首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Redistribution, or modulation, of some cell surface antigens occurs in the presence of specific antibody. The phenomenon of antigenic modulation may therefore affect the use of antibodies as therapeutic agents. This study was undertaken to investigate modulation of the 65,000 dalton T65 antigen, present on normal and malignant T cells and some malignant B cells, which is recognized by the monoclonal antibody T101. To induce cell surface antigenic modulation, normal or leukemic lymphoid cells were cultured in the presence of monoclonal antibody T101 for 3-hr periods. Removal of monocytes from mononuclear cell preparations resulted in significantly lower degrees of T65 antigenic modulation. The degree of antigenic modulation could be increased by adding monocytes back to monocyte-depleted lymphocyte suspensions. Furthermore, maximal modulation occurred in the presence of monocytes at T101 concentrations that were 3 logs lower than in the absence of monocytes. The enhancing effect of monocytes was dependent on the Fc portion of the T101 antibody molecule, and presumably was mediated by cross-linking of antigen-antibody complexes on the surface membrane of the modulating cell by Fc receptors present on monocytes. Further experiments performed to examine the characteristics of this enhancement of antigenic modulation by monocytes indicated that autologous as well as allogeneic monocytes were effective, indicating that the enhancing phenomenon was not dependent upon recognition of major histocompatibility antigens. Viable monocytes were required, but pretreatment of monocytes with sodium azide to inhibit energy production, or indomethacin to inhibit prostaglandin synthesis had no effect on this phenomenon. Polymorphonuclear leukocytes did not mediate similar enhancement, although monocytic and myeloid cell lines U937, THP-1, and HL-60 did. Spent culture medium from modulated cultures and preparations containing IL 1 activity did not enhance modulation of the T65 surface antigen on lymphocytes, suggesting that direct contact between lymphocytes and monocytes is required to mediate the effect. The finding that leukemic cells from patients with CLL undergo modulation of the T65 antigen to a much lower degree in vitro than observed in vivo, and that this difference can be overcome by the addition of monocytes, suggests that monocytes or the reticuloendothelial system may augment antigenic modulation in vivo.  相似文献   

2.
Antigenic modulation by anti-CD5 immunotoxins   总被引:1,自引:0,他引:1  
We evaluated the modulation of T101 immunotoxins (IT) and free T101 antibody from the surface of normal and leukemic cells to determine whether the presence of toxin on antibody affected antigenic modulation. Reagents were made by conjugating T101, which binds to the T cell antigen CD5, to either intact ricin or purified ricin A chain. We found that T101-A chain modulated CD5 more efficiently than T101-ricin, which modulated CD5 more efficiently than T101 alone. Kinetic studies showed that maximal modulation of IT was reached within 3 hr. When toxicity of the reagents was tested in protein synthesis inhibition assays, T101-ricin in the presence of lactose inhibited 99% of the protein synthesis of CEM cells. T101-A chain was less toxic, inhibiting protein synthesis only 23 to 43%. The addition of the potentiating agent monensin nearly doubled the toxicity of T101-A chain, but did not affect T101-A chain modulation. To determine the fate of bound IT, T101 and T101-ricin were labeled with 125I. Cells were incubated under modulating conditions in the presence of radiolabeled reagents. T101 and T101-ricin were internalized into CEM cells. In contrast, T101, but not T101-ricin, appeared to be shed from peripheral blood mononuclear cells. Our findings show clearly that: 1) the presence of toxin on antibody does not inhibit--and may actually enhance--modulation; 2) T101-IT are internalized, not shed from the cell surface; 3) the lack of toxicity of T101-A chain is not attributed to inability to modulate; 4) there is no correlation between enhancement of T101-A chain toxicity by monensin and antigenic modulation by A chain reagents; and 5) modulation, which is undesirable in monoclonal antibody therapy, may be advantageous in the therapeutic use of IT.  相似文献   

3.
Limited antitumor effects have been achieved in clinical trials with murine monoclonal antibody T101, perhaps because of its limited ability to effect complement-mediated or cell-mediated cytotoxicity. We explored the effects of recombinant immune interferon on T101-mediated cytotoxicity in vitro. Interferon failed to enhance expression of the antigen detected by T101 on target cells, but it did increase Fc receptor binding of T101 and other IgG2A and IgG3 murine proteins, but not IgG1 or IgG2B. Preincubation of U937, HL60, and human mononuclear cells with 100 U of immune interferon for 48 hr, while T101 was preincubated with various T cell line targets or human CLL cells at 4 degrees C for 30 min before combining effectors and targets for 4 hr at 37 degrees C, resulted in cytotoxicity of 18 to 44% of maximum. Cytotoxicity in the absence of interferon or T101 was less than 5%. Unfortunately, rapid modulation of antigen-antibody when T101 was preincubated with targets at 37 degrees C prevented any increase in cytotoxicity under those conditions. We conclude that immune interferon can augment T101-mediated cytotoxicity in vitro, but it is unlikely that it would enhance T101-mediated cytotoxicity via complement or cell-mediated mechanisms in vivo.  相似文献   

4.
We tested drug monoclonal antibody immunoconjugates in vitro in 72 h 3H-thymidine assays and in vivo in athymic mice bearing human tumor xenografts of the same target cells. Experimental arms included control, monoclonal antibody, drug, drug + antibody, the test immunoconjugate, and a negative control immunoconjugate with an equivalent molar amount of drug for in vitro experiments, and the amount of drug conjugated to 500 micrograms of antibody in the animal experiments. Monoclonal antibodies included T101, an IgG2a that reacts with a rapidly modulating antigen, 9.2.27, an IgG2a that reacts with a slowly modulating antigen, and ME7, an IgG1 that reacts with a slowly modulating antigen. Cells used in testing included MOLT-4 (T lymphoma), 8392 (B lymphoma), and M21 (melanoma). Drugs tested were doxorubicin, daunorubicin, methotrexate, and mitomycin-C. M21 cells were resistant to daunorubicin in vitro but were inhibited by the 9.2.27 daunorubicin immunoconjugate. T101, 9.2.27, and ME7 cis-aconitate anthracycline immunoconjugates and mitomycin-C-glutarate immunoconjugates were specifically cytotoxic only for antigen positive cells in vitro and were superior to free drug in vivo. These results confirm that antigen specific-cytotoxic drug immunoconjugates can be produced that are superior to the same dose of free drug. However, each monoclonal antibody drug target system is unique and must be well-characterized for appropriate interpretation of data.  相似文献   

5.
Treatment with monoclonal antibodies directed against the IA antigens of the MHC is known to alter the course and prevent a number of experimental autoimmune diseases. To determine whether the treatment in vivo with anti-IA antibodies is haplotype-specific, we studied the development of EAE in F1 (SJL/J X BALB/c) mice following anti-IA antibody therapy. We report that treatment of animals with monoclonal antibody directed against the high responder allele product, I-As, was successful in preventing disease when therapy was begun either at the time of immunization with antigen, or following passive transfer of MBP-sensitized T cells. Therapy with antibody directed to the low responder allele product (I-Ad), while effective when used at the time of immunization with antigen, was ineffective following passive transfer of MBP-sensitized lymphocytes.  相似文献   

6.
Experimental allergic encephalomyelitis (EAE) is an autoimmune disease mediated by CD4+ T cells. Prior studies have established that monoclonal anti-CD4 antibodies can reverse EAE. To determine whether immunoglobulin isotype plays a role in the therapy of EAE with anti-CD4 antibody, an isotype switch variant family of the mouse IgG1 anti-rat CD4 antibody W3/25 was isolated with the fluorescence-activated cell sorter. The IgG1, IgG2b, and IgG2a W3/25 isotype variants all had identical binding capacities for rat CD4+ T cells. Although all three W3/25 isotypes showed some beneficial effects in the amelioration of EAE, the IgG1 and IgG2a W3/25 antibodies were superior to the IgG2b W3/25 in the treatment of EAE. Multiparameter fluorescence-activated cell sorter analysis of T cell subpopulations from treated rats showed that none of the antibodies of the W3/25 isotype switch variant family substantially depleted CD4+ target cells in vivo. These experiments demonstrate that immunoglobulin isotype is important in the monoclonal antibody therapy of autoimmune disease. They indicate that therapy of EAE may be successful without a major depletion of CD4+ lymphocytes. Immunotherapy may be optimized by selecting an appropriate isotype of a monoclonal antibody.  相似文献   

7.
Purpose: Immunologic-based cancer treatment modalities represent an active area of investigation. Included in these strategies are passive administration of monoclonal antibodies which recognize tumor-associated antigens and active vaccination with identified tumor antigens. However, several problems associated with these types of treatment strategies have been identified. Methods: In this report, we address certain issues by employing a murine model for experimental pulmonary metastasis and a tumor antigen vaccination strategy that induces complete tumor immunity in this system. Utilizing this model, we attempt to address issues related to unresponsiveness to tumor antigen immunization induced by passive administration of a rat monoclonal anti-CD4 and the induction of anti-idiotype responses to a passively administered monoclonal antibody and the effects on the induction of tumor immunity. Results: The results presented indicate that passive administration of rat monoclonal anti-CD4 exhibits immunosuppressive effects that inhibit the production of antibodies to the tumor antigen immunization and abolishes tumor immunity. Repeated administration of the rat monoclonal anti-CD4 results in an anti-idiotype response that can abrogate unresponsiveness to tumor antigen immunization and promote systemic tumor immunity. Conclusions: The data examine a number of potential problems associated with immunologic-based treatments for cancer. These problems include the potential for tolerance to the tumor antigen and establishing an immunocompromised state where immunization with a tumor antigen failed to generate tumor immunity. Approaches to eliminate tolerant T cells by targeting anti-CD4 via anti-idiotype responses that could be generated in vivo without CD4+ T cells allowed for recovery of nontolerant T cells, and an antibody response to the tumor antigen that results in tumor immunity.Abbreviations CTL Cytotoxic T lymphocyte - FITC Fluorescein isothiocyanate - OD Optical density - PBS Phosphate-buffered saline - SV40 Simian virus 40  相似文献   

8.
Targeted immunotherapies hold great promise for the treatment and cure of autoimmune diseases. The efficacy of CD3-specific monoclonal antibody therapy in mice and humans stems from its ability to re-establish immune homeostasis in treated individuals. This occurs through modulation of the T-cell receptor (TCR)-CD3 complex (also termed antigenic modulation) and/or induction of apoptosis of activated autoreactive T cells, which leaves behind 'space' for homeostatic reconstitution that favours selective induction, survival and expansion of adaptive regulatory T cells, which establishes long-term tolerance. This Review summarizes the pre-clinical and clinical studies of CD3-specific monoclonal antibody therapy and highlights future opportunities to enhance the efficacy of this potent immunotherapeutic.  相似文献   

9.
Respiratory syncytial virus (RSV) is a major cause of pneumonia and bronchiolitis in infants and elderly people. Currently there is no effective vaccine against RSV, but passive prophylaxis with neutralizing antibodies reduces hospitalizations. To investigate the mechanism of antibody-mediated RSV neutralization, we undertook structure-function studies of monoclonal antibody 101F, which binds a linear epitope in the RSV fusion glycoprotein. Crystal structures of the 101F antigen-binding fragment in complex with peptides from the fusion glycoprotein defined both the extent of the linear epitope and the interactions of residues that are mutated in antibody escape variants. The structure allowed for modeling of 101F in complex with trimers of the fusion glycoprotein, and the resulting models suggested that 101F may contact additional surfaces located outside the linear epitope. This hypothesis was supported by surface plasmon resonance experiments that demonstrated 101F bound the peptide epitope ~16,000-fold more weakly than the fusion glycoprotein. The modeling also showed no substantial clashes between 101F and the fusion glycoprotein in either the pre- or postfusion state, and cell-based assays indicated that 101F neutralization was not associated with blocking virus attachment. Collectively, these results provide a structural basis for RSV neutralization by antibodies that target a major antigenic site on the fusion glycoprotein.  相似文献   

10.
Newly synthesized simian virus 40 large tumor antigen (T Ag) slowly forms a stable complex with the host tumor antigen, "p53." By the use of immunological and temporal separations and inhibition of aggregation and processing by A locus mutation, we have distinguished specific steps in the reaction sequence leading to formation of the rapidly sedimenting oligomeric complex. The monoclonal antibody PAb101 bound only a fraction of the total soluble pulse-labeled T Ag bound by antitumor serum. After a chase, all T Ag had matured to the form recognized by PAb101. All p53 in the mouse line SVA31E7 was precipitated by the T Ag-specific monoclonal antibody PAb101, even after a short pulse, and is therefore entirely bound to mature T Ag. The p53-specific monoclonal antibody PAb122 precipitates nearly all of the mature T Ag recognized by PAb101, except A locus mutant T Ag, synthesized at the nonpermissive temperature. A locus mutation inhibited entry of newly synthesized T Ag into the oligomeric greater than 28S complex of T Ag and p53.  相似文献   

11.
Chronic infection with Friend retrovirus is associated with suppressed antitumor immune responses. In the present study we investigated whether modulation of T-cell responses during acute infection would restore antitumor immunity in persistently infected mice. T-cell modulation was done by treatments with DTA-1 anti- glucocorticoid-induced tumor necrosis factor receptor monoclonal antibodies. The DTA-1 monoclonal antibody is nondepleting and delivers costimulatory signals that both enhance the activation of effector T cells and inhibit suppression by regulatory T cells. DTA-1 therapy produced faster Th1 immune responses, significant reductions in both acute virus loads and pathology and, most importantly, long-term improvement of CD8(+) T-cell-mediated antitumor responses.  相似文献   

12.
In productively infected cells, a fraction of large-tumor antigen (T antigen) is tightly bound to replicating simian virus 40 (SV40) minichromosomes and does not dissociate at salt concentrations of greater than 1 M NaCl. We present electronmicrograms demonstrating the presence of T antigen on the replicated sections of replicating SV40 minichromosomes. We also show that the fraction of tightly bound T antigen is recognized by antibodies from mouse tumor serum and, more specifically, by a particular T-antigen-specific monoclonal antibody, PAb 1630. A second T-antigen-specific monoclonal antibody, PAb 101, does not react with the T-antigen fraction remaining on replicating SV40 chromatin at high salt concentrations. We used an in vitro replication system which allows, via semiconservative DNA replication, the completion of in vivo-initiated replicative intermediate DNA molecules. We show that monoclonal antibody PAb 1630, but not monoclonal antibody PAb 101, inhibits viral DNA replication. We discuss the possibility that SV40 T antigen may play a role in chain elongation during SV40 chromatin replication.  相似文献   

13.
The in vitro stability and immunointegrity of four radioiodinated monoclonal antibodies was evaluated in various storage conditions and also in plasma samples. The monoclonal antibodies studied included T101, B72.3, Lyml, and 16.88. Stabilities of typical monoclonal antibody therapy solutions, with radioactivities ranging from 2220 to 3700 MBq (60–100 mCi) were assessed using conventional instant thin layer chromatography and size exclusion high performance liquid chromatography. Radioimmunoreactivity was assessed using a live cell attenuated cell, or mucin-linked bead assay. Results of the study demonstrated that therapy solutions were stable to degradation, if properly stored in 5 or 10% human serum albumin at 4 °C for the duration of the study (5 days).Minor losses in immunoreactivity were also measured in stabilized therapy solutions. When incubated in plasma samples, radioiodinated monoclonal antibodies generally remained stable for the duration of the study (3 days). However, significant decreases in immunoreactivity were measured for specific radioiodinated monoclonal antibody preparations.  相似文献   

14.
We investigated the potential of antibody-vectorialized superparamagnetic iron oxide (SPIO) particles as cellular specific magnetic resonance contrast agents to image lymphocyte populations within the central nervous system (CNS), with the final goal of obtaining a reliable tool for noninvasively detecting and tracking specific cellular populations in vivo. We used superparamagnetic particles bound to a monoclonal antibody. The particle is the contrast agent, by means of its T?* relaxation properties; the antibody is the targeting vector, responsible for homing the particle to target a surface antigen. To investigate the efficiency of particle vectorialization by these antibodies, we compared two types of antibody-vectorialized CD3-specific particles in vivo. We successfully employed vectorialized SPIO particles to image B220? cells in a murine model of B-cell lymphoma. Likewise, we were able to identify CD3? infiltrates in a murine model of multiple sclerosis. The specificity of the technique was confirmed by immunohistochemistry and electron microscopy of corresponding sections. Our findings suggest that indirect binding of the antibody to a streptavidinated particle allows for enhanced particle vectorialization compared to covalent binding of the antibody to the particle.  相似文献   

15.
Purpose: The CD44 v7/8 splice variant that is frequently expressed in cervical carcinoma and rarely expressed in normal tissues displays promising properties as a target antigen for cancer immune therapy. In this study, cytotoxic T lymphocytes (CTLs) were genetically engineered to gain CD44v7/8 target specificity. Methods: Clone 96 (CI96), an established murine cytotoxic T-cell line, and naïve murine T cells were retrovirally transduced with a fusion gene construct encoding for the single chain fragment scFv of the monoclonal antibody VFF17 and for the chain of the T-cell receptor (TCR). The therapeutic potential of genetically engineered T cells was tested in vitro and in vivo. Results: Surface expression of the chimeric TCR on infected Cl96 and naïve T cells was shown by FACS analysis. CD44v7/8-positive target cells were efficiently lysed by transduced Cl96 and naïve T cells, demonstrating the functionality and specificity of the chimeric TCR. In a xenograft BALB/c mouse model, efficient growth retardation of CD44v7/8-positive tumours was mediated by genetically engineered Cl96(VFF17)cyYZ cells. Conclusions: We were able to reprogramme the target specificity of recombinant Cl96 and naïve CTLs resulting in efficient cytolysis of CD44v7/8-positive cervical cancer cells. High transduction rates and the specific cytolysis of CD44v7/8-redirected CTLs are promising tools for an immune gene therapy approach for advanced cervical cancer.Abbreviations Ab Antibody - CTL Cytolytic T lymphocyte - mAb Monoclonal antibody - TCR T-cell receptor  相似文献   

16.
Stable antibody expression at therapeutic levels using the 2A peptide   总被引:2,自引:0,他引:2  
Therapeutic monoclonal antibodies (mAbs) are currently being developed for the treatment of cancer and other diseases. Despite clinical success, widespread application of mAb therapies may be limited by manufacturing capabilities. In this paper, we describe a mAb delivery system that allows continuous production of a full-length antibody at high-concentrations in vivo after gene transfer. The mAb is expressed from a single open reading frame by linking the heavy and light chains with a 2A self-processing peptide derived from the foot-and-mouth disease virus. Using this expression system, we generated a recombinant adeno-associated virus vector encoding the VEGFR2-neutralizing mAb DC101 (rAAV8-DC101). A single dose of rAAV8-DC101 resulted in long-term expression of >1,000 microg/ml of DC101 in mice, demonstrating significant anti-tumor efficacy. This report describes the first feasible gene therapy approach for stable delivery of mAbs at therapeutic levels, which may serve as an attractive alternative to direct injection of mAbs.  相似文献   

17.
In vitro modulation of human T lymphocyte surface differentiation antigens T3, T8, and T4, by their respective monoclonal antibodies, was studied as a function of donor age. Kinetic studies performed on lymphocytes from young adults indicated that modulation is dependent on concentration of antibody used and duration of culture. OKT3 modulates T3 rapidly (maximum at less than 24 hr) and relatively completely (79% at the highest concentration of antibody used). By 48 hr, regeneration of the T3 antigen is apparent. T8 modulation by OKT8 is slower (continued modulation at 48 hr) and less complete than is T3 modulation by OKT3. OKT4 does not modulate the T4 antigen. In elderly individuals modulation of T3 by OKT3 is preserved whereas modulation of T8 by OKT8 is significantly reduced (24 +/- 8% at 48 hr vs 53 +/- 4% for young controls). These observations document further age-related changes in properties of human T suppressor cells.  相似文献   

18.
Retargeting of T cells by bispecific IgG which binds to both CD3 and a tumor-associated Ag can induce T cell lysis of target cells irrespective of TCR specificity. The current studies were designed to further explore the efficacy and specificity of bispecific IgG-directed therapy in an immunocompetent animal model, and to evaluate the mechanisms responsible for bispecific IgG-directed inhibition of tumor cell growth by using the 38C13 murine lymphoma system. In vitro, proliferation of activated T cells in the presence of bispecific IgG was increased when the relevant, but not the irrelevant target cells were present. Bispecific IgG specifically induced activated T cell mediated lysis of cells expressing the target Ag, but not of cells expressing an irrelevant Ag, even when the irrelevant cells were in the same cell mixture, indicating contact between target cells and T cells plays a major role in bispecific IgG-mediated lysis. Bispecific IgG was less effective than anti-Id at inducing target cell lysis when peritoneal macrophages were used as effectors, suggesting bispecific IgG Fc is not responsible for cytotoxicity in this system. In vivo, bispecific IgG was significantly superior to anti-Id, anti-CD3, or a combination of anti-Id and anti-CD3 in preventing tumor growth in immunocompetent mice inoculated with syngeneic lymphoma. Phenotypic evaluation of tumors that emerged despite therapy indicated bispecific IgG selects for the emergence of Id variant lymphoma cells. In separate studies, 38C13 tumor inocula containing cells recognized by the therapeutic antibody were supplemented with a small number of 38C13 cells which expressed a distinct Id not recognized by the therapeutic antibody. Untreated mice inoculated with this mixture developed tumors containing cells of both phenotypes, whereas tumors emerging from mice treated with bispecific IgG contained only cells expressing the nonreactive Id. These studies demonstrate bispecific IgG-directed lysis is therapeutically superior to monospecific anti-Id therapy in the 38C13 tumor model, and that tumor lysis is mediated largely by cell-cell contact. As with other forms of anti-Id based therapy, Id variants can emerge as resistant cell populations after bispecific IgG therapy.  相似文献   

19.
The optimal conditions are found for in vivo irradiated lymphocyte induction of high cytotoxic T lymphocytes (CTL) specific to the H-2Kb molecule with a subsequent monoculture differentiation. B10.D2(R101) CTL have a pronounced excess as compared to B10.A (4R) CTL, with respect to lysis intensity of the same target cells (TC), and requires a lower term of the monoculture incubation in spite of their specificity to the same H-2Kb molecule. As the susceptibility of TC for CTL lysis is higher (M phi as compared to EL-4 thymoma cells), CTL are much more inactivated with the monoclonal antibodies to Lyt-2 and Lyt-3 antigens without complement. Anti-H-2Kb CTL differentiated in the monoculture cross react to TC bearing third-party H-2 molecules (Kk, Dq, Dk). Unlike a stable CTL adherence to the donor M phi monolayer, nonspecific CTL adherence to the syngeneic M phi monolayer declines in the presence of EGTA, and as a result of repeated detachment of lymphocytes. The findings give rise to study receptor affinity expressed on the in vivo induced CTL surface, the CTL receptor monoclonal antibody and the CTL differentiation factor.  相似文献   

20.
Modulation of the T3 molecule on human T cells with monoclonal anti-T3 antibodies has been shown to result in the disappearance of the T3-Ti complex from the membrane and to preclude subsequent T cell activation by various mitogenic and antigenic stimuli. We have examined the effect of T3 modulation on pokeweed mitogen (PWM)-induced T cell activation. T3 modulation was accomplished by incubating peripheral blood mononuclear cells (PBMC) or mixtures of T cells and non-T cells at 37 degrees C for 18 hr in the presence of UCHT-1, a mouse IgG1 anti-T3 monoclonal antibody. Only donors whose PBMC were unresponsive to the mitogenic activity of this antibody were selected. Although T3 modulation resulted in complete to substantial inhibition of T cell proliferation induced by low PWM concentrations of 5 or 50 ng/ml, it had no effect on T cell proliferation when PWM was added at a concentration of 0.5 and 5 micrograms/ml. The results demonstrate that the higher doses of PWM can induce T cell proliferation via an alternative pathway that does not involve participation of the T3-Ti complex. In contrast, irrespective of the PWM dose added, T3 modulation almost totally inhibited PWM-induced interleukin 2 (IL 2) production. The differential effect of T3 modulation on IL 2 production and on T cell proliferation induced by high doses of PWM suggests that this alternative pathway of T cell proliferation is IL 2 independent. This suggestion was additionally substantiated by the lack of effect of anti-Tac, and anti-IL 2 receptor antibody, on PWM-induced proliferation of T3-modulated T cells. In conclusion our data demonstrate that high doses of PWM can induce T cells to proliferate via an alternative pathway that does not involve perturbation of the T3-Ti complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号