首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 788 毫秒
1.
MOTIVATION: Alternative splicing is currently seen to explain the vast disparity between the number of predicted genes in the human genome and the highly diverse proteome. The mapping of expressed sequences tag (EST) consensus sequences derived from the GeneNest database onto the genome provides an efficient way of predicting exon-intron boundaries, gene structure and alternative splicing events. However, the alternative splicing events are obscured by a large number of putatively artificial exon boundaries arising due to genomic contamination or alignment errors. The current work describes a methodology to associate quality values to the predicted exon-intron boundaries. High quality exon-intron boundaries are used to predict constitutive and alternative splicing ranked by confidence values, aiming to facilitate large-scale analysis of alternative splicing and splicing in general. RESULTS: Applying the current methodology, constitutive splicing is observed in 33,270 EST clusters, out of which 45% are alternatively spliced. The classification derived from the computed confidence values for 17 of these splice events frequently correlate (15/17) with RT-PCR experiments performed for 40 different tissue samples. As an application of the confidence measure, an evaluation of distribution of alternative splicing revealed that majority of variants correspond to the coding regions of the genes. However, still a significant fraction maps to non-coding regions, thereby indicating a functional relevance of alternative splicing in untranslated regions. AVAILABILITY: The predicted alternative splice variants are visualized in the SpliceNest database at http://splicenest.molgen.mpg.de  相似文献   

2.
3.
4.
5.
6.
The Fox proteins are a family of regulators that control the alternative splicing of many exons in neurons, muscle, and other tissues. Each of the three mammalian paralogs, Fox-1 (A2BP1), Fox-2 (RBM9), and Fox-3 (HRNBP3), produces proteins with a single RNA-binding domain (RRM) flanked by N- and C-terminal domains that are highly diversified through the use of alternative promoters and alternative splicing patterns. These genes also express protein isoforms lacking the second half of the RRM (FoxΔRRM), due to the skipping of a highly conserved 93-nt exon. Fox binding elements overlap the splice sites of these exons in Fox-1 and Fox-2, and the Fox proteins themselves inhibit exon inclusion. Unlike other cases of splicing autoregulation by RNA-binding proteins, skipping the RRM exon creates an in-frame deletion in the mRNA to produce a stable protein. These FoxΔRRM isoforms expressed from cDNA exhibit highly reduced binding to RNA in vivo. However, we show that they can act as repressors of Fox-dependent splicing, presumably by competing with full-length Fox isoforms for interaction with other splicing factors. Interestingly, the Drosophila Fox homolog contains a nearly identical exon in its RRM domain that also has flanking Fox-binding sites. Thus, rather than autoregulation of splicing controlling the abundance of the regulator, the Fox proteins use a highly conserved mechanism of splicing autoregulation to control production of a dominant negative isoform.  相似文献   

7.
Regulation of alternative splicing by reversible protein phosphorylation   总被引:3,自引:0,他引:3  
The vast majority of human protein-coding genes are subject to alternative splicing, which allows the generation of more than one protein isoform from a single gene. Cells can change alternative splicing patterns in response to a signal, which creates protein variants with different biological properties. The selection of alternative splice sites is governed by the dynamic formation of protein complexes on the processed pre-mRNA. A unique set of these splicing regulatory proteins assembles on different pre-mRNAs, generating a "splicing" or "messenger ribonucleoprotein code" that determines exon recognition. By influencing protein/protein and protein/RNA interactions, reversible protein phosphorylation modulates the assembly of regulatory proteins on pre-mRNA and therefore contributes to the splicing code. Studies of the serine/arginine-rich protein class of regulators identified different kinases and protein phosphatase 1 as the molecules that control reversible phosphorylation, which controls not only splice site selection, but also the localization of serine/arginine-rich proteins and mRNA export. The involvement of protein phosphatase 1 explains why second messengers like cAMP and ceramide that control the activity of this phosphatase influence alternative splicing. The emerging mechanistic links between splicing regulatory proteins and known signal transduction pathways now allow in detail the understanding how cellular signals modulate gene expression by influencing alternative splicing. This knowledge can be applied to human diseases that are caused by the selection of wrong splice sites.  相似文献   

8.
9.
Bioinformatics analysis of alternative splicing   总被引:5,自引:0,他引:5  
Over the past few years, the analysis of alternative splicing using bioinformatics has emerged as an important new field, and has significantly changed our view of genome function. One exciting front has been the analysis of microarray data to measure alternative splicing genome-wide. Pioneering studies of both human and mouse data have produced algorithms for discerning evidence of alternative splicing and clustering genes and samples by their alternative splicing patterns. Moreover, these data indicate the presence of alternative splice forms in up to 80 per cent of human genes. Comparative genomics studies in both mammals and insects have demonstrated that alternative splicing can in some cases be predicted directly from comparisons of genome sequences, based on heightened sequence conservation and exon length. Such studies have also provided new insights into the connection between alternative splicing and a variety of evolutionary processes such as Alu-based exonisation, exon creation and loss. A number of groups have used a combination of bioinformatics, comparative genomics and experimental validation to identify new motifs for splice regulatory factors, analyse the balance of factors that regulate alternative splicing, and propose a new mechanism for regulation based on the interaction of alternative splicing and nonsense-mediated decay. Bioinformatics studies of the functional impact of alternative splicing have revealed a wide range of regulatory mechanisms, from NAGNAG sites that add a single amino acid; to short peptide segments that can play surprisingly complex roles in switching protein conformation and function (as in the Piccolo C2A domain); to events that entirely remove a specific protein interaction domain or membrane anchoring domain. Common to many bioinformatics studies is a new emphasis on graph representations of alternative splicing structures, which have many advantages for analysis.  相似文献   

10.
11.
12.
Alternative splicing enhances proteome diversity and modulates cancer-associated proteins. To identify tissue- and tumor-specific alternative splicing, we used the GeneChip Human Exon 1.0 ST Array to measure whole-genome exon expression in 102 normal and cancer tissue samples of different stages from colon, urinary bladder, and prostate. We identified 2069 candidate alternative splicing events between normal tissue samples from colon, bladder, and prostate and selected 15 splicing events for RT-PCR validation, 10 of which were successfully validated by RT-PCR and sequencing. Furthermore 23, 19, and 18 candidate tumor-specific splicing alterations in colon, bladder, and prostate, respectively, were selected for RT-PCR validation on an independent set of 81 normal and tumor tissue samples. In total, seven genes with tumor-specific splice variants were identified (ACTN1, CALD1, COL6A3, LRRFIP2, PIK4CB, TPM1, and VCL). The validated tumor-specific splicing alterations were highly consistent, enabling clear separation of normal and cancer samples and in some cases even of different tumor stages. A subset of the tumor-specific splicing alterations (ACTN1, CALD1, and VCL) was found in all three organs and may represent general cancer-related splicing events. In silico protein predictions suggest that the identified cancer-specific splice variants encode proteins with potentially altered functions, indicating that they may be involved in pathogenesis and hence represent novel therapeutic targets. In conclusion, we identified and validated alternative splicing between normal tissue samples from colon, bladder, and prostate in addition to cancer-specific splicing events in colon, bladder, and prostate cancer that may have diagnostic and prognostic implications.  相似文献   

13.
mRNA选择性剪接的分子机制   总被引:5,自引:0,他引:5  
章国卫  宋怀东  陈竺 《遗传学报》2004,31(1):102-107
真核细胞mRNA前体经过剪接成为成熟的mRNA,而mRNA前体的选择性剪接极大地增加了蛋白质的多样性和基因表达的复杂程度,剪接位点的识别可以以跨越内含子的机制(内含子限定)或跨越外显子的机制(外显子限定)进行。选择性剪接有多种剪接形式:选择不同的剪接位点,选择不同的剪接末端,外显子的不同组合及内含子的剪接与否等。选择性剪接过程受到许多顺式元件和反式因子的调控,并与基本剪接过程紧密联系,剪接体中的一些剪接因子也参与了对选择性剪接的调控。选择性剪接也是1个伴随转录发生的过程,不同的启动子可调控产生不同的剪接产物。mRNA的选择性剪接机制多种多样,已发现RNA编辑和反式剪接也可参与选择性剪接过程。  相似文献   

14.
Alternative splicing of genes is an efficient means of generating variation in protein function. Several disease states have been associated with rare genetic variants that affect splicing patterns. Conversely, splicing efficiency of some genes is known to vary between individuals without apparent ill effects. What is not clear is whether commonly observed phenotypic variation in splicing patterns, and hence potential variation in protein function, is to a significant extent determined by naturally occurring DNA sequence variation and in particular by single nucleotide polymorphisms (SNPs). In this study, we surveyed the splicing patterns of 250 exons in 22 individuals who had been previously genotyped by the International HapMap Project. We identified 70 simple cassette exon alternative splicing events in our experimental system; for six of these, we detected consistent differences in splicing pattern between individuals, with a highly significant association between splice phenotype and neighbouring SNPs. Remarkably, for five out of six of these events, the strongest correlation was found with the SNP closest to the intron–exon boundary, although the distance between these SNPs and the intron–exon boundary ranged from 2 bp to greater than 1,000 bp. Two of these SNPs were further investigated using a minigene splicing system, and in each case the SNPs were found to exert cis-acting effects on exon splicing efficiency in vitro. The functional consequences of these SNPs could not be predicted using bioinformatic algorithms. Our findings suggest that phenotypic variation in splicing patterns is determined by the presence of SNPs within flanking introns or exons. Effects on splicing may represent an important mechanism by which SNPs influence gene function.  相似文献   

15.
16.
17.
18.
水稻NBS-LRR基因选择性剪接的全基因组检测及分析   总被引:1,自引:0,他引:1  
顾连峰  郭荣发 《遗传学报》2007,34(3):247-257
选择性剪接是促进基因组复杂性和蛋白质组多样性的一种主要机制,但是对水稻NBS-LRR序列选择性剪接的全基因组分析却未见报道。通过隐马尔柯夫模型搜索,从TIGR数据库里得到了855条编码NBS-LRR基序的序列。利用这些序列在KOME、TIGR基因索引及UniProt三个数据库中进行同源搜索,获得同源的完整cDNA序列、假设一致性序列和蛋白质序列。再利用Spidey和SIM4程序把完整cDNA序列和假设一致性序列联配到相应的BAC序列上来预测选择性剪接。蛋白质序列和基因组序列之间的联配使用tBLASTn。在这875个NBS-LRR基因中,119个基因具有选择性剪接现象,其中包括71内含子保留,20个外显子跳跃,25个选择性起始,16个选择性终止,12个5′端的选择性剪接和16个3′端选择性剪接。大多数选择性剪接都为两个和多个转录本所支持。可以通过访问http://www.bioinfor.org查询这些数据。进而通过生物信息学分析剪接边界发现外显子跳跃和内含子保留的‘GT…AG’的规则不如组成型的保守。这暗示了它们是通过不同的调控机制来指导剪接变构体的形成。通过分析内含子保留对蛋白质的影响,发现选择性剪接的蛋白更倾向于改变其C端氨基酸序列。最后对选择性剪接的组织分布和蛋白质定位进行分析,结果表明选择性剪接的最大类的组织分布是根和愈伤组织。超过1/3剪接变构体的蛋白质定位是质膜和细胞质。这些选择性剪接蛋白可能在抗病信号转导中起到重要作用。  相似文献   

19.
20.
Even though nearly every human gene has at least one alternative splice form, very little is so far known about the structure and function of resulting protein products. It is becoming increasingly clear that a significant fraction of all isoforms are products of noisy selection of splice sites and thus contribute little to actual functional diversity, and may potentially be deleterious. In this study, we examine the impact of alternative splicing on protein sequence and structure in three datasets: alternative splicing events conserved across multiple species, alternative splicing events in genes that are strongly linked to disease and all observed alternative splicing events. We find that the vast majority of all alternative isoforms result in unstable protein conformations. In contrast to that, the small subset of isoforms conserved across species tends to maintain protein structural integrity to a greater extent. Alternative splicing in disease-associated genes produces unstable structures just as frequently as all other genes, indicating that selection to reduce the effects of alternative splicing on this set is not especially pronounced. Overall, the properties of alternative spliced proteins are consistent with the outcome of noisy selection of splice sites by splicing machinery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号