首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neher E 《Cell calcium》2012,52(3-4):196-198
Calcium ions regulate secretory processes in several ways. Most prominently they (i) trigger the release of vesicle contents rapidly and in a highly cooperative way and they (ii) control priming steps, which prepare vesicles for release. The importance of using assays with high time resolution for separating these distinct roles is pointed out here.  相似文献   

2.
JR Coorssen  R Zorec 《Cell calcium》2012,52(3-4):191-195
This Special Issue (SI) of Cell Calcium focuses on regulated exocytosis, a recent evolutionary invention of eukaryotic cells. This essential cellular process consists of several stages: (i) the delivery of membrane bound vesicles to specific plasma membrane sites, (ii) where the merger between the vesicle and the plasma membranes occurs, (iii) leading to the formation of an aqueous channel through which vesicle content starts to be discharged to the cell exterior, (iv) after the full incorporation of the vesicle membrane into the plasma membrane, the added vesicle membrane is retrieved back into the cytoplasm by endocytosis. (v) When a fusion pore opens it may close again, a process known as transient fusion pore opening (also kiss-and-run exocytosis). In some cell types these stages are extremely shortlived, as in some neurons, and thus relatively inaccessible to experimentation. In other cell types the transition between these stages is orders of magnitude slower and can be studied in more detail. However, despite the intense investigations of this critical biological process over the last decades, the molecular mechanisms underlying regulated exocytosis have yet to be fully resolved. We thus still lack a comprehensive physiological insight into the nature of the progressive and coupled stages of exocytosis. Such a molecular-level understanding would help to fully reconstruct this process in vitro, as well as identify potential therapeutic targets for a range of diseases and dysfunctions. There are 18 papers in this SI which have been organized into three sections: Rapid regulated exocytosis and calcium homeostasis with an introduction by Erwin Neher, Molecular mechanisms of regulated exocytosis, and Cell models for regulated exocytosis. Here we briefly outline and integrate the messages of these sections.  相似文献   

3.
Regulated exocytosis: merging ideas on fusing membranes   总被引:2,自引:0,他引:2  
Cellular trafficking pathways end with fusion reactions at the target. These reactions have been studied extensively for many decades, but recent studies have been particularly productive in providing new solutions to old problems, especially in some of the most complex fusion reactions, like synaptic vesicle secretion in neurons. Here, we discuss new studies that begin to merge ideas on three central questions: (A) are all releasable vesicles equally likely to undergo fusion, (B) do different fusion modes contribute to synaptic transmission, and (C) which molecular events are 'upstream' and which ones 'downstream' of SNARE complex assembly.  相似文献   

4.
Electrophysiological studies in some secretory and non-secretory cells have identified an extensive form of calcium-induced exocytosis that is rapid (hundreds of milliseconds), insensitive to tetanus toxin and distinct from regulated secretion. We have now identified a marker of the process, desmoyokin-AHNAK, in a clonal derivative of the neuronal cell line, PC12. In resting cells, desmoyokin-AHNAK is localized within the lumen of specific vesicles, but appears on the cell surface during stimulation. Desmoyokin-AHNAK-positive vesicles exist in a variety of cells and tissues and are distinct from the endoplasmic reticulum, Golgi, trans-Golgi, endosomes and lysosomes, and from Glut4 and constitutive secretion vesicles. They seem to be involved in two models of plasmalemma enlargement: differentiation and membrane repair. We therefore propose that these vesicles should be called 'enlargosomes'.  相似文献   

5.
Regulated exocytosis and SNARE function (Review)   总被引:1,自引:0,他引:1  
The pairing of cognate v- and t-SNAREs between two opposing lipid bilayers drives spontaneous membrane fusion and confers specificity to intracellular membrane trafficking. These fusion events are regulated by a cascade of protein-protein interactions that locally control SNARE activity and complex assembly, determining when and where fusion occurs with high efficiency in vivo. This basic regulation occurs at all transport steps and is mediated by conserved protein families such as Rab proteins and their effectors and Sec1/unc18 proteins. Regulated exocytosis employs auxiliary components that couple the signal (which triggers exocytosis) to the fusion machinery. At the neuronal synapse, munc13 as well as munc18 control SNARE complex assembly. Synaptotagmin and complexin ensure fast synchronous calcium-evoked neurotransmitter release.  相似文献   

6.
Regulated ATP release from astrocytes through lysosome exocytosis   总被引:4,自引:0,他引:4  
Zhang Z  Chen G  Zhou W  Song A  Xu T  Luo Q  Wang W  Gu XS  Duan S 《Nature cell biology》2007,9(8):945-953
Release of ATP from astrocytes is required for Ca2+ wave propagation among astrocytes and for feedback modulation of synaptic functions. However, the mechanism of ATP release and the source of ATP in astrocytes are still not known. Here we show that incubation of astrocytes with FM dyes leads to selective labelling of lysosomes. Time-lapse confocal imaging of FM dye-labelled fluorescent puncta, together with extracellular quenching and total-internal-reflection fluorescence microscopy (TIRFM), demonstrated directly that extracellular ATP or glutamate induced partial exocytosis of lysosomes, whereas an ischaemic insult with potassium cyanide induced both partial and full exocytosis of these organelles. We found that lysosomes contain abundant ATP, which could be released in a stimulus-dependent manner. Selective lysis of lysosomes abolished both ATP release and Ca2+ wave propagation among astrocytes, implicating physiological and pathological functions of regulated lysosome exocytosis in these cells.  相似文献   

7.
Tetanus toxin and botulinal toxins are potent inhibitors of neuronal exocytosis. Within the past five years the protein sequences of all eight neurotoxins have been determined, their mode of action as metalloproteases has been established, and their intraneuronal targets have been identified. The toxins act by selectively proteolysing the synaptic vesicle protein synaptobrevin (VAMP) or the presynaptic membrane proteins syntaxin (HPC-1) and SNAP-25. These three proteins form the core of a complex that mediates fusion of carrier vesicles to target membranes. Tetanus and botulinal neurotoxins could serve in the future as tools to study membrane trafficking events, or even higher brain functions such as behaviour and learning.  相似文献   

8.
We have explored whether gamma-aminobutyric acid (GABA) is released by regulated exocytosis of GABA-containing synaptic-like microvesicles (SLMVs) in insulin-releasing rat pancreatic beta-cells. To this end, beta-cells were engineered to express GABA(A)-receptor Cl(-)-channels at high density using adenoviral infection. Electron microscopy indicated that the average diameter of the SLMVs is 90 nm, that every beta-cell contains approximately 3,500 such vesicles, and that insulin-containing large dense core vesicles exclude GABA. Quantal release of GABA, seen as rapidly activating and deactivating Cl(-)-currents, was observed during membrane depolarizations from -70 mV to voltages beyond -40 mV or when Ca(2+) was dialysed into the cell interior. Depolarization-evoked GABA release was suppressed when Ca(2+) entry was inhibited using Cd(2+). Analysis of the kinetics of GABA release revealed that GABA-containing vesicles can be divided into a readily releasable pool and a reserve pool. Simultaneous measurements of GABA release and cell capacitance indicated that exocytosis of SLMVs contributes approximately 1% of the capacitance signal. Mathematical analysis of the release events suggests that every SLMV contains 0.36 amol of GABA. We conclude that there are two parallel pathways of exocytosis in pancreatic beta-cells and that release of GABA may accordingly be temporally and spatially separated from insulin secretion. This provides a basis for paracrine GABAergic signaling within the islet.  相似文献   

9.
Summary The present study provides the first quantitative analysis on the distribution of organelles in pollen tubes ofNicotiana tabacum L. Organelles were studied on living pollen tubes by means of fluorescence confocal laser scanning microscopy and on cryo-fixed, freeze-substituted and serially sectioned material by electron microscopy. In the tip a 300 nm to 400 nm thick wall was secreted that proximately gradually separated into a wall with an opaque inner side and a more translucent, layered outer side. Tubular endoplasmic reticulum was particularly abundant in the tip of the tube, surrounding the region where secretory vesicles (SV) accumulated. Mitochondria were randomly distributed throughout the cytoplasm, no accumulations were present. Dictyosomes, however, showed an increased abundance at 25–30 m behind the tip. The accumulation of coated pits (CP) in a zone 6–15 m behind the tip identifies this zone as the major site of endocytosis: 50% of all CP occur in this zone. Quantification of exo- and endocytosis showed that only part of the membrane material of the SV can be retrieved after exocytosis. The typical zonation in endocytotic activity may serve to maintain a difference in membrane protein composition between the tip and the tube.  相似文献   

10.
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.  相似文献   

11.
Varicosities are ubiquitous neuronal structures that appear as local swellings along neurites of invertebrate and vertebrate neurons. Surprisingly little is known about their cell biology. We use here cultured Aplysia neurons and demonstrate that varicosities are motile compartments that contain large clusters of organelles. The content of varicosities propagate along neurites within the plasma membrane “sleeve”, split and merge, or wobble in place. Confocal imaging, retrospective immunolabeling, electron microscopy and pharmacological perturbations reveal that the motility of the varicosities’ organelle content occurs in concert with an actin scaffold and is generated by actomyosin motors. Despite the motility of these organelle clusters within the cytoplasm along the neurites, elevation of the free intracellular calcium concentration within varicosities by trains of action potentials induces exocytosis followed by membrane retrieval. Our observations demonstrate that varicosities formed in the absence of postsynaptic cells behave as “ready to go” prefabricated presynaptic terminals. We suggest that the varicosities’ motility serves to increase the probability of encountering a postsynaptic cell and to rapidly form a functional synapse. Electronic Supplementary Material Supplementary material is available in the online version of this article at These authors contributed equally to the paper.  相似文献   

12.
The vanilloid receptor-1 (TRPV1) plays a key role in the perception of peripheral thermal and inflammatory pain. TRPV1 expression and channel activity are notably up-regulated by proalgesic agents. The transduction pathways involved in TRPV1 sensitization are still elusive. We have used a yeast two-hybrid screen to identify proteins that associate with the N terminus of TRPV1. We report that two vesicular proteins, Snapin and synaptotagmin IX (Syt IX), strongly interact in vitro and in vivo with the TRPV1 N-terminal domain. In primary dorsal root ganglion neurons, TRPV1 co-distributes in vesicles with Syt IX and the vesicular protein synaptobrevin. Neither Snapin nor Syt IX affected channel function, but they notably inhibited protein kinase C (PKC)-induced potentiation of TRPV1 channel activity with a potency that rivaled the blockade evoked by botulinum neurotoxin A, a potent blocker of neuronal exocytosis. Noteworthily, we found that PKC activation induced a rapid delivery of functional TRPV1 channels to the plasma membrane. Botulinum neurotoxin A blocked the TRPV1 membrane translocation induced by PKC that was activated with a phorbol ester or the metabotropic glutamate receptor mGluR5. Therefore, our results indicate that PKC signaling promotes at least in part the SNARE-dependent exocytosis of TRPV1 to the cell surface. Taken together, these findings imply that activity-dependent delivery of channels to the neuronal surface may contribute to the buildup and maintenance of thermal inflammatory hyperalgesia in peripheral nociceptor terminals.  相似文献   

13.
Cryobanking, the freezing of biological specimens to maintain their integrity for a variety of anticipated and unanticipated uses, offers unique opportunities to advance the basic knowledge of biological systems and their evolution. Notably, cryobanking provides a crucial opportunity to support conservation efforts for endangered species. Historically, cryobanking has been developed mostly in response to human economic and medical needs — these needs must now be extended to biodiversity conservation. Reproduction technologies utilizing cryobanked gametes, embryos and somatic cells are already vital components of endangered species recovery efforts. Advances in modern biological research (e.g. stem cell research, genomics and proteomics) are already drawing heavily on cryobanked specimens, and future needs are anticipated to be immense. The challenges of developing and applying cryobanking for a broader diversity of species were addressed at an international conference held at Trier University (Germany) in June 2008. However, the magnitude of the potential benefits of cryobanking stood in stark contrast to the lack of substantial resources available for this area of strategic interest for biological science — and society at large. The meeting at Trier established a foundation for a strong global incentive to cryobank threatened species. The establishment of an Amphibian Ark cryobanking programme offers the first opportunity for global cooperation to achieve the cryobanking of the threatened species from an entire vertebrate class.  相似文献   

14.
Roles of microfilaments in exocytosis: a new hypothesis   总被引:3,自引:0,他引:3  
We observed the dynamic changes in the localization of microfilaments during the exocytic secretion of rat parotid and submandibular gland acinar cells, and obtained results which led us to propose a new concept of microfilament function in exocytosis. With the electron microscopy, NBD-Phallacidin (NBD-PL) fluorescence technique and immunohistochemistry for myosin, microfilaments consisting of F-actin and myosin were localized mainly underneath the luminal plasma membrane. Microfilaments were not detectable around the secretory granules which were stored in the cytoplasm, but were clearly observed around them whose membranes were continuous with the luminal plasma membrane. When viewed with NBD-PL and myosin fluorescence, the area of fused granule membranes revealed bright fluorescence in association with the luminal border, so that the luminal membrane undergoing exocytosis appeared like a 'bunch of grapes'. When excess exocytosis was stimulated by isoproterenol (IPR), the number of individual 'grapes' increased dramatically, indicating that the secretory granules are surrounded by microfilaments after the fusion with the luminal membrane. Microfilaments thus continuously undercoat the luminal membrane during exocytosis although the exocytic process involves the dilation and subsequent reduction of the luminal membrane due to the addition and removal of secretory granule membranes. This reduction of the dilated luminal membrane following exocytosis was, however, inhibited when the microfilaments were disrupted by cytochalasin D. Following this treatment, the lumina was expanded extraordinarily and the secretory products remained in the enlarged lumina, showing that the release of secretory products is inhibited when the microfilament function is disturbed. These results indicate that 1) microfilaments are localized mainly underneath the luminal plasma membrane and act as an obstacle to exocytosis when cells are at the resting phase and 2) at the secretory phase microfilaments allow exocytosis by disorganizing their barrier system and then, by encircling the discharged secretory granule membranes, provide forces for the extrusion of secretory products through the action of the acto-myosin contractile system.  相似文献   

15.
A rapid procedure is described for the separation of plant cell organelles from castor bean endosperm (Ricinus communis). This method is based on the reorientation of sucrose density gradients during centrifugation in a vertical rotor, thus resulting in a shorter path length and drastically reduced run times. Comparison to a separation by a standard procedure shows that, by using this method, equal resolution is possible in less than 10% spin time.  相似文献   

16.
Secretory vesicles of sympathetic neurons and chromaffin granules maintain a pH gradient toward the cytosol (pH 5.5 versus 7.2) promoted by the V-ATPase activity. This gradient of pH is also responsible for the accumulation of amines and Ca2+ because their transporters use H+ as the counter ion. We have recently shown that alkalinization of secretory vesicles slowed down exocytosis, whereas acidification caused the opposite effect. In this paper, we measure the alkalinization of vesicular pH, caused by the V-ATPase inhibitor bafilomycin A1, by total internal reflection fluorescence microscopy in cells overexpressing the enhanced green fluorescent protein-labeled synaptobrevin (VAMP2-EGFP) protein. The disruption of the vesicular gradient of pH caused the leak of Ca2+, measured with fura-2. Fluorimetric measurements, using the dye Oregon green BAPTA-2, showed that bafilomycin directly released Ca2+ from freshly isolated vesicles. The Ca2+ released from vesicles to the cytosol dramatically increased the granule motion of chromaffin- or PC12-derived granules and triggered exocytosis (measured by amperometry). We conclude that the gradient of pH of secretory vesicles might be involved in the homeostatic regulation of cytosolic Ca2+ and in two of the major functions of secretory cells, vesicle motion and exocytosis.  相似文献   

17.
Phosphoinositides, synthesized from myo-inositol, play a critical role in the development of growth cones and in synaptic activity. As neurons cannot synthesize inositol, they take it up from the extracellular milieu. Here, we demonstrate that, in brain and PC12 cells, the recently identified H(+)/myo-inositol symporter HMIT is present in intracellular vesicles that are distinct from synaptic and dense-core vesicles. We further show that HMIT can be triggered to appear on the cell surface following cell depolarization, activation of protein kinase C or increased intracellular calcium concentrations. HMIT cell surface expression takes place preferentially in regions of nerve growth and at varicosities and leads to increased myo-inositol uptake. The symporter is then endocytosed in a dynamin-dependent manner and becomes available for a subsequent cycle of stimulated exocytosis. HMIT is thus expressed in a vesicular compartment involved in activity-dependent regulation of myo-inositol uptake in neurons. This may be essential for sustained signaling and vesicular traffic activities in growth cones and at synapses.  相似文献   

18.
Olas B  Lundell K  Holmsen H  Fukami MH 《FEBS letters》2002,512(1-3):29-32
An early proposal was that for rapid ATP synthesis by the rotational ATP synthase, a specific second site must bind ADP and P(i), and for rapid ATP hydrolysis a different second site must bind ATP. Such bi-site activation was considered to occur whether or not an ADP or ATP was at a third site. In contrast, a more recent proposal is that rapid ATP hydrolysis requires that all three sites have bound ADP or ATP present. However, discovery that one second site binds ADP better than ATP, together with other data and considerations support the earlier proposal. The retention or rebinding of ADP can explain why three sites fill during hydrolysis as ATP concentration is increased although bi-site activation still prevails.  相似文献   

19.
Recent evidence suggests that low molecular weight GTP-binding proteins may play important roles in a variety of membrane transport processes. In order to address the question of whether these proteins are involved in transport processes in the nerve axon, we have assessed their presence in rapid transport membranes from rabbit optic nerve. We report the characterization of a group of low molecular weight GTP-binding proteins which are constituents of rapid transport vesicles. Although these proteins are components of rapid transport vesicles, they are apparently not major rapidly transported species. They are localized in cytosolic as well as in membrane fractions of axons, and the membrane-associated form behaves as an integral membrane protein(s). These proteins are also found in association with a variety of vesicular and organellar components of neurons including coated vesicles, synaptic vesicles, synaptic plasma membranes, and mitochondria. We discuss the possible roles of these proteins in rapid axonal transport and exocytosis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号