首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yuan Z  Sun X  Liu H  Xie J 《PloS one》2011,6(3):e17666
MicroRNAs (miRNAs) are a class of small noncoding RNAs that regulate gene expression by targeting mRNAs for translation repression or mRNA degradation. Many miRNAs are being discovered and studied, but in most cases their origin, evolution and function remain unclear. Here, we characterized miRNAs derived from repetitive elements and miRNA families expanded by segmental duplication events in the human, rhesus and mouse genomes. We applied a comparative genomics approach combined with identifying miRNA paralogs in segmental duplication pair data in a genome-wide study to identify new homologs of human miRNAs in the rhesus and mouse genomes. Interestingly, using segmental duplication pair data, we provided credible computational evidence that two miRNA genes are located in the pseudoautosomal region of the human Y chromosome. We characterized all the miRNAs whether they were derived from repetitive elements or not and identified significant differences between the repeat-related miRNAs (RrmiRs) and non-repeat-derived miRNAs in (1) their location in protein-coding and intergenic regions in genomes, (2) the minimum free energy of their hairpin structures, and (3) their conservation in vertebrate genomes. We found some lineage-specific RrmiR families and three lineage-specific expansion families, and provided evidence indicating that some RrmiR families formed and expanded during evolutionary segmental duplication events. We also provided computational and experimental evidence for the functions of the conservative RrmiR families in the three species. Together, our results indicate that repetitive elements contribute to the origin of miRNAs, and large segmental duplication events could prompt the expansion of some miRNA families, including RrmiR families. Our study is a valuable contribution to the knowledge of evolution and function of non-coding region in genome.  相似文献   

2.
The nautilus, commonly known as a “living fossil,” is endangered and may be at risk of extinction. The lack of genomic information hinders a thorough understanding of its biology and evolution, which can shed light on the conservation of this endangered species. Here, we report the first high-quality chromosome-level genome assembly of Nautilus pompilius. The assembled genome size comprised 785.15 Mb. Comparative genomic analyses indicated that transposable elements (TEs) and large-scale genome reorganizations may have driven lineage-specific evolution in the cephalopods. Remarkably, evolving conserved genes and recent TE insertion activities were identified in N. pompilius, and we speculate that these findings reflect the strong adaptability and long-term survival of the nautilus. We also identified gene families that are potentially responsible for specific adaptation and evolution events. Our study provides unprecedented insights into the specialized biology and evolution of N. pompilius, and the results serve as an important resource for future conservation genomics of the nautilus and closely related species.  相似文献   

3.
Plant evolution is characterized by frequent genome duplication events. Expansion of habitat resulted in the origin of many novel genes and genome duplication events which in turn resulted in the expansion of many regulatory gene families. The plant-specific FCS-Like Zinc finger (FLZ) gene family is characterized by the presence of a FCS-Like Zinc finger (FLZ) domain which mediates the protein-protein interaction. In this study, we identified that the expansion of FLZ gene family size in different species is correlated with ancestral and lineage-specific whole genome duplication events. The subsequent gene loss found to have a greater role in determining the size of this gene family in many species. However, genomic block duplications played the significant role in the expansion of FLZ gene family in some species. Comparison of Arabidopsis thaliana and Oryza sativa FLZ gene family revealed monocot and dicot specific evolutionary trends. The FLZ genes were found to be under high purifying selection. The spatiotemporal expression analyses of Arabidopsis thaliana FLZ gene family revealed that majority of the members are highly expressed in reproductive organs. FLZ genes were also found to be highly expressed during vegetative-to-reproductive phase transition which is correlated with the proposed role of this gene family in sugar signaling. The comparison of sequence, structural and expression features of duplicated genes identified lineage-specific redundancy and divergence. This extensive evolutionary analysis and expression analysis of Arabidopsis thaliana FLZ genes will pave the way for further functional analysis of FLZ genes.  相似文献   

4.
Chung BI  Lee KH  Shin KS  Kim WC  Kwon DN  You RN  Lee YK  Cho K  Cho DH 《Genomics》2011,98(5):381-389
Repetitive elements (REs) constitute a substantial portion of the genomes of human and other species; however, the RE profiles (type, density, and arrangement) within the individual genomes have not been fully characterized. In this study, we developed an RE analysis tool, called REMiner, for a chromosome-wide investigation into the occurrence of individual REs and arrangement of clusters of REs, and REMiner's functional features were examined using the human chromosome Y. The algorithm implemented by REMiner focused on unbiased mining of REs in large chromosomes and data interface within a viewer. The data from the chromosome demonstrated that REMiner is an efficient tool in regard to its capacity for a large query size and the availability of a high-resolution viewer, featuring instant retrieval of alignment data and control of magnification and identity ratio. The chromosome-wide survey identified a diverse population of ordered RE arrangements, which may participate in the genome biology.  相似文献   

5.
Davidia involucrata Baill, also known as the dove‐tree, is a living fossil and an endangered species currently restricted to the mountains of southwestern and central China. It has a beautiful and innovative trait of high horticultural value: two white bracts covering the flower caputila. Here, we report on the chromosome‐scale genome of this species using single‐molecule real‐time long reads and chromosome conformation capture (Hi‐C) techniques. This species has a larger genome size of 1,169 Mb and contains relatively more genes (42,554) than the closely related species Camptotheca acuminata (397 Mb and 31,825 genes). Both species shared one recent whole genome duplication before their divergence. The expansion of the repetitive elements after their divergence contributed greatly to the increase in the genome size of the dove‐tree. Photosynthesis‐related genes were almost absent or showed reduced expression in the bracts of the dove‐tree, while defence‐ and chemical‐related genes increased greatly, highlighting the important roles of the bracts in protecting flowers and attracting pollinators. The effective population size of the dove‐tree continuously decreased during the climate changes of the Quaternary. Such climate sensitivity should be fully considered in conservation efforts for this relict endangered species in the context of continuous climate warming in the future.  相似文献   

6.
The whole genome duplication that occurred in ray-finned fish coincided with the radiation of teleost species; consequently, these two phenomena have often been linked. Using the Tetraodon and zebrafish complete genome sequences, we tested a molecular hypothesis that can relate whole genome duplication to speciation in teleosts. We estimate that thousands of genes that remained duplicated when Tetraodon and zebrafish diverged underwent reciprocal loss subsequently in these two species, probably contributing to reproductive isolation between them.  相似文献   

7.
Retroelements (REs) occupy up to 40% of the human genome. Newly integrated REs can change the pattern of expression of pre-existing host genes and therefore might play a significant role in evolution. In particular, human- and primate-specific REs could affect the divergence of the Hominoidea superfamily. A comparative genome-wide analysis of RE sites of integration, neighboring genes, and their regulatory interplay in human and ape genomes would be of help in understanding the impact of REs on evolution and genome regulation. We have developed a technique for the genome-wide comparison of the integrations of transposable elements in genomic DNAs of closely related species. The technique called targeted genome differences analysis (TGDA) is also useful for the detection of deletion/insertion polymorphisms of REs. The technique is based on an enhanced version of subtractive hybridization and does not require preliminary knowledge of the genome sequences under comparison. In this report, we describe its application to the detection and analysis of human specific L1 integrations and their polymorphisms. We obtained a library highly enriched in human-specific L1 insertions and identified 24 such new insertions. Many of these insertions are polymorphic in human populations. The total number of human-specific L1 inserts was estimated to be approximately 4000. The results suggest that TGDA is a universal method that can be successfully used for the detection of evolutionary and polymorphic markers in any closely related genomes.  相似文献   

8.
9.
10.
Lee YK  Lee KH  Kim SG  Melhem R  Moon CS  Liu S  Greenhalgh DG  Cho K 《PloS one》2012,7(4):e35156
The entirety of all protein coding sequences is reported to represent a small fraction (~2%) of the mouse and human genomes; the vast majority of the rest of the genome is presumed to be repetitive elements (REs). In this study, the C57BL/6J mouse reference genome was subjected to an unbiased RE mining to establish a whole-genome profile of RE occurrence and arrangement. The C57BL/6J mouse genome was fragmented into an initial set of 5,321 units of 0.5 Mb, and surveyed for REs using unbiased self-alignment and dot-matrix protocols. The survey revealed that individual chromosomes had unique profiles of RE arrangement structures, named RE arrays. The RE populations in certain genomic regions were arranged into various forms of complexly organized structures using combinations of direct and/or inverse repeats. Some of these RE arrays spanned stretches of over 2 Mb, which may contribute to the structural configuration of the respective genomic regions. There were substantial differences in RE density among the 21 chromosomes, with chromosome Y being the most densely populated. In addition, the RE array population in the mouse chromosomes X and Y was substantially different from those of the reference human chromosomes. Conversion of the dot-matrix data pertaining to a tandem 13-repeat structure within the Ch7.032 genome unit into a line map of known REs revealed a repeat unit of ~11.3 Kb as a mosaic of six different RE types. The data obtained from this study allowed for a comprehensive RE profiling, including the establishment of a library of RE arrays, of the reference mouse genome. Some of these RE arrays may participate in a spectrum of normal and disease biology that are specific for mice.  相似文献   

11.
水稻所在的稻属(Oryza)共有24个左右的物种。由于野生稻含有大量的优良农艺性状基因, 在水稻遗传学研究中日益受到重视。随着国际稻属基因组计划的开展, 越来越多的稻属基因组序列被测定, 稻属成为进行比较、功能和进化基因组学研究的模式系统。近期开展的一系列研究对稻属不同基因组区段以及全基因组序列的比较分析, 揭示了稻属在基因组大小、基因移动、多倍体进化、常染色质到异染色质的转化以及着丝粒区域的进化等方面的分子机制。转座子的活性以及转座子因非均等重组或非法重组而造成的删除, 对稻属基因组的扩增和收缩具有重要作用。DNA双链断裂修复介导的基因移动, 特别是非同源末端连接, 是稻属基因组非共线性基因形成的主要来源。稻属基因组从常染色质到异染色质的转换过程, 伴随着转座子的大量扩增、基因片段的区段性和串联重复以及从基因组其他位置不断捕获异染色质基因。对稻属不同物种间基因拷贝数、特异基因和重要农艺性状基因的进化等研究, 可揭示稻属不同物种间表型和适应性差异的分子基础, 将加速水稻的育种和改良。  相似文献   

12.
Plants have substantially higher gene duplication rates compared with most other eukaryotes. These plant gene duplicates are mostly derived from whole genome and/or tandem duplications. Earlier studies have shown that a large number of duplicate genes are retained over a long evolutionary time, and there is a clear functional bias in retention. However, the influence of duplication mechanism, particularly tandem duplication, on duplicate retention has not been thoroughly investigated. We have defined orthologous groups (OGs) between Arabidopsis (Arabidopsis thaliana) and three other land plants to examine the functional bias of retained duplicate genes during vascular plant evolution. Based on analysis of Gene Ontology categories, it is clear that genes in OGs that expanded via tandem duplication tend to be involved in responses to environmental stimuli, while those that expanded via nontandem mechanisms tend to have intracellular regulatory roles. Using Arabidopsis stress expression data, we further demonstrated that tandem duplicates in expanded OGs are significantly enriched in genes that are up-regulated by biotic stress conditions. In addition, tandem duplication of genes in an OG tends to be highly asymmetric. That is, expansion of OGs with tandem genes in one organismal lineage tends to be coupled with losses in the other. This is consistent with the notion that these tandem genes have experienced lineage-specific selection. In contrast, OGs with genes duplicated via nontandem mechanisms tend to experience convergent expansion, in which similar numbers of genes are gained in parallel. Our study demonstrates that the expansion of gene families and the retention of duplicates in plants exhibit substantial functional biases that are strongly influenced by the mechanism of duplication. In particular, genes involved in stress responses have an elevated probability of retention in a single-lineage fashion following tandem duplication, suggesting that these tandem duplicates are likely important for adaptive evolution to rapidly changing environments.  相似文献   

13.
Retrotransposable elements (REs) and related sequences form a large proportion of conifer genomes. During genome evolution, some RE sequences are degraded or eliminated, but some are evolutionarily stable, and can be identified even in distantly related species. Use of genome sequence information from loblolly pine (Pinus taeda) enables investigation of divergent non-coding RE sequences in other pine and conifer species, including Scots pine (Pinus sylvestris). Non-specific inter-retrotransposon amplified polymorphism technique (IRAP) as well as the amplification polymorphism of 12 RE families were investigated in 80 gymnosperm species. The obtained results were compared with phylogenetic relationships among gymnosperms. Investigation of distantly related gymnosperm species reveals persistent RE sequences, such as IFG and Pineywoods, distributed among a wide range of plant lineages. RE sequence divergence was observed, reflecting periods of inactivity and degradation during speciation of pine lineages, as demonstrated by the delineation of the main pine subgenera. Intraspecific variation of 10 RE copy numbers (CN) between Scots pine individuals ranged from 8.9 to 26.6% of the overall mean estimates. CN analyses were performed in 16 additional gymnosperm species. The analysed pine species contained a similar complement of RE families; however, CN and genome occupation proportions differ. A decrease in RE CN estimates can reflect sequence divergence, associated with independent transposition events. Transposition of some REs can be induced by stress conditions; therefore, even distantly related species inhabiting extreme environments could have similar patterns or distribution of these elements.  相似文献   

14.
We present the genome sequences of a new clinical isolate of the important human pathogen, Aspergillus fumigatus, A1163, and two closely related but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of A1163 with the recently sequenced A. fumigatus isolate Af293 has identified core, variable and up to 2% unique genes in each genome. While the core genes are 99.8% identical at the nucleotide level, identity for variable genes can be as low 40%. The most divergent loci appear to contain heterokaryon incompatibility (het) genes associated with fungal programmed cell death such as developmental regulator rosA. Cross-species comparison has revealed that 8.5%, 13.5% and 12.6%, respectively, of A. fumigatus, N. fischeri and A. clavatus genes are species-specific. These genes are significantly smaller in size than core genes, contain fewer exons and exhibit a subtelomeric bias. Most of them cluster together in 13 chromosomal islands, which are enriched for pseudogenes, transposons and other repetitive elements. At least 20% of A. fumigatus-specific genes appear to be functional and involved in carbohydrate and chitin catabolism, transport, detoxification, secondary metabolism and other functions that may facilitate the adaptation to heterogeneous environments such as soil or a mammalian host. Contrary to what was suggested previously, their origin cannot be attributed to horizontal gene transfer (HGT), but instead is likely to involve duplication, diversification and differential gene loss (DDL). The role of duplication in the origin of lineage-specific genes is further underlined by the discovery of genomic islands that seem to function as designated "gene dumps" and, perhaps, simultaneously, as "gene factories".  相似文献   

15.
Poriferan mitochondrial DNA (mtDNA), especially large intergenic regions, is a target for the insertion of repetitive hairpin-forming elements. These elements are responsible for the large mt genome size differences observed even among closely related sponge taxa. In this study, we present the new, nearly complete, mt genome sequence of Ephydatia fluviatilis and compare it with previously published mt genomes of freshwater sponges. Special emphasis was placed on comparison with the closely related species Ephydatia muelleri, thereby comparing the only two species of the genus Ephydatia on the western Balkan Peninsula. In particular, we analyzed repetitive palindromic elements within the mitochondrial intergenic regions. The genomic distribution of these repetitive elements was analyzed and their potential role in the evolution of mt genomes discussed. We show here that palindromic elements are widespread through the whole mt genome, including the protein coding genes, thus introducing genetic variability into mt genomes.  相似文献   

16.
Comparison of primate genomic sequences has demonstrated that the intra-and interspecific genetic variation is provided by retroelements (REs). The human genome contains many thousands of polymorphic RE copies, which are regarded as a promising source of new generation molecular genetic markers. However, the absence of systematized data on the RE number, distribution, genomic context, and abundance in various human populations limits the use of RE insertion polymorphism. We designed the first bilingual (Russian/English) web resource on the known polymorphic REs discovered both by our team and other researchers. The database contains the information about the genomic location of each RE, its position relative to known and predicted genes, abundance in human populations, and other data. Our web portal () allows a search of the database with user-specified parameters. The database makes it possible to most comprehensively analyze the RE distribution in the human genome and to design molecular genetic markers for studies of human genome diversity and biomedical applications.  相似文献   

17.
Although plant genome sizes are extremely diverse, the mechanism underlying the expansion of huge genomes that did not experience whole‐genome duplication has not been elucidated. The pepper, Capsicum annuum, is an excellent model for studies of genome expansion due to its large genome size (2700 Mb) and the absence of whole genome duplication. As most of the pepper genome structure has been identified as constitutive heterochromatin, we investigated the evolution of this region in detail. Our findings show that the constitutive heterochromatin in pepper was actively expanded 20.0–7.5 million years ago through a massive accumulation of single‐type Ty3/Gypsy‐like elements that belong to the Del subgroup. Interestingly, derivatives of the Del elements, such as non‐autonomous long terminal repeat retrotransposons and long‐unit tandem repeats, played important roles in the expansion of constitutive heterochromatic regions. This expansion occurred not only in the existing heterochromatic regions but also into the euchromatic regions. Furthermore, our results revealed a repeat of unit length 18–24 kb. This repeat was found not only in the pepper genome but also in the other solanaceous species, such as potato and tomato. These results represent a characteristic mechanism for large genome evolution in plants.  相似文献   

18.
Cellular stresses activate the tumor suppressor p53 protein leading to selective binding to DNA response elements (REs) and gene transactivation from a large pool of potential p53 REs (p53REs). To elucidate how p53RE sequences and local chromatin context interact to affect p53 binding and gene transactivation, we mapped genome-wide binding localizations of p53 and H3K4me3 in untreated and doxorubicin (DXR)-treated human lymphoblastoid cells. We examined the relationships among p53 occupancy, gene expression, H3K4me3, chromatin accessibility (DNase 1 hypersensitivity, DHS), ENCODE chromatin states, p53RE sequence, and evolutionary conservation. We observed that the inducible expression of p53-regulated genes was associated with the steady-state chromatin status of the cell. Most highly inducible p53-regulated genes were suppressed at baseline and marked by repressive histone modifications or displayed CTCF binding. Comparison of p53RE sequences residing in different chromatin contexts demonstrated that weaker p53REs resided in open promoters, while stronger p53REs were located within enhancers and repressed chromatin. p53 occupancy was strongly correlated with similarity of the target DNA sequences to the p53RE consensus, but surprisingly, inversely correlated with pre-existing nucleosome accessibility (DHS) and evolutionary conservation at the p53RE. Occupancy by p53 of REs that overlapped transposable element (TE) repeats was significantly higher (p<10−7) and correlated with stronger p53RE sequences (p<10−110) relative to nonTE-associated p53REs, particularly for MLT1H, LTR10B, and Mer61 TEs. However, binding at these elements was generally not associated with transactivation of adjacent genes. Occupied p53REs located in L2-like TEs were unique in displaying highly negative PhyloP scores (predicted fast-evolving) and being associated with altered H3K4me3 and DHS levels. These results underscore the systematic interaction between chromatin status and p53RE context in the induced transactivation response. This p53 regulated response appears to have been tuned via evolutionary processes that may have led to repression and/or utilization of p53REs originating from primate-specific transposon elements.  相似文献   

19.
Kim WC  Lee KH  Shin KS  You RN  Lee YK  Cho K  Cho DH 《Genomics》2012,100(3):131-140
Genes occupy ~3% of the human and mouse genomes whereas repetitive elements (REs), whose biologic functions are largely uncharacterized, constitute greater than 50%. A heterogeneous population of RE arrays (arrangement structures) is formed by combinations of various REs in mammalian genomes. In this study, REMiner-II was refined from the original REMiner for a more efficient identification and configuration of RE arrays from large queries (e.g., human chromosomes) using an unbiased self-alignment protocol. Chromosome-wide RE array profiles for the entire sets of human and mouse chromosomes were obtained using REMiner-II on a personal computer. REMiner-II provides 10 adjustable parameters and three data output modes to accommodate different experimental settings and/or goals. Examination of the human and mouse chromosome data using the REMiner-II viewer revealed species-specific libraries of complexly organized RE arrays. In conclusion, REMiner-II is an efficient tool for chromosome-wide identification and characterization of RE arrays from mammalian genomes.  相似文献   

20.
The albumin gene family arose in a series of duplication events which gave rise to symmetry in its structure. The four genes are tandemly linked on human chromosome 4q in the order: 5'ALB-5'AFP-5'ALF-5'DBP-centromere, and their introns display a symmetrical and repetitive pattern that is shared by members of the gene family. These repetitive motifs provide an internal reference, allowing observations of evolutionary changes within a single line (human) of evolutionary descent. The four genes and three intergenic regions between them increase in size as they get closer to the centromere. An invasion by multiple repetitive DNA elements may account, in part, for this expansion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号