首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we exploited the superior features of peptide nucleic acids (PNAs) to develop an efficient PNA zip-code microarray for the detection of hepatocyte nuclear factor-1α (HNF-1α) mutations that cause type 3 maturity onset diabetes of the young (MODY). A multi-epoxy linker compound was synthesized and used to achieve an efficient covalent linking of amine-modified PNA to an aminated glass surface. PCR was performed to amplify the genomic regions containing the mutation sites. The PCR products were then employed as templates in a subsequent multiplex single base extension reaction using chimeric primers with 3′ complementarity to the specific mutation site and 5′ complementarity to the respective PNA zip-code sequence on the microarray. The primers were extended by a single base at each corresponding mutation site in the presence of biotin-labeled ddNTPs, and the products were hybridized to the PNA microarray. Compared to the corresponding DNA, the PNA zip-code sequence showed a much higher duplex specificity for the complementary DNA sequence. The PNA zip-code microarray was finally stained with streptavidin-R-phycoerythrin to generate a fluorescent signal. Using this strategy, we were able to correctly diagnose several mutation sites in exon 2 of HNF-1α with a wild-type and mutant samples including a MODY3 patient. This work represents one of the few successful applications of PNA in DNA chip technology.  相似文献   

2.
We describe here ligation-based strategy to detect mutations in BRCA1 utilizing zip-code microarray technology. In our first approach, PCR was performed to amplify the genomic regions containing the mutation sites. The PCR products were then used as templates in a subsequent ligation reaction using two ligation primers that flanked the mutation site. The primary allele-specific primer is designed to contain a base of mutation site at its 3′ end with 5′ complementarity to the respective zip-code sequence while the secondary common primer is modified by biotin at its 3′ end. Depending on the genotype of samples at the mutation site, the nick between the two ligation primers can be sealed in the presence of DNA ligase. The ligation products were then hybridized on the zip-code microarray followed by staining with streptavidine-cy3 to generate a fluorescent signal. Using this strategy we successfully genotyped selected Korean-specific mutation sites in exon 11 of BRCA1 with a wild type and two heterozygote mutant samples. Furthermore, we also demonstrated that ligase chain reaction using unamplified genomic DNA as direct templates is enough to generate sufficient signals for correct genotypings in a multiplexed manner, verifying first that PCR is not essential for this microarray-based strategy.  相似文献   

3.
In this report, a reliable peptide nucleic acid (PNA) microarray-based method for accurately detecting single nucleotide polymorphism (SNP) in human genes is described. The technique relies on the mismatched cleavage activity of a single-strand specific (SSS) nuclease. PCR amplification was performed to prepare gene fragments containing the mutation sites. The amplified fragments were then employed as templates for the SSS nuclease reaction using chimeric probes, modified with biotin at the 5' end and extended with a unique anchoring zip-code complement sequence at the 3' end. The SSS nuclease promotes cleavage of heteroduplex DNAs at base mismatched positions to produce crumbled chimeric probes in the presence of imperfectly matching template strands. In contrast, the probes remain intact when they interact with perfectly matched template strands. Only the non-fragmented probes generate fluorescence signals after treatment with streptavidin-Cy3 on the PNA zip-code array. This methodology was used to successfully genotype selected Korean-specific BRCA mutation sites with wild type and mutant samples. The investigation has led to the development of a reliable SSS nuclease-based system for the diagnosis of human genetic mutations or SNPs.  相似文献   

4.
Single base pair mutation analysis by PNA directed PCR clamping.   总被引:14,自引:5,他引:9       下载免费PDF全文
A novel method that allows direct analysis of single base mutation by the polymerase chain reaction (PCR) is described. The method utilizes the finding that PNAs (peptide nucleic acids) recognize and bind to their complementary nucleic acid sequences with higher thermal stability and specificity than the corresponding deoxyribooligonucleotides and that they cannot function as primers for DNA polymerases. We show that a PNA/DNA complex can effectively block the formation of a PCR product when the PNA is targeted against one of the PCR primer sites. Furthermore, we demonstrate that this blockage allows selective amplification/suppression of target sequences that differ by only one base pair. Finally we show that PNAs can be designed in such a way that blockage can be accomplished when the PNA target sequence is located between the PCR primers.  相似文献   

5.
6.
7.
Non-insulin dependent diabetes (NIDDM) is a polygenic heterogeneous disorder of glucose homeostasis. Maturity-onset diabetes of the young (MODY) is a monogenic subtype of NIDDM characterised by early-onset (< 25 years) and autosomal dominant inheritance. Mutations in the hepatocyte nuclear factor 1 alpha (HNF-1α) gene have recently been shown to cause MODY. The incidence of mutations in this gene in MODY and late-onset NIDDM is not known. We have developed a rapid specific polymerase chain reaction test for HNF-1α mutations; this test involves the use of fluorescently labelled forward primers and modified reverse primers to detect length polymorphisms resulting from frameshift mutations. With this method, we have screened 102 MODY probands, viz. 60 defined according to strict diagnostic criteria (autosomal dominant inheritance and at least one member diagnosed age < 25 years) and 95 late-onset NIDDM probands (diagnosed 35–70 years with ≥ 1 affected relative), for the presence of 9 known HNF-1α frameshift mutations, including 6 that occur at two sites for recurring mutation (residues 291/292 and 379). Mutations were detected in 11 of the strictly defined MODY probands and one mutation was also found in a single subject with early-onset NIDDM but no family history of the disease. The HNF-1α frameshift mutations were not detected in any late-onset NIDDM subjects, suggesting these mutations do not have a major role in the pathogenesis of NIDDM. Our results indicate that the prevalence of the nine frameshift mutations in strictly defined UK MODY is 18%, with the P291fsinsC mutation alone having a frequency of 13%. Received: 13 May 1997 / Accepted: 13 August 1997  相似文献   

8.
Cancers arise from the accumulation of multiple mutations in genes regulating cellular growth and differentiation. Identification of such mutations in numerous genes represents a significant challenge in genetic analysis, particularly when the majority of DNA in a tumor sample is from wild-type stroma. To overcome these difficulties, we have developed a new type of DNA microchip that combines polymerase chain reaction/ligase detection reaction (PCR/LDR) with "zip-code" hybridization. Suitably designed allele-specific LDR primers become covalently ligated to adjacent fluorescently labeled primers if and only if a mutation is present. The allele-specific LDR primers contain on their 5'-ends "zip-code complements" that are used to direct LDR products to specific zip-code addresses attached covalently to a three-dimensional gel-matrix array. Since zip-codes have no homology to either the target sequence or to other sequences in the genome, false signals due to mismatch hybridizations are not detected. The zip-code sequences remain constant and their complements can be appended to any set of LDR primers, making our zip-code arrays universal. Using the K- ras gene as a model system, multiplex PCR/LDR followed by hybridization to prototype 3x3 zip-code arrays correctly identified all mutations in tumor and cell line DNA. Mutations present at less than one per cent of the wild-type DNA level could be distinguished. Universal arrays may be used to rapidly detect low abundance mutations in any gene of interest.  相似文献   

9.
A high sensitivity method for detecting low level mutations is under development. A PCR reaction is performed in which a restriction site is introduced in wild-type DNA by alteration of specific bases. Digestion of wild-type DNA by the cognate restriction endonuclease (RE) enriches for products with mutations within the recognition site. After reamplification, mutations are identified by a ligation detection reaction (LDR). This PCR/RE/LDR assay was initially used to detect PCR error in known wild-type samples. PCR error was measured in low |Deltap K a| buffers containing tricine, EPPS and citrate, as well as otherwise identical buffers containing Tris. PCR conditions were optimized to minimize PCR error using perfect match primers at the Msp I site in the p53 tumor suppressor gene at codon 248. However, since mutations do not always occur within pre-existing restriction sites, a generalized PCR/RE/LDR method requires the introduction of a new restriction site. In principle, PCR with mismatch primers can alter specific bases in a sequence and generate a new restriction site. However, extension from 3' mismatch primers may generate misextension products. We tested conversion of the Msp I (CCGG) site to a Taq I site (TCGA). Conversion was unsuccessful using a natural base T mismatch primer set. Conversion was successful when modified primers containing the 6 H,8 H -3, 4-dihydropyrimido[4,5- c ][1,2]oxazine-7-one (Q6) base at 3'-ends were used in three cycles of preconversion PCR prior to conversion PCR using the 3' natural base T primers. The ability of the pyrimidine analog Q6 to access both a T-like and C-like tautomer appears to greatly facilitate the conversion.  相似文献   

10.
11.
Sun J  Katzenellenbogen JA  Zhao H  Katzenellenbogen BS 《BioTechniques》2003,34(2):278-80, 282, 284 passim
To facilitate our study of the molecular basis for the estrogen receptor (ER) subtype selectivity of novel ligands, we used DNA shuffling to construct chimeric ERs having ligand binding domains derived from both ER alpha and ER beta. The efficiency of chimera generation was low with traditional DNA shuffling protocols. Furthermore, ER ligand binding domain sequences lack convenient restriction sites for introducing chimeric ligand binding domain sequences into expression vectors. To overcome these problems, we developed a modified strategy whereby chimeric sequences were exclusively amplified from among the reassembled products from DNA shuffling using a special pair of PCR primers whose 3' ends specifically match the alpha and beta sequences, respectively, and whose 5' ends match sequences outside the ER beta ligand binding domain. When chimeric ligand binding domain DNA sequences, amplified with these primers, were co-transformed into a yeast strain with a linearized expression vector for ER beta, an active expression vector was produced by homologous recombination. Twenty-two different crossover sites were found; most occurred when there was a stretch of eight or more identical base pairs in both sequences, and many were concentrated in the regions important for studying ligand binding and transactivation. This method should prove to be useful for generating chimeric gene products from parent templates that share relatively low sequence identity.  相似文献   

12.
Three-step PCR mutagenesis for 'linker scanning'.   总被引:2,自引:0,他引:2       下载免费PDF全文
'Linker scanning' has been used as an efficient method for systematically surveying a segment of DNA for functional elements by mutagenesis. A three-step PCR method was developed to simplify this process. In this method, a set of 'mutation primers' was made with 6 to 8 base substitutions in the center of the primers. In the first PCR reaction, these 'mutation primers' are paired with an 3' primer from the opposite end of the analyzed sequences to form a 'ladder' of fragments containing the base pair substitutions. These are used as templates in the second PCR with the 3' primer as the only primer to generate single stranded sequences, which are used as primers in the third PCR paired with an 5' primer to complete the mutagenesis. We have tested the method in a mutation screen of the steroid sulfatase promoter. Its application to general site specific mutagenesis is discussed.  相似文献   

13.
Hereditary hemochromatosis (HH), an iron overload disease, is the most common known inheritable disease. The most prevalent form of HH is believed to be the result of a single base-pair mutation. We describe a rapid homogeneous mutation analysis method that does not require post-polymerase chain reaction (PCR) manipulations. This method is a marriage of three emerging technologies: rapid cycling PCR thermal cyclers, peptide nucleic acid (PNA) probes, and a new double-stranded DNA-selective fluorescent dye, Sybr Green I. The LightCycler is a rapid thermal cycler that fluorometrically monitors real-time formation of amplicon with Sybr Green I. PNAs are DNA mimics that are more sensitive to mismatches than DNA probes, and will not serve as primers for DNA polymerases. PNA probes were designed to compete with PCR primers hybridizing to the HH mutation site. Fully complemented PNA probes at an 18:1 ratio over DNA primers with a mismatch result in suppression of amplicon formation. Conversely, PNA probes with a mismatch will not impair the binding of a complementary primer, culminating in amplicon formation. A LightCycler-based rapid genetic assay has been developed to distinguish HH patients from HH carriers and normal individuals using PNA clamping technology.  相似文献   

14.
The NanoChip electronic microarray is designed for the rapid detection of genetic variation in research and clinical diagnosis. We have developed a multiplex electronic microarray assay, specific for single nucleotide polymorphism (SNP) genotyping and mutation detection, using universal adaptor sequences tailed to the 5' end of PCR primers specific to each target. PCR products, amplified by primers directed to the universal adaptor sequence, are immobilized on the microarray either directly or via capture oligonucleotides complementary to the universal adaptor sequence. This simple modification results in a significant increase in fidelity with improved specificity and accuracy. In addition, the multiplexing of genetic variant detection allows increased throughput and significantly reduced cost per assay. This general schema can also be applied to other microarray and macroarray formats.  相似文献   

15.
We compared the efficiency of PCR amplification using primers containing either a nucleotide analog or a mismatch at the 3' base. To determine the distribution of bases inserted opposite eight different analogs, 3' analog primers were used to amplify four different templates. The products from the reactions with the highest amplification efficiency were sequenced.Analogs allowing efficient amplification followed by insertion of a new base at that position are herein termed 'convertides'. The three convertides with the highest amplification efficiency were used to convert sequences containing C, T, G and A bases into products containing the respective three remaining bases. Nine templates were used to generate conversion products, as well as non-conversion control products with no base change. We compared the ability of natural bases to convert specific sites with and without a preconversion step using nucleotide analog primers. Conversion products were identified by a ligation detection reaction using primers specific for the converted sequence. We found that conversions resulting in transitions were easier to accomplish than transversions and that sequence context influences conversion. Specifically, primer slippage appears to be an important mechanism for producing artifacts via polymerase extension of a 3' base or analog transiently base paired to neighboring bases of the template. Nucleotide analogs could often reduce conversion artifacts and increase the yield of the expected product. While new analogs are needed to reliably achieve transversions, the current set have proven effective for creating transition conversions.  相似文献   

16.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

17.
N Lee  J Liu  C He    D Testa 《Applied microbiology》1991,57(10):2888-2890
A highly efficient site-specific mutagenesis method has been devised to exclude wild-type DNA from incorporation into the transformed cells. Two complementary oligonucleotides, corresponding to a target sequence of a DNA molecule and containing an insertion mutation which created an endonuclease restriction site, were synthesized. By using the wild-type DNA molecule flanked by two restriction sites on each side of the target region as a template, the two oligonucleotide primers were extended, enriched, and isolated. The extended products, in turn, were used as templates in a polymerase chain reaction to obtain a mutagenized double-stranded DNA fragment which was conveniently cloned into plasmids by using the flanking restriction sites. Escherichia coli cells transformed by these plasmids were subject to large-scale analysis. One hundred percent of the transformants examined by colony hybridization, restriction enzyme analysis, and DNA sequencing were found to contain the mutant DNA sequence.  相似文献   

18.
A highly efficient site-specific mutagenesis method has been devised to exclude wild-type DNA from incorporation into the transformed cells. Two complementary oligonucleotides, corresponding to a target sequence of a DNA molecule and containing an insertion mutation which created an endonuclease restriction site, were synthesized. By using the wild-type DNA molecule flanked by two restriction sites on each side of the target region as a template, the two oligonucleotide primers were extended, enriched, and isolated. The extended products, in turn, were used as templates in a polymerase chain reaction to obtain a mutagenized double-stranded DNA fragment which was conveniently cloned into plasmids by using the flanking restriction sites. Escherichia coli cells transformed by these plasmids were subject to large-scale analysis. One hundred percent of the transformants examined by colony hybridization, restriction enzyme analysis, and DNA sequencing were found to contain the mutant DNA sequence.  相似文献   

19.
Mutations in the hepatocyte nuclear factor 4alpha (HNF-4alpha) gene are associated with one form of maturity-onset diabetes of the young (MODY1). The R154X mutation generates a protein lacking the E-domain which is required for normal HNF-4alpha functions. Since pancreatic beta-cell dysfunction is a feature of MODY1 patients, we compared the functional properties of the R154X mutant in insulin-secreting pancreatic beta-cells and non-beta-cells. The R154X mutation did not affect nuclear localisation in beta-cells and non-beta-cells. However, it did lead to a greater impairment of HNF-4a function in beta-cells compared to non-beta-cells, including a complete loss of transactivation activity and a dominant-negative behaviour. .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号