首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 787 毫秒
1.
Li D  Xiao Y  Hu W  Xie J  Bosmans F  Tytgat J  Liang S 《FEBS letters》2003,555(3):616-622
Hainantoxin-I is a novel peptide toxin, purified from the venom of the Chinese bird spider Selenocosmia hainana (=Ornithoctonus hainana). It includes 33 amino acid residues with a disulfide linkage of I-IV, II-V and III-VI, assigned by partial reduction and sequence analysis. Under two-electrode voltage-clamp conditions, hainantoxin-I can block rNa(v)1.2/beta(1) and the insect sodium channel para/tipE expressed in Xenopus laevis oocytes with IC(50) values of 68+/-6 microM and 4.3+/-0.3 microM respectively. The three-dimensional solution structure of hainantoxin-I belongs to the inhibitor cystine knot structural family determined by two-dimensional (1)H nuclear magnetic resonance techniques. Structural comparison of hainantoxin-I with those of other toxins suggests that the combination of the charged residues and a vicinal hydrophobic patch should be responsible for ligand binding. This is the first report of an insect sodium channel blocker from spider venom and it provides useful information for the structure-function relationship studies of insect sodium channels.  相似文献   

2.
Six peptide toxins (Magi 1-6) were isolated from the Hexathelidae spider Macrothele gigas. The amino acid sequences of Magi 1, 2, 5 and 6 have low similarities to the amino acid sequences of known spider toxins. The primary structure of Magi 3 is similar to the structure of the palmitoylated peptide named PlTx-II from the North American spider Plectreurys tristis (Plectreuridae). Moreover, the amino acid sequence of Magi 4, which was revealed by cloning of its cDNA, displays similarities to the Na+ channel modifier delta-atracotoxin from the Australian spider Atrax robustus (Hexathelidae). Competitive binding assays using several 125I-labelled peptide toxins clearly demonstrated the specific binding affinity of Magi 1-5 to site 3 of the insect sodium channel and also that of Magi 5 to site 4 of the rat sodium channel. Only Magi 6 did not compete with the scorpion toxin LqhalphaIT in binding to site 3 despite high toxicity on lepidoptera larvae of 3.1 nmol/g. The K(i)s of other toxins were between 50 pM for Magi 4 and 1747 nM for Magi 1. In addition, only Magi 5 binds to both site 3 in insects (K(i)=267 nM) and site 4 in rat brain synaptosomes (K(i)=1.2 nM), whereas it showed no affinities for either mammal binding site 3 or insect binding site 4. Magi 5 is the first spider toxin with binding affinity to site 4 of a mammalian sodium channel.  相似文献   

3.
Agelenin, isolated from the Agelenidae spider Agelena opulenta, is a peptide composed of 35 amino acids. We determined the three-dimensional structure of agelenin using two-dimensional NMR spectroscopy. The structure is composed of a short antiparallel beta-sheet and four beta-turns, which are stabilized by three disulfide bonds. Agelenin has characteristic residues, Phe9, Ser28 and Arg33, which are arranged similarly to the pharmacophore of the insect channel inhibitor, omega-atracotoxin-Hv1a. These observations suggest that agelenin and omega-atracotoxin-Hv1a bind to insect calcium channels in a similar manner. We also suggest that another mode of action may operate in the channel inhibition by omega-agatoxin-IVA and omega-atracotoxin-Hv2a.  相似文献   

4.
The three-dimensional structure of hanatoxin1 (HaTx1) was determined by using NMR spectroscopy. HaTx1 is a 35 amino acid residue peptide toxin that inhibits the drk1 voltage-gated K(+) channel not by blocking the pore, but by altering the energetics of gating. Both the amino acid sequence of HaTx1 and its unique mechanism of action distinguish this toxin from the previously described K(+) channel inhibitors. Unlike most other K(+) channel-blocking toxins, HaTx1 adopts an "inhibitor cystine knot" motif and is composed of two beta-strands, strand I for residues 19-21 and strand II for residues 28-30, connected by four chain reversals. A comparison of the surface features of HaTx1 with those of other gating modifier toxins of voltage-gated Ca(2+) and Na(+) channels suggests that the combination of a hydrophobic patch and surrounding charged residues is principally responsible for the binding of gating modifier toxins to voltage-gated ion channels.  相似文献   

5.
We present a structural and functional study of a sodium channel activation inhibitor from crab spider venom. Hm-3 is an insecticidal peptide toxin consisting of 35 amino acid residues from the spider Heriaeus melloteei (Thomisidae). We produced Hm-3 recombinantly in Escherichia coli and determined its structure by NMR spectroscopy. Typical for spider toxins, Hm-3 was found to adopt the so-called “inhibitor cystine knot” or “knottin” fold stabilized by three disulfide bonds. Its molecule is amphiphilic with a hydrophobic ridge on the surface enriched in aromatic residues and surrounded by positive charges. Correspondingly, Hm-3 binds to both neutral and negatively charged lipid vesicles. Electrophysiological studies showed that at a concentration of 1 μm Hm-3 effectively inhibited a number of mammalian and insect sodium channels. Importantly, Hm-3 shifted the dependence of channel activation to more positive voltages. Moreover, the inhibition was voltage-dependent, and strong depolarizing prepulses attenuated Hm-3 activity. The toxin is therefore concluded to represent the first sodium channel gating modifier from an araneomorph spider and features a “membrane access” mechanism of action. Its amino acid sequence and position of the hydrophobic cluster are notably different from other known gating modifiers from spider venom, all of which are described from mygalomorph species. We hypothesize parallel evolution of inhibitor cystine knot toxins from Araneomorphae and Mygalomorphae suborders.  相似文献   

6.
Liao Z  Yuan C  Deng M  Li J  Chen J  Yang Y  Hu W  Liang S 《Biochemistry》2006,45(51):15591-15600
JZTX-XI is a peptide toxin isolated from the venom of the Chinese spider Chilobrachys jingzhao. It contains 34 residues including six cysteine residues with disulfide bridges linked in the pattern of I-IV, II-V, and III-VI. Using 3'- and 5'-RACE methods, the full-length cDNA was identified as encoding an 86-residue precursor of JZTX-XI. In the electrophysiological assay, JZTX-XI shows activity toward the Kv2.1 channel in a way similar to hanatoxin1 and SGTx1 that both the activation and the deactivation processes are affected, which is in accordance with the high sequence homology among them (over 60% identity). On the other hand, JZTX-XI also exhibits specific interaction against the Nav channels of rat cardiac myocytes with a significant reduction in the peak current and slowing of channel inactivation. The solution structure of native JZTX-XI was determined by 1H NMR methods to identify the structural basis of these specific activities. Structural comparison of JZTX-XI with other gating modifier toxins shows that they all adopt a similar surface profile, a hydrophobic patch surrounded by charged residues such as Arg or Lys, which might be a common structural factor responsible for toxin-channel interaction. JZTX-XI might be an ideal tool to further investigate how spider toxins recognize various ion channels as their targets.  相似文献   

7.
The amino acid sequence of the sodium channel toxin RpIII from the sea anemone Radianthus paumotensis has been determined. The protein is homologous with five analogous toxins from three anemone species, and is most similar to a less toxic protein, RpII, from the same organism. Twelve residues are conserved in all six toxins, one of which is an arginine residue thought to be essential for toxicity. The others (Cys, Gly, Pro and Trp) tend to be conserved in other sets of homologous proteins to maintain functional folds. Comparisons of the sequences suggest the existence of two separate but related classes of toxins cumon the three species of anemone.  相似文献   

8.
Spider venoms provide a highly valuable source of peptide toxins that act on a wide diversity of membrane-bound receptors and ion channels. In this work, we report isolation, biochemical analysis, and pharmacological characterization of a novel family of spider peptide toxins, designated β/δ-agatoxins. These toxins consist of 36–38 amino acid residues and originate from the venom of the agelenid funnel-web spider Agelena orientalis. The presented toxins show considerable amino acid sequence similarity to other known toxins such as μ-agatoxins, curtatoxins, and δ-palutoxins-IT from the related spiders Agelenopsis aperta, Hololena curta, and Paracoelotes luctuosus. β/δ-Agatoxins modulate the insect NaV channel (DmNaV1/tipE) in a unique manner, with both the activation and inactivation processes being affected. The voltage dependence of activation is shifted toward more hyperpolarized potentials (analogous to site 4 toxins) and a non-inactivating persistent Na+ current is induced (site 3-like action). Interestingly, both effects take place in a voltage-dependent manner, producing a bell-shaped curve between −80 and 0 mV, and they are absent in mammalian NaV channels. To the best of our knowledge, this is the first detailed report of peptide toxins with such a peculiar pharmacological behavior, clearly indicating that traditional classification of toxins according to their binding sites may not be as exclusive as previously assumed.  相似文献   

9.
The cysteine accessibility method was used to explore calcium channel pore topology. Cysteine mutations were introduced into the SS1-SS2 segments of Motifs I-IV of the human cardiac L-type calcium channel, expressed in Xenopus oocytes and the current block by methanethiosulfonate compounds was measured. Our studies revealed that several consecutive mutants of motifs II and III are accessible to methanethiosulfonates, suggesting that these segments exist as random coils. Motif I cysteine mutants exhibited an intermittent sensitivity to these compounds, providing evidence for a beta-sheet secondary structure. Motif IV showed a periodic sensitivity, suggesting the presence of an alpha-helix. These studies reveal that the SS1-SS2 segment repeat in each motif have non-uniform secondary structures. Thus, the channel architecture evolves as a highly distorted 4-fold pore symmetry.  相似文献   

10.
The function of a protein molecule is greatly influenced by its three-dimensional (3D) structure and therefore structure prediction will help identify its biological function. We have updated Sequence, Motif and Structure (SMS), the database of structurally rigid peptide fragments, by combining amino acid sequences and the corre-sponding 3D atomic coordinates of non-redundant (25%) and redundant (90%) protein chains available in the Protein Data Bank (PDB). SMS 2.0 provides information pertaining to the peptide fragments of length 5-14 resi-dues. The entire dataset is divided into three categories, namely, same sequence motifs having similar, intermedi-ate or dissimilar 3D structures. Further, options are provided to facilitate structural superposition using the pro-gram structural alignment of multiple proteins (STAMP) and the popular JAVA plug-in (Jmol) is deployed for visualization. In addition, functionalities are provided to search for the occurrences of the sequence motifs in other structural and sequence databases like PDB, Genome Database (GDB), Protein Information Resource (PIR) and Swiss-Prot. The updated database along with the search engine is available over the World Wide Web through the following URL http://cluster.physics.iisc.ernet.in/sms/.  相似文献   

11.
The soluble venom of the Mexican theraposid spider Brachypelma smithi was screened for insecticidal peptides based on toxicity to house crickets. An insecticidal peptide, named Bs1 (which stands for Brachypelma smithi toxin 1) was obtained in homogeneous form after the soluble venom was fractionated using reverse-phase and cation-exchange chromatography. It contains 41 amino acids cross-linked by three disulfide bridges. Its sequence is similar to an insecticidal peptide isolated from the theraposid spider Ornithoctonus huwena from China, and another from the hexathelid spider Macrothelegigas from Japan, indicating that they are phylogenetically related. A cDNA library was prepared from the venomous glands of B. smithi and the gene that code for Bs1 was cloned. Sequence analysis of the nucleotides of Bs1 showed similarities to that of the hexathelid spider from Japan proving additional evidence for close genetic relationship between these spider peptides. The mRNAs of these toxins code for signal peptides that are processed at the segment rich in acidic and basic residues. Their C-terminal amino acids are amidated. However, they contain only a glycine residue at the most C-terminal position, without the presence of additional basic amino acid residues, normally required for post-translation processing of other toxins reported in the literature. The possible mechanism of action of Bs1 was investigated using several ion channels as putative receptors. Bs1 had minor, but significant effects on the Para/tipE insect ion channel, which could indirectly correlate with the observed lethal activity to crickets.  相似文献   

12.
Nuclear factor I (NFI) is a site-specific DNA binding protein required for the replication of adenovirus type 2 DNA in vitro and in vivo. To study sequence requirements for the interaction of NFI with DNA, we have measured the binding of the protein to a variety of synthetic sites. Binding sites for NFI (FIB sites) were previously shown to contain a consensus sequence composed of 2 motifs, TGG (Motif 1), and GCCAA (Motif 2), separated by a 6 or 7bp spacer region. To assess conserved sequences in the spacer region and flanking sequences which affect NFI binding, we have isolated clones from oligonucleotide libraries that contain the two motifs flanked by 3 degenerate nucleotides and separated by degenerate spacer regions of 6 or 7 nucleotides. With a 6bp spacer region, a strong bias exists for a C or A residue in the first position of the spacer. Sites with a 7bp spacer region contain a G and C or A residue at the first and second positions, respectively, of the spacer, but also possess conserved residues at other positions of the site.  相似文献   

13.
We reported previously the cDNA cloning of the endogenous inhibitor for calcium-dependent protease (CANP inhibitor, calpastatin) and the expression of its fragments in Escherichia coli. The CANP inhibitor has four internal repeating domains each spanning about 140 amino acid residues. The inhibitory activity arises from these domains which have a well-conserved sequence, TIPPXYR, in their central positions. The inhibitory activities of various fragments expressed in E. coli suggest the involvement of the regions around the well-conserved sequences. In this report, we describe further detailed investigation on the interaction site of the CANP inhibitor with CANP by truncating inhibitor fragments and by using chemically synthesized peptides. The results clearly indicate that the sequence around the well-conserved sequence, TIPPXYR, is an interaction site. A peptide as short as 23 amino acid residues retained inhibitory activity, but a 9-residue peptide corresponding to the conserved sequence, VTIPPKYRE had none. The inhibitory sequence is suggested as LGXKDREXTIPPXYRXLL. The analysis of the competition between an inhibitor peptide and an irreversible inhibitor, E-64 for the reaction with the active site suggests no involvement of the active site cysteine residue of CANP in the inhibitory interaction between CANP and the CANP inhibitor. The high specificity of the CANP inhibitor to CANP arises from its interaction with residues other than the active site cysteine residue, possibly the subsite for substrate-binding of CANP.  相似文献   

14.
Three polypeptide neurotoxins (curtatoxins) were isolated from the venom of the spider Hololena curta by reverse-phase high performance liquid chromatography, gel permeation, and ion-exchange chromatography. The purified toxins induced an immediate paralysis in the cricket Acheta domestica that resulted in desiccation and death of the insect within 24-48 h (LD50 congruent to 4-20 micrograms/g); this toxic effect is consistent with irreversible presynaptic neuromuscular blockade. Curtatoxins are a class of sequence-related, cysteine-rich, carboxyl-terminal amidated polypeptides of 36 to 38 amino acid residues. The cysteine residues are conserved at identical sequence positions among these polypeptides and form 4 intramolecular disulfide bonds. Hydropathy calculations show that the toxins have an internal hydrophobic region flanked by hydrophilic and oppositely charged amino- and carboxyl-terminal ends. By analogy to other cysteine-rich arthropod venom proteins, the folded structure of the curtatoxins is likely important for their target specificity and mode of action at the neuromuscular junction.  相似文献   

15.
The type-II restriction endonucleases generally do not share appreciable amino acid sequence homology. The crystal structures of restriction endonucleases EcoRI and BamHI have shown these enzymes to possess striking 3D-structural resemblance, i.e., they have a similar overall fold and similar active sites, though they possess <23% sequence identity. Structural superimposition of EcoRI, BamHI, EcoRV, and PvuII based on active site residues led to sequence alignments which showed nine possible sequence motifs. EcoRV and PvuII show a more similar pattern than EcoRI and BamHI suggesting that they belong to a different subgroup. The motifs are characterized by charged and/or hydrophobic residues. From other studies on the structure of these endonucleases, three of the motifs could be implicated in DNA binding, three in forming the active site and one in dimer formation. However, the motifs were not identifiable by regular sequence alignment methods. It is found that motif IX in BamHI is formed by reverse sequence order and the motif IX in PvuII is formed from the symmetry related monomer of the dimer. The inter-motif distance is also quite different in these cases. Of the nine motifs, motif III has been earlier identified as containing the PD motif involving one of the active site residues. These motifs were used in a modified profile analysis procedure to identify similar regions in eight other endonuclease sequences for which structures are not known.  相似文献   

16.

δ-Atracotoxins, also known as δ-hexatoxins, are spider neurotoxic peptides, lethal to both vertebrates and insects. Their mechanism of action involves the binding to of the S3/S4 loop of the domain IV of the voltage-gated sodium channels (Nav). Because of the chemical difficulties of synthesizing folded synthetic δ-atracotoxins correctly, here we explore an expression system that is designed to produce biologically active recombinant δ-atracotoxins, and a number of variants, in order to establish certain amino acids implicated in the pharmacophore of this lethal neurotoxin. In order to elucidate and verify which amino acid residues play a key role that is toxic to vertebrates and insects, amino acid substitutes were produced by aligning the primary structures of several lethal δ-atracotoxins with those of δ-atracotoxins-Hv1b; a member of the δ-atracotoxin family that has low impact on vertebrates and is not toxic to insects. Our findings corroborate that the substitutions of the amino acid residue Y22 from δ-atracotoxin-Mg1a (Magi4) to K22 in δ-atracotoxin-Hv1b reduces its mammalian activity. Moreover, the substitutions of the amino acid residues Y22 and N26 from δ-atracotoxin-Mg1a (Magi4) to K22 and N26 in δ-atracotoxin-Hv1b reduces its insecticidal activity. Also, the basic residues K4 and R5 are important for keeping such insecticidal activity. Structural models suggest that such residues are clustered onto two bioactive surfaces, which share similar areas, previously reported as bioactive surfaces for scorpion α-toxins. Furthermore, these bioactive surfaces were also found to be similar to those found in related spider and anemone toxins, which affect the same Nav receptor, indicating that these motifs are important not only for scorpion but may be also for animal toxins that affect the S3/S4 loop of the domain IV of the Nav.

  相似文献   

17.
Conotoxin iota-RXIA, from the fish-hunting species Conus radiatus, is a member of the recently characterized I1-superfamily, which contains eight cysteine residues arranged in a -C-C-CC-CC-C-C- pattern. iota-RXIA (formerly designated r11a) is one of three characterized I1 peptides in which the third last residue is posttranslationally isomerized to the d configuration. Naturally occurring iota-RXIA with d-Phe44 is significantly more active as an excitotoxin than the l-Phe analogue both in vitro and in vivo. We have determined the solution structures of both forms by NMR spectroscopy, the first for an I1-superfamily member. The disulfide connectivities were determined from structure calculations and confirmed chemically as 5-19, 12-22, 18-27, and 21-38, suggesting that iota-RXIA has an ICK structural motif with one additional disulfide (21-38). Indeed, apart from the first few residues, the structure is well defined up to around residue 35 and does adopt an ICK structure. The C-terminal region, including Phe44, is disordered. Comparison of the d-Phe44 and l-Phe44 forms indicates that the switch from one enantiomer to the other has very little effect on the structure, even though it is clearly important for receptor interaction based on activity data. Finally, we identify the target of iota-RXIA as a voltage-gated sodium channel; iota-RXIA is an agonist, shifting the voltage dependence of activation of mouse NaV1.6 expressed in Xenopus oocytes to more hyperpolarized potentials. Thus, there is a convergence of structure and function in iota-RXIA, as its disulfide pairing and structure resemble those of funnel web spider toxins that also target sodium channels.  相似文献   

18.
Lack of crystal structure data of folate binding proteins has left so many questions unanswered (for example, important residues in active site, binding domain, important amino acid residues involved in interactions between ligand and receptor). With sequence alignment and PROSITE motif identification, we attempted to answer evolutionarily significant residues that are of functional importance for ligand binding and that form catalytic sites. We have analyzed 46 different FRs and FBP sequences of various organisms obtained from Genbank. Multiple sequence alignment identified 44 highly conserved identical amino acid residues with 10 cysteine residues and 12 motifs including ECSPNLGPW (which might help in the structural stability of FR).  相似文献   

19.
A lethal neurotoxic polypeptide of Mr 8 kDa was purified from the venom of the South American 'armed' or wandering spider Phoneutria nigriventer by centrifugation, gel filtration on Superose 12, and reverse phase FPLC on columns of Pharmacia PepRPC and ProRPC. The purified neurotoxin Tx1 had an LD50 of 0.05 mg/kg in mice following intracerebroventricular injection. The complete amino acid sequence of the neurotoxin was determined by automated Edman degradation of the native and S-carboxymethylated protein in pulsed liquid and dual phase sequencers, and by the manual DABITC/PITC double coupling method applied to fragments obtained after digestions with the S. aureus V8 protease and trypsin. The neurotoxin Tx1 consists of a single chain of 77 amino acid residues, which contains a high proportion of cysteine. The primary structure showed no homology to other identified spider toxins.  相似文献   

20.
Vaccination is the most effective technique suggested now days for allergy treatment. Recombinant-based approaches are mostly focused on genetic modification of allergens to produce molecules with reduced allergenic activity and conserved antigenicity. The molecules developed for vaccination in allergy possess significantly reduced allergenicity in terms of IgE binding, and therefore will not lead to anaphylactic reactions upon injection. This approach is probably feasible with every peptide allergen with known amino acid sequence. In this study an in silico approach was used to investigate allergenic protein sequences. Motif analysis of these sequences reveals the allergenic epitopes in the amino acid sequences. Physicochemical analysis of protein sequences shows that the homolog allergens of Ory s1 are highly correlated with the aromaticity, GRAVY and cysteine content. Moreover, phylogenetic analysis of Ory s1 with other sequences reveals that Oryza sativa japonica and Zea mays are close homologs, whilst Lolium perenne and Dactylis glomerata are found to be remote homologs. The multiple sequence alignment reveals of Ory s1 with all its homologs in this study reveals the high conservation of residues in DPBB_1 domain (amino acid residue positions 86- 164) and was found distinctly in all the sequences. These findings support the proposal that allergenic epitopes encompass conserved residues. The consensus allergenic was found to be mainly composed of hydrophobic residues. The functional sites of allergenic proteins reported in this study shall be attenuated to develop hypoallergenic vaccine. The sequence comparison strategy adopted in this study would pave way effective evolutionary analysis of these allergens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号