首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stage-dependent inhibition of chloroquine on Plasmodium falciparum in vitro   总被引:3,自引:0,他引:3  
Morphological observation of the life cycle of the malaria parasite, Plasmodium falciparum, in highly synchronous cultures after an exposure to therapeutic concentrations of chloroquine in ring, trophozoite and schizont stages, respectively, were carried out in order to determine the influence of chloroquine on the growth of the different stages of the malarial parasites. It was found that chloroquine could not affect merozoite invasion of the erythrocytes; the ring stage was more sensitive to chloroquine than the trophozoite and schizont stages; and chloroquine in therapeutic concentrations prevented only the transformation of rings to trophozoites and could not affect the transformations of trophozoites to schizonts and schizonts to new rings. The determination of the IC50 of chloroquine showed that the IC50 of trophozoites was about 6 times as high as that of rings.  相似文献   

2.
Protein tyrosine kinases (PTKs) are believed to be implicated in the parasite growth, maturation and differentiation functions. Protein tyrosine kinase activity was found to be distributed in all the stages of P. falciparum parasite maturation. Membrane bound PTK activity was found to be increased during maturation process (ring stage to trophozoite stage) in chloroquine sensitive strains. In vivo conversion of the schizont stage to ring stage via release of merozoites was associated with a decrease in PTK activity. Chloroquine inhibited the membrane bound PTK activity in a dose dependent manner (IC50 = 45 microM). Kinetic studies show that chloroquine is a competitive inhibitor of PTK with respect to peptide substrate and noncompetitive with respect to ATP indicating that chloroquine inhibits PTK activity by binding with protein substrate binding site. The results suggest that maturation of malaria parasite is related to PTK and inhibition of this activity by chloroquine could provide a hypothesis to explain the mechanism of action of chloroquine.  相似文献   

3.
Although the molecular mechanism by which chloroquine exerts its effects on the malarial parasite Plasmodium falciparum remains unclear, the drug has previously been found to interact specifically with the glycolytic enzyme lactate dehydrogenase from the parasite. In this study we have determined the crystal structure of the complex between chloroquine and P. falciparum lactate dehydrogenase. The bound chloroquine is clearly seen within the NADH binding pocket of the enzyme, occupying a position similar to that of the adenyl ring of the cofactor. Chloroquine hence competes with NADH for binding to the enzyme, acting as a competitive inhibitor for this critical glycolytic enzyme. Specific interactions between the drug and amino acids unique to the malarial form of the enzyme suggest this binding is selective. Inhibition studies confirm that chloroquine acts as a weak inhibitor of lactate dehydrogenase, with mild selectivity for the parasite enzyme. As chloroquine has been shown to accumulate to millimolar concentrations within the food vacuole in the gut of the parasite, even low levels of inhibition may contribute to the biological efficacy of the drug. The structure of this enzyme-inhibitor complex provides a template from which the quinoline moiety might be modified to develop more efficient inhibitors of the enzyme.  相似文献   

4.
Stage-dependent effects of chloroquine on Plasmodium falciparum in vitro   总被引:7,自引:0,他引:7  
The erythrocytic developmental cycle of Plasmodium falciparum can be conveniently divided into the ring, trophozoite, and schizont stages based on morphology and metabolism. Using highly synchronous cultures of P. falciparum, considerable variation was demonstrated among these stages in sensitivity to chloroquine. The effects of timed, sequential exposure to several clinically relevant concentrations of chloroquine were monitored by three techniques: morphological analysis, changes in the rate of glucose consumption, and changes in the incorporation of 3H-hypoxanthine into parasite nucleic acids. All three techniques gave essentially identical results. The trophozoite and schizont stages were considerably more sensitive to the drug than ring-stage parasites. Chloroquine sensitivity decreased as nuclear division neared completion. The increase in chloroquine sensitivity was coincident with a marked rise in the rate of glucose consumption and nucleic acid synthesis. The rate of nucleic acid synthesis decreased as schizogony progressed while glucose consumption continued at high rates during this process. The degree of chloroquine sensitivity was not highly correlated with either metabolic activity.  相似文献   

5.
A series of compounds derived from the 2-amino-4-(2-pyridyl) thiazole scaffold was synthesized and tested for in vitro antimycobacterial activity against the Mycobacterium tuberculosis H37Rv strain, antiplasmodial activity against the chloroquine sensitive NF54 Plasmodium falciparum strain and cytotoxicity on a mammalian cell line. Optimal antimycobacterial activity was found with compounds with a 2-pyridyl ring at position 4 of the thiazole scaffold, a substituted phenyl ring at the 2-amino position, and an amide linker between the scaffold and the substituted phenyl. The antiplasmodial activity was best with compounds that had the phenyl ring substituted with hydrophobic electron withdrawing groups.  相似文献   

6.
A series of thioacridone compounds that were previously shown to have DNA binding interaction, were screened for antimalarial activity. The new compounds were assessed for in vitro antimalarial activity against a chloroquine sensitive (D10) strain of the malaria parasite Plasmodium falciparum, using a lactate dehydrogenase (PfLDH) assay. In the series, the IC(50) values ranged from 0.4 to 27 microg/ml. 1-(2-Dimethylaminoethylamino)-9(10H)-thioacridone was found to be the most potent against P. falciparum (D10) with an IC(50) value of 0.4 microg/ml. This compound was also evaluated against a South African chloroquine resistant (RSA 11) P. falciparum strain and was found to have an IC(50) value of 1 microg/ml, compared with 0.16 microg/ml for chloroquine. Quantitative structure-activity relationships of this series were also investigated and a multiple linear regression r(2) of 0.58 was found for the best fit equation. The most potent compound, 1-(2-dimethylaminoethylamino)-9(10H)-thioacridone, was docked into the chloroquine binding site of PfLDH and it was found that the slightly lower activity of this compound, compared with chloroquine, is likely due to steric interference within a restricted binding pocket.  相似文献   

7.
Nearly one million deaths are attributed to malaria every year. Recent reports of multi-drug treatment failure of falciparum malaria underscore the need to understand the molecular basis of drug resistance. Multiple mutations in the Plasmodium falciparum chloroquine resistance transporter (pfcrt) are involved in chloroquine resistance, but the evolution of complex haplotypes is not yet well understood. Using over 4,500 archival human serum specimens collected from 19 Pacific populations between 1959 and 1979, the period including and just prior to the appearance of chloroquine treatment failure in the Pacific, we PCR-amplified and sequenced a portion of the pfcrt exon 2 from 771 P. falciparum-infected individuals to explore the spatial and temporal variation in falciparum malaria prevalence and the evolution of chloroquine resistance. In the Pacific, the prevalence of P. falciparum varied considerably across ecological zones. On the island of New Guinea, the decreases in prevalence of P. falciparum in coastal, high-transmission areas over time were contrasted by the increase in prevalence during the same period in the highlands, where transmission was intermittent. We found 78 unique pfcrt haplotypes consisting of 34 amino acid substitutions and 28 synonymous mutations. More importantly, two pfcrt mutations (N75D and K76T) implicated in chloroquine resistance were present in parasites from New Hebrides (now Vanuatu) eight years before the first report of treatment failure. Our results also revealed unexpectedly high levels of genetic diversity in pfcrt exon 2 prior to the historical chloroquine resistance selective sweep, particularly in areas where disease burden was relatively low. In the Pacific, parasite genetic isolation, as well as host acquired immune status and genetic resistance to malaria, were important contributors to the evolution of chloroquine resistance in P. falciparum.  相似文献   

8.
The basal activity of Ca2+-ATPase in two isolates (NL56, UNC) and two clones (D6, W2) of P.falciparum was assessed. The effects of various concentrations of chloroquine phosphate and toxic concentrations of lead acetate were also evaluated in the clones and strains of P.falciparum. The Ca2+-ATPase activity was measured by monitoring the rate of release of inorganic phosphate from the gamma-position of ATP on spectrophotometer at 820nm wavelength. The various concentrations of chloroquine (3, 6, 9, 12, 18μg/ml) and lead acetate (5, 10, 20, 30, 40μg/ml) on Ca2+-ATPase activity were measured respectively. Chloroquine phosphate inhibited Ca2+-ATPase activity in both the isolates and the cloned strains of P.falciparum in concentration dependent manner. Median Inhibitory concentration of chloroquine (MIC50) estimated from the plot of activity against chloroquine concentration was found to be 2.6mg/ml at pH 7.4 for both the isolates and cloned strains examined. Lead acetate at concentrations 5-20μg/ml inhibited Ca2+-ATPase activity in concentration dependent manner in clone W2 (Chloroquine resistant strain) while the same range of concentrations of lead acetate stimulated the activity of the enzyme in clone D6 (Chloroquine sensitive strain).The inhibitory effect of lead acetate on the enzyme in clone D6 was observed at concentrations above 20μg/ml. The result also suggests that lead ions could modulate and moderate calcium ion homeostasis in P. falciparum via its effect on Ca2+-ATPase activity. Also sufficient influx of lead ions into P. falciparum may transform the biochemical or bioenergetics nature of chloroquine sensitive strain of P. falciparum (D6) to that similar to chloroquine resistant strain (W2). In conclusion, inhibition of Ca2+-ATPase activity of P.falciparum may be part of the mechanism of action of chloroquine in its use as chemotherapy for malaria. The study implies that populations simultaneously exposed to lead pollution and malaria infection may experience failure in chloroquine therapy.  相似文献   

9.
Drug pressure in the field is believed to be responsible for the emergence of drug-resistant Plasmodium falciparum, the parasite that causes malaria. Variants of the P. falciparum chloroquine resistance transporter (pfcrt) gene have been shown to be responsible for conferring resistance to the commonly used drug chloroquine. In particular, an amino acid mutation, K76T, was shown to have a strong positive correlation with the chloroquine-resistant varieties of malaria parasites. Global studies have reported highly reduced genetic diversity surrounding K76T in the pfcrt gene, which indicates that the mutation has been a target of positive Darwinian natural selection. However, two recent studies of P. falciparum in India found high genetic diversity in the pfcrt gene, which, at first sight, do not support the role of natural selection in the evolution of chloroquine resistance in India.  相似文献   

10.
In the scenario of drug-resistant Plasmodium falciparum malaria combination therapy represents an effective approach. Artemisinin and its derivatives are of special interest because they represent the most effective group of compounds against multidrug-resistant malaria with a rapid onset of action and a short half-life. Interactions of artemisinin with amodiaquine, pyronaridine, and chloroquine were therefore investigated against three strains of P. falciparum using a 48-h in vitro culture assay. Two of the strains were chloroquine sensitive and one was partially chloroquine resistant. Observed effective concentrations (O) of the combined compounds at different concentration ratios were calculated for different degrees of inhibition (EC50, EC90, EC99) and compared to expected calculated effective concentrations (E) using a probit method. Synergism with mean O/E EC90 values of 0.25 and 0.8 were found with the combination of artemisinin and the two Mannich bases, amodiaquine and pyronaridine, respectively, whereas chloroquine showed addition with a mean value of 1.2. Although both amodiaquine and chloroquine are 4-aminoquinolines, their interaction with artemisinin appears to be different. The combination of artemisinin with amodiaquine represents an important option for the treatment of falciparum malaria.  相似文献   

11.
The present communication deals with drug-resistant Plasmodium falciparum malaria complicating hematologic malignancies (leukemias, n = 24, and lymphomas, n = 7) in children. Of 50 cases of hematologic malignancies, 31 patients were microscopically diagnosed as having P. falciparum infection (MP +). Initially, all the patients were treated with chloroquine. The results of primary treatment showed chloroquine resistance in 16 (51. 62%) cases. Of these 16 chloroquine-resistant cases, 13 were secondarily treated with a combination of pyrimethamine plus sulfamethopyrazine. The results of secondary treatment also revealed resistance to pyrimethamine plus sulfamethopyrazine in 6 of 13 (46. 10%) cases. The 6 pyrimethamine plus sulfamethopyrazine-resistant P. falciparum cases were finally cured by quinine therapy, against which no resistance was encountered. Conversely, in the control group comprising 38 cases of P. falciparum without malignancy, the incidence of chloroquine resistance was found in only 9 cases, which is rather low (23.70%). Of these 7 chloroquine-resistant cases, 5 were found to be sensitive to pyrimethamine plus sulfamethopyrazine treatment, while the 2 nonresponders were finally cured with quinine. The overall results of this study show a high prevalence of chloroquine resistance among clinical cases of falciparum malaria (25/69; 30.6%). Among the nonresponders (n = 20) 40% of cases were also resistant to the pyrimethamine plus sulfamethopyrazine combination. There was no resistance to quinine.  相似文献   

12.
Resistance of Plasmodium falciparum to chloroquine hinders malaria control in endemic areas. Current hypotheses on the action mechanism of chloroquine evoke its ultimate interference with the parasite's oxidative defence systems. Through carbonyl derivatization by 2,4-dinitrophenylhydrazine and proteomics, we compared oxidatively modified proteins across the parasite's intraerythrocytic stages in untreated and transiently IC(50) chloroquine-treated cultures of the chloroquine-resistant P. falciparum strain Dd2. Functional plasmodial protein groups found to be most oxidatively damaged were among those central to the parasite's physiological processes, including protein folding, proteolysis, energy metabolism, signal transduction, and pathogenesis. While an almost constant number of oxidized proteins was detected across the P. falciparum life cycle, chloroquine treatment led to increases in both the extent of protein oxidation and the number of proteins oxidized as the intraerythrocytic cycle progressed to mature stages. Our data provide new insights into early molecular effects produced by chloroquine in the parasite, as well as into the normal protein-oxidation modifications along the parasite cycle. Oxidized proteins involved in the particular parasite drug-response suggest that chloroquine causes specific oxidative stress, sharing common features with eukaryotic cells. Targeting these processes might provide ways of combating chloroquine-resistance and developing new antimalarial drugs.  相似文献   

13.
A novel series of 6-(2-chloroquinolin-3-yl)-4-substituted-phenyl-6H-1,3-oxazin-2-amines were synthesized and evaluated for in vitro antimalarial efficacy against chloroquine sensitive (MRC-02) as well as chloroquine resistant (RKL9) strains of Plasmodium falciparum. The activity tested was at nanomolar concentration. β-Hematin formation inhibition activity (BHIA(50)) of oxazines were determined and correlated with antimalarial activity. A reasonably good correlation (r?=?0.49 and 0.51, respectively) was observed between antimalarial activity (IC(50)) and BHIA(50). This suggests that antimalarial mode of action of these compounds seems to be similar to that of chloroquine and involves the inhibition of hemozoin formation. Some of the compounds were showing better antimalarial activity than chloroquine against resistant strain of P. falciparum and were also found to be active in the in vivo experiment.  相似文献   

14.
The antiplasmodial activities of sixty norcantharidin analogs were tested in vitro against a chloroquine sensitive (D6, Sierra Leone) and chloroquine resistant (W2) strains of Plasmodium falciparum. Forty analogs returned IC(50) values <500 μM against at least one of the P. falciparum strains examined. The ring open compound 24 ((1S,4R)-3-(allylcarbamoyl)-7-oxabicyclo[2.2.1]heptane-2-carboxylic acid) is the most active aliphatic analog (D6 IC(50)=3.0±0.0 and W2 IC(50)=3.0±0.8 μM) with a 20-fold enhancement relative to norcantharidin. Surprisingly, seven norcantharimides also displayed good antiplasmodial activity with the most potent, 5 returning D6=8.9±0.9 and W2 IC(50)=12.5±2.2 μM, representing a fivefold enhancement over norcantharidin.  相似文献   

15.
The isoquinuclidine (2-azabicyclo[2.2.2]octane) ring system may be viewed as a semi-rigid boat form of the piperidine ring and, when properly substituted, a scaffold for rigid analogs of biologically active ethanolamines and propanolamines. It is present in natural products (such as ibogaine and dioscorine) that display interesting pharmacological properties. In this study, we have expanded our continuing efforts to incorporate this ring system in numerous pharmacophores, by designing and synthesizing semirigid analogs of the antimalarial drug chloroquine. The analogs were tested in vitro against Plasmodium falciparum strains and Leishmania donovani promastigote cultures. Compounds 6 and 13 displayed potent antimalarial activity against both chloroquine-susceptible D6 and the -resistant W2 strains of P. falciparum. All analogs also demonstrated significant antileishmanial activity with compounds 6 and 13 again being the most potent. The fact that these compounds are active against both chloroquine-resistant and chloroquine-sensitive strains as well as leishmanial cells makes them promising candidates for drug development.  相似文献   

16.
The antimalarial activity of chloroquine-pyrazole analogues, synthesized from the reaction of 1,1,1-trifluoro-4-methoxy-3-alken-2-ones with 4-hydrazino-7-chloroquinoline, has been evaluated in vitro against a chloroquine resistant Plasmodium falciparum clone. Parasite growth in the presence of the test drugs was measured by incorporation of [(3)H]hypoxanthine in comparison to controls with no drugs. All but one of the eight (4,5-dihydropyrazol-1-yl) chloroquine 2 derivatives tested showed a significant activity in vitro, thus, are a promising new class of antimalarials. The three most active ones were also tested in vivo against Plasmodium berghei in mice. However, the (pyrazol-1-yl) chloroquine 3 derivatives were mostly inactive, suggesting that the aromatic functionality of the pyrazole ring was critical.  相似文献   

17.
Sanchez CP  McLean JE  Stein W  Lanzer M 《Biochemistry》2004,43(51):16365-16373
The mechanism underpinning chloroquine drug resistance in the human malarial parasite Plasmodium falciparum remains controversial. By investigating the kinetics of chloroquine accumulation under varying-trans conditions, we recently presented evidence for a saturable and energy-dependent chloroquine efflux system present in chloroquine resistant P. falciparum strains. Here, we further characterize the putative chloroquine efflux system by investigating its substrate specificity using a broad range of different antimalarial drugs. Our data show that preloading cells with amodiaquine, primaquine, quinacrine, quinine, and quinidine stimulates labeled chloroquine accumulation under varying-trans conditions, while mefloquine, halofantrine, artemisinin, and pyrimethamine do not induce this effect. In the reverse of the varying-trans procedure, we show that preloaded cold chloroquine can stimulate quinine accumulation. On the basis of these findings, we propose that the putative chloroquine efflux system is capable of transporting, in addition to chloroquine, structurally related quinoline and methoxyacridine antimalarial drugs. Verapamil and the calcium/calmodulin antagonist W7 abrogate stimulated chloroquine accumulation and energy-dependent chloroquine extrusion. Our data are consistent with a substrate specific and inhibitible drug efflux system being present in chloroquine resistant P. falciparum strains.  相似文献   

18.
A study on chloroquine resistance of falciparum malaria was conducted in the Solomon Islands. Both in vitro and clinical tests were performed. In our regular studies of in vitro chloroquine susceptibility tests on Plasmodium falciparum from non-immuners in Japan, the threshold point to differentiate resistant and susceptible isolates was set at a 0. 114 microM chloroquine in the semi-micro culture system, and this point was also applicable in the study of the malaria parasite taken in the highly endemic malarious area with good coincidence with clinical observation. Variation in the incubation time (24-63) to reach the schizont stage of the isolated parasites were noted. It appeared that chloroquine resistant P. falciparum showed traits to reach the schizont stage within a shorter incubation period.  相似文献   

19.
The acquisition of resistance by malaria parasites towards existing antimalarials has necessitated the development of new chemotherapeutic agents. The effect of vitamin B(12) derivatives on the formation of beta-haematin (synthetic haemozoin) was determined under conditions similar to those in the parasitic food vacuole (using chloroquine, a known inhibitor of haemozoin formation for comparison). Adenosylcobalamin (Ado-cbl), methylcobalamin (CH(3)-cbl) and aquocobalamin (H(2)O-cbl) were approximately forty times more effective inhibitors of beta-haematin formation than chloroquine, cyanocobalamin (CN-cbl) was slightly more inhibitory than chloroquine, while dicyanocobinamide had no effect. It is proposed that the cobalamins exert their inhibitory effect on beta-haematin formation by pi-interactions of their corrin ring with the Fe(III)-protoporphyrin ring and by hydrogen-bonding using their 5,6-dimethylbenzimidazole/ribose/sugar side-chain. The antimalarial activity for the cobalamins (Ado-cbl>CH(3)-cbl>H(2)O-cbl>CN-cbl) was found to be less than that for chloroquine or quinine. Ado-cbl, CH(3)-cbl and CN-cbl do not accumulate in the parasite food vacuole by pH trapping, but H(2)O-cbl does. Unlike humans, the malaria parasite has only one enzyme that uses cobalamin as a cofactor, namely methionine synthase, which is important for growth and metabolism. Thus cobalamins in very small amounts are necessary for Plasmodium falciparum growth but in larger amounts they display antimalarial properties.  相似文献   

20.
Resistance to the antimalarial drug chloroquine has been linked with polymorphisms within a gene termed pfcrt in the human malarial parasite Plasmodium falciparum, yet the mechanism by which this gene confers the reduced drug accumulation phenotype associated with resistance is largely unknown. To investigate the role of pfcrt in mediating chloroquine resistance, we challenged P. falciparum clones differing only in their pfcrt allelic form with the "varying-trans" procedure. In this procedure, movement of labeled substrate across a membrane is measured when unlabeled substrate is present on the trans side of the membrane. If a transporter is mediating the substrate flow, a stimulation of cis-to-trans movement may be observed with increasing concentrations of trans substrate. We present evidence for an association of those pfcrt alleles found in chloroquine-resistant P. falciparum strains with the phenomenon of stimulated chloroquine accumulation under varying-trans conditions. Such an association is not seen with polymorphisms within pfmdr1, which encodes a homologue of the human multidrug resistance efflux pump. Our data are interpreted in terms of a model in which pfcrt is directly or indirectly involved in carrier-mediated chloroquine efflux from resistant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号