首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Identification and characterisation of imprinted genes in the mouse.   总被引:3,自引:0,他引:3  
Imprinted genes are expressed specifically from one or other parental allele. Over 70 are now known, and about one-half of these are expressed from the paternal allele and one-half from the maternal allele. Most imprinted genes are clustered within imprinting regions of the mouse genome, regions which are associated with abnormal phenotypes when inherited uniparentally. Imprinted genes have been identified from surveys based on differential expression or differential methylation according to parental origin, as well as analyses of candidate genes, mutants and imprinted gene clusters. Many imprinted genes affect growth and development, and more than 25 per cent determine non-coding RNAs that may have a function in controlling imprinted gene expression.  相似文献   

3.
Imprinted genes are expressed in a parent-of-origin manner by epigenetic modifications that silence either the paternal or maternal allele. They are widely expressed in fetal and placental tissues and are essential for normal placental development. In general, paternally expressed genes enhance feto-placental growth while maternally expressed genes limit conceptus growth, consistent with the hypothesis that imprinting evolved in response to the conflict between parental genomes in the allocation of maternal resources to fetal growth. Using targeted deletion, uniparental duplication, loss of imprinting and transgenic approaches, imprinted genes have been shown to determine the transport capacity of the definitive mouse placenta by regulating its growth, morphology and transporter abundance. Imprinted genes in the placenta are also responsive to environmental challenges and adapt placental phenotype to the prevailing nutritional conditions, in part, by varying their epigenetic status. In addition, interplay between placental and fetal imprinted genes is important in regulating resource partitioning via the placenta both developmentally and in response to environmental factors. By balancing the opposing parental drives on resource allocation with the environmental signals of nutrient availability, imprinted genes, like the Igf2-H19 locus, may act as nutrient sensors and optimise the fetal acquisition of nutrients for growth. These genes, therefore, have a major role in the epigenetic regulation of placental phenotype with long term consequences for the developmental programming of adult health and disease.  相似文献   

4.
曲卉  柳毅  陈雅文  汪晖 《遗传》2022,(2):107-116
印迹基因是由大约100个基因组成的一类特殊子集,主要以亲本单等位基因的方式表达,对胚胎的生长发育具有重要作用.近年来发现,环境因素所引起的印迹基因表观遗传修饰改变可造成胎儿多脏器发育不良甚至成年后多疾病易感,且存在多代遗传效应.本文基于国内外最新研究进展,总结了印迹基因表达改变对个体发育阶段以及生命后期器官功能的影响,...  相似文献   

5.
Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes   总被引:11,自引:0,他引:11  
We argue that phenotypic plasticity should be broadly construed to encompass a diversity of phenomena spanning several hierarchical levels of organization. Despite seemingly disparate outcomes among different groups of organisms (e.g., the opening/closing of stomata in leaves, adjustments of allocation to growth/reproduction, or the production of different castes in social insects), there are underlying shared processes that initiate these responses. At the most fundamental level, all plastic responses originate at the level of individual cells, which receive and process signals from their environment. The broad variations in physiology, morphology, behavior, etc., that can be produced by a single genotype, can be accounted for by processes regulating gene expression in response to environmental variation. Although evolution of adaptive plasticity may not be possible for some types of environmental signals, in many cases selection has molded responses to environmental variation that generate precise and repeatable patterns of gene expression. We highlight the example of responses of plants to variation in light quality and quantity, mediated via the phytochrome genes. Responses to changes in light at particular stages of plants' life cycles (e.g., seed germination, competition, reproduction) are controlled by different members of this gene family. The mechanistic details of the cell and molecular biology of phytochrome gene action (e.g., their effects on expression of other genes) is outlined. Plasticity of cells and organisms to internal and external environmental signals is pervasive, and represents not just an outcome of evolutionary processes, but also a potentially important molder of them. Phenotypes originally initiated via a plastic response, can be fixed through genetic assimilation as alternate regulatory pathways are shut off. Evolution of mechanisms of plasticity and canalization can both reduce genetic variation, as well as shield it. When the organism encounters novel environmental conditions, this shielded variation may be expressed, revealing hidden reaction norms that represent the raw material for subsequent evolution.  相似文献   

6.
L E Young 《Twin research》2001,4(5):307-317
Several common adult diseases appear to be related to impaired fetal growth and this may be caused either by nutritional inadequacies at particular stages of pregnancy or by variation in alleles at specific growth loci. Little is known about the genes involved in the underlying mechanism. This review proposes that at least some of the effects have their origins at imprinted loci, genes that are unusual because they are expressed from only one parental allele. Many imprinted genes are crucial for fetal growth and determine birthweight. They can be disrupted in the early embryo by environmental influences and these disruptions can be inherited through many cell cycles into adult tissues. Their disruption can affect specific organs during fetal development and disruption could affect adult disease in a variety of direct and indirect means. Imprinted genes may be particularly vulnerable to disruption as they are functionally haploid and their expression is regulated by different means from the rest of the genome. Thus many imprinted genes provide plausible candidates for programming adult disease and warrant further study in this context.  相似文献   

7.
Imprinted genes are commonly expressed in mammalian placentas and in plant seed endosperms, where they exhibit preferential uniparental allelic expression. In mammals, imprinted genes directly regulate placental function and nutrient distribution from mother to fetus; however, none of the >60 imprinted genes thus far reported in plants have been demonstrated to play an equivalent role in regulating the flow of resources to the embryo. Here we show that imprinted Maternally expressed gene1 (Meg1) in maize is both necessary and sufficient for the establishment and differentiation of the endosperm nutrient transfer cells located at the mother:seed interface. Consistent with these findings, Meg1 also regulates maternal nutrient uptake, sucrose partitioning, and seed biomass yield. In addition, we generated an imprinted and nonimprinted synthetic Meg1 ((syn)Meg1) dosage series whereby increased dosage and absence of imprinting both resulted in an unequal investment of maternal resources into the endosperm. These findings highlight dosage regulation by genomic imprinting as being critical for maintaining a balanced distribution of maternal nutrients to filial tissues in plants, as in mammals. However, unlike in mammals, Meg1 is a maternally expressed imprinted gene that surprisingly acts to promote rather than restrict nutrient allocation to the offspring.  相似文献   

8.
PHLDA2 is an imprinted gene in cattle   总被引:1,自引:0,他引:1  
Genomic imprinting is an epigenetic non-Mendelian phenomenon found predominantly in placental mammals. Imprinted genes display differential expression in the offspring depending on whether the gene is maternally or paternally inherited. Currently, some 100 imprinted genes have been reported in mammals, and while some of these genes are imprinted across most mammalian species, others have been shown to be imprinted in only a few species. The PHLDA2 gene that codes for a pleckstrin homology-like domain, family A (member 2), protein has to date been shown to be a maternally expressed imprinted gene in humans, mice and pigs. Genes subject to imprinting can have major effects on mammalian growth, development and disease. For instance, disruption of imprinted genes can lead to aberrant growth syndromes in cloned domestic mammals, and it has been demonstrated that PHLDA2 mRNA expression levels are aberrant in the placenta of somatic clones of cattle. In this study, we demonstrate that PHLDA2 is expressed across a range of cattle foetal tissues and stages and provide the first evidence that PHLDA2 is a monoallelically expressed imprinted gene in cattle foetal tissues, and also in the bovine placenta.  相似文献   

9.
Mechanisms of genomic imprinting   总被引:9,自引:0,他引:9       下载免费PDF全文
  相似文献   

10.
Imprinted inactivation of the paternal X chromosome in marsupials is the primordial mechanism of dosage compensation for X-linked genes between females and males in Therians. In Eutherian mammals, X chromosome inactivation (XCI) evolved into a random process in cells from the embryo proper, where either the maternal or paternal X can be inactivated. However, species like mouse and bovine maintained imprinted XCI exclusively in extraembryonic tissues. The existence of imprinted XCI in humans remains controversial, with studies based on the analyses of only one or two X-linked genes in different extraembryonic tissues. Here we readdress this issue in human term placenta by performing a robust analysis of allele-specific expression of 22 X-linked genes, including XIST, using 27 SNPs in transcribed regions. We show that XCI is random in human placenta, and that this organ is arranged in relatively large patches of cells with either maternal or paternal inactive X. In addition, this analysis indicated heterogeneous maintenance of gene silencing along the inactive X, which combined with the extensive mosaicism found in placenta, can explain the lack of agreement among previous studies. Our results illustrate the differences of XCI mechanism between humans and mice, and highlight the importance of addressing the issue of imprinted XCI in other species in order to understand the evolution of dosage compensation in placental mammals.  相似文献   

11.
Phenotypic plasticity refers to the ability of an organism to alter its physiology/morphology/behavior in response to changes in environmental conditions. Although encompassing various phenomena spanning multi-ple levels of organization, most plastic responses seem to take place by altering gene expression and eventually altering ontogenetic trajectory in response to environmental variation. Epigenetic modifications provide a plausi-ble link between the environment and alterations in gene expression, and the alterations in phenotype based on environmentally induced epigenetic modifications can be inherited transgenerationally. Even closely related species and populations with different genotypes may exhibit differences in the patterns and the extents of plastic responses, indicating the wide existence of plasticity genes which are independent of trait means and directly respond to environmental stimuli by triggering phenotypic changes. The ability of plasticity is not only able to affect the adaptive evolution of species significantly, but is also an outcome of evolutionary processes. Therefore, phenotypic plasticity is a potentially important molder of adaptation and evolution.  相似文献   

12.
哺乳动物印记基因的研究进展   总被引:1,自引:0,他引:1  
哺乳动物印记基因是指只表达亲本一方的遗传信息,而另一方处于关闭状态的一类基因。约80%的印记基因呈串出现在染色体上;在哺乳动物品种之间,印记基因具有较高的保守性;印记基因的复制通常表现为不同时性;一些印记基因具有印记遗传的时空性;少数印记基因只转录为mRNA而不翻译成蛋白质;印记基因的反意链通常表达,表达产生具有调节印记基因的作用。哺乳动物印记基因的调控序列的DNA甲基化、组蛋白乙酰酸化和组蛋白甲基化等引起其印记表达,其中DNA分子的甲基化是关键,它在生命周期中可被清除,也可被标记。印记基因之间的调控表达通常是相互作用的。克隆动物作为印记基因研究的实验动物模型,已获得许多有意义的研究结果。  相似文献   

13.
Mechanism of imprinting on mouse distal chromosome 7   总被引:3,自引:0,他引:3  
Genomic imprinting is an epigenetic mode of gene regulation that results in expression of the autosomal 'imprinted' genes from only a single allele, determined exclusively by parental origin. To date over 20 imprinted genes have been identified in mouse and man and these appear to lie in clusters in restricted regions on a subset of chromosomes. This may be a critical feature of imprinting suggesting a domain-type mode of regulation. Imprinted domains are replicated asynchronously, show sex-specific meiotic recombination frequencies and have CpG-rich regions that are differentially methylated, often associated with the imprinted genes themselves. Mouse distal chromosome 7 is one such domain, containing at least nine imprinted genes spanning over 1 Mb of DNA. For the maternally expressed p57Kip2 gene, passage through the female germline is essential to generate the active state, whereas passage through the male germline is needed to force the maternally expressed H19 gene into an inactive state. It is therefore possible that the mouse distal chromosome 7 imprinted domain is actually composed of two or more independently regulated subdomains.  相似文献   

14.
Genomic imprinting is essential for development and growth and plays diverse roles in physiology and behaviour. Imprinted genes have traditionally been studied in isolation or in clusters with respect to cis-acting modes of gene regulation, both from a mechanistic and evolutionary point of view. Recent studies in mammals, however, reveal that imprinted genes are often co-regulated and are part of a gene network involved in the control of cellular proliferation and differentiation. Moreover, a subset of imprinted genes acts in trans on the expression of other imprinted genes. Numerous studies have modulated levels of imprinted gene expression to explore phenotypic and gene regulatory consequences. Increasingly, the applied genome-wide approaches highlight how perturbation of one imprinted gene may affect other maternally or paternally expressed genes. Here, we discuss these novel findings and consider evolutionary theories that offer a rationale for such intricate interactions among imprinted genes. An evolutionary view of these trans-regulatory effects provides a novel interpretation of the logic of gene networks within species and has implications for the origin of reproductive isolation between species.  相似文献   

15.
16.
Competition--a common motif for the imprinting mechanism?   总被引:18,自引:1,他引:17       下载免费PDF全文
D P Barlow 《The EMBO journal》1997,16(23):6899-6905
  相似文献   

17.
Genomic imprinting is an epigenetic phenomenon whereby genetically identical alleles are differentially expressed dependent on their parent-of-origin. Genomic imprinting has independently evolved in flowering plants and mammals. In both organism classes, imprinting occurs in embryo-nourishing tissues, the placenta and the endosperm, respectively, and it has been proposed that imprinted genes regulate the transfer of nutrients to the developing progeny. Many imprinted genes are located in the vicinity of DNA-methylated transposon or repeat sequences, implying that transposon insertions are associated with the evolution of imprinted loci. The antagonistic action of DNA methylation and Polycomb group-mediated histone methylation seems important for the regulation of many imprinted plant genes, whereby the position of such epigenetic modifications can determine whether a gene will be mainly expressed from either the maternally or paternally inherited alleles. Furthermore, long non-coding RNAs seem to play an as yet underappreciated role for the regulation of imprinted plant genes. Imprinted expression of a number of genes is conserved between monocots and dicots, suggesting that long-term selection can maintain imprinted expression at some loci.  相似文献   

18.
Imprinted genes are differentially expressed from the maternally and paternally inherited alleles. Accordingly, inheritance of both copies of an imprinted chromosome or region from a single parent leads to the mis-expression of the imprinted genes present in the selected region. Strains of mice with reciprocal and Robertsonian chromosomal translocations or mice with engineered chromosomal rearrangements can be used to produce progeny where both copies of a chromosomal region are inherited from one parent. In combination with systematic differential expression and methylation-based approaches, these mice can be used to identify novel imprinted genes. Advances in genome sequencing and computer-based technologies have facilitated this approach to finding imprinted genes.  相似文献   

19.
Developmental bias toward particular evolutionary trajectories can be facilitated through symbiosis. Organisms are holobionts, consisting of zygote‐derived cells and a consortia of microbes, and the development, physiology, and immunity of animals are properties of complex interactions between the zygote‐derived cells and microbial symbionts. Such symbionts can be agents of developmental plasticity, allowing an organism to develop in particular directions. This plasticity can lead to genetic assimilation either through the incorporation of microbial genes into host genomes or through the direct maternal transmission of the microbes. Such plasticity can lead to niche construction, enabling the microbes to remodel host anatomy and/or physiology. In this article, I will focus on the ability of symbionts to bias development toward the evolution of herbivory. I will posit that the behavioral and morphological manifestations of herbivorous phenotypes must be preceded by the successful establishment of a community of symbiotic microbes that can digest cell walls and detoxify plant poisons. The ability of holobionts to digest plant materials can range from being a plastic trait, dependent on the transient incorporation of environmental microbes, to becoming a heritable trait of the holobiont organism, transmitted through the maternal propagation of symbionts or their genes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号