma membrane constitutes a barrier that maintains the essential differences between the cytosol and the extracellular environment. Plasmalemmal injury is a common event during the life of many cells that often leads to their premature, necrotic death. Blebbing – a display of plasmalemmal protrusions – is a characteristic feature of injured cells. In this study, we disclose a previously unknown role for blebbing in furnishing resistance to plasmalemmal injury. Blebs serve as precursors for injury-induced intracellular compartments that trap damaged segments of the plasma membrane. Hence, loss of cytosol and the detrimental influx of extracellular constituents are confined to blebs that are sealed off from the cell body by plugs of annexin A1 – a Ca2+- and membrane-binding protein. Our findings shed light on a fundamental process that contributes to the survival of injured cells. By targeting annexin A1/blebbing, new therapeutic approaches could be developed to avert the necrotic loss of cells in a variety of human pathologies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号