首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Homologues of Gpi8p, Gaa1p, Gpi16p, Gpi17p, and Cdc91p are essential components of the GPI transamidase complex that adds glycosylphosphatidylinositols (GPIs 1) to newly synthesized proteins in the ER. In mammalian cells, these five subunits remain stably associated with each other in detergent. In yeast, we find no stable stoichiometric association of Gpi17p with the Gpi8p-Gpi16p-Gaa1p core in detergent extracts. Random and site-directed mutagenesis generated mutations in several highly conserved amino acids but did not yield nonfunctional alleles of Gpi17p and a saturating screen did not yield any dominant negative alleles of Gpi17p. Moreover, Gpi8p becomes unstable when any one of the other subunits is depleted, whereas Gpi17p is slightly affected only by the depletion of Gaa1p. These data suggest that yeast Gpi17p may be able to exert its GPI anchoring function without interacting in a stable and continuous manner with the other GPI-transamidase subunits. Shutting down ER-associated and vacuolar protein degradation pathways has no effect on the levels of Gpi17p or other transamidase subunits.  相似文献   

2.
Biosynthesis of glycosylphosphatidylinositol (GPI)-anchored proteins involves the action of a GPI trans-amidase, which replaces the C-terminal GPI signal sequence (GPI-SS) of the primary translation product with a preformed GPI lipid. The transamidation depends on a complex of four proteins, Gaa1p, Gpi8p, Gpi16p and Gpi17p. Although the GPI anchoring pathway is conserved throughout the eukaryotic kingdom, it has been reported recently that the GPI-SS of human placental alkaline phosphatase (hPLAP) is not recognized by the yeast transamidase, but is recognized in yeast that contain the human Gpi8p homologue. This finding suggests that Gpi8p is intimately involved in the recognition of GPI precursor proteins and may also be responsible for the subtle taxon-specific differences in transamidase specificity that sometimes prevent the efficient GPI anchoring of heterologously expressed GPI proteins. Here, we confirm that the GPI signal sequence of hPLAP is indeed not recognized by the yeast GPI-anchoring machinery. However, in our hands, GPI attachment cannot be restored by the co-expression of human Gpi8p in yeast cells under any circumstances.  相似文献   

3.
Many eukaryotic cell surface proteins are anchored to the membrane via glycosylphosphatidylinositol (GPI). The GPI is attached to proteins that have a GPI attachment signal peptide at the carboxyl terminus. The GPI attachment signal peptide is replaced by a preassembled GPI in the endoplasmic reticulum by a transamidation reaction through the formation of a carbonyl intermediate. GPI transamidase is a key enzyme of this posttranslational modification. Here we report that Gaa1p and Gpi8p are components of a GPI transamidase. To determine a role of Gaa1p we disrupted a GAA1/GPAA1 gene in mouse F9 cells by homologous recombination. GAA1 knockout cells were defective in the formation of carbonyl intermediates between precursor proteins and transamidase as determined by an in vitro GPI-anchoring assay. We also show that cysteine and histidine residues of Gpi8p, which are conserved in members of a cysteine protease family, are essential for generation of a carbonyl intermediate. This result suggests that Gpi8p is a catalytic component that cleaves the GPI attachment signal peptide. Moreover, Gaa1p and Gpi8p are associated with each other. Therefore, Gaa1p and Gpi8p constitute a GPI transamidase and cooperate in generating a carbonyl intermediate, a prerequisite for GPI attachment.  相似文献   

4.
The essential GAB1 gene, which encodes an endoplasmic reticulum (ER)-membrane protein, was identified in a screen for mutants defective in cellular morphogenesis. A temperature-sensitive gab1 mutant accumulates complete glycosylphosphatidylinositol (GPI) precursors, and its temperature sensitivity is suppressed differentially by overexpression of different subunits of the GPI transamidase, from strong suppression by Gpi8p and Gpi17p, to weak suppression by Gaa1p, and to no suppression by Gpi16p. In addition, both Gab1p and Gpi17p localize to the ER and are in the same protein complex in vivo. These findings suggest that Gab1p is a subunit of the GPI transamidase with distinct relationships to other subunits in the same complex. We also show that depletion of Gab1p or Gpi8p, but not Gpi17p, Gpi16p, or Gaa1p causes accumulation of cofilin-decorated actin bars that are closely associated with the perinuclear ER, which highlights a functional interaction between the ER network and the actin cytoskeleton.  相似文献   

5.
Glycosylphosphatidylinositol (GPI) anchors are attached to newly synthesized proteins in the ER by a transamidation reaction during which a C-terminal GPI attachment signal is replaced by a preformed GPI precursor lipid. This reaction depends on GAA1 and GPI8, the latter belonging to a novel cysteine protease family. Homologies between this family and other Cys proteinases, such as caspases, pointed to Cys199 and His157 as potential active site residues. Indeed, gpi8 alleles mutated at Cys199 or His157 are nonfunctional, i.e., they are unable to suppress the lethality of Deltagpi8 mutants. The overexpression of these nonfunctional alleles in wild-type cells leads to the accumulation of the free GPI precursor lipid CP2, delays the maturation of the GPI protein Gas1p, and arrests cell growth. The dominant negative effect of the Cys199 mutant cannot be overcome by the simultaneous overexpression of Gaa1p. Most GPI8 alleles mutated in other conserved regions of the protein can complement the growth defect of Deltagpi8, but nevertheless accumulate CP2. CP2 accumulation, a delay in Gas1p maturation and a slowing of cell growth can also be observed when Gpi8p is depleted to 50% of its normal level in wild-type cells. The dominant negative effect of nonfunctional and partially functional mutant alleles can best be explained by assuming that Gpi8p works as part of a homo- or heteropolymeric complex.  相似文献   

6.
Glycosylphosphatidylinositol (GPI)-anchored proteins are synthesized as precursor proteins that are processed in the endoplasmic reticulum by GPI transamidase (GPIT). Human GPIT is a multisubunit membrane-bound protein complex consisting of Gaa1, Gpi8, phosphatidylinositol glycan (PIG)-S, PIG-T, and PIG-U. The enzyme recognizes a C-terminal signal sequence in the proprotein and replaces it with a preformed GPI lipid. The nature of the functional interaction of the GPIT subunits with each other and with the proprotein and GPI substrates is largely unknown. We recently analyzed the GPIT subunit Gaa1, a polytopic protein with seven transmembrane (TM) spans, to identify sequence determinants in the protein that are required for its interaction with other subunits and for function (Vainauskas, S., Maeda, Y., Kurniawan, H., Kinoshita, T., and Menon, A. K. (2002) J. Biol. Chem. 277, 30535-30542). We showed that elimination of the C-terminal TM segment of Gaa1 allows the protein to interact with Gpi8, PIG-S, and PIG-T but renders the resulting GPIT complex nonfunctional. We now show that GPIT complexes containing C-terminally truncated Gaa1 possess a full complement of subunits and are able to interact with a proprotein substrate but cannot co-immunoprecipitate GPI. We go on to show that mutation of a conserved proline residue centrally located within the C-terminal TM span of Gaa1 is sufficient to abrogate the ability of the resulting GPIT complex to co-immunoprecipitate GPI. We suggest that the putative dynamic hinge created by the proline residue provides a structural basis for the interaction of GPI with GPIT.  相似文献   

7.
Assembly of glycosylphosphatidylinositol (GPtdIns)-anchored proteins requires translocation of the nascent polypeptide chain across the endoplasmic reticulum (ER) membrane and replacement of the C-terminal signal sequence with a GPtdIns moiety. The anchoring reaction is carried out by an ER enzyme, GPtdIns transamidase. Genetic studies with yeast indicate that the transamidase consists of a dynamic complex of at least two subunits, Gaa1p and Gpi8p. To study the GPtdIns-anchoring reaction, we used a small reporter protein that becomes GPtdIns-anchored when the corresponding mRNA is translated in the presence of microsomes, in conjunction with site-specific photocrosslinking to identify ER membrane components that are proximal to the reporter during its conversion to a GPtdIns-anchored protein. We generated variants of the reporter protein such that upon in vitro translation in the presence of Nepsilon-(5-azido-2-nitrobenzoyl)-lysyl-tRNA, photoreactive lysine residues would be incorporated in the protein specifically near the GPtdIns-attachment site. We analyzed photoadducts resulting from UV irradiation of the samples. We show that proproteins can be crosslinked to the transamidase subunit Gpi8p, as well as to ER proteins of molecular mass approximately 60 kDa, approximately 70 kDa, and approximately 120 kDa. The identification of a photoadduct between a proprotein and Gpi8p provides the first direct evidence of an interaction between a proprotein substrate and one of the genetically identified transamidase subunits. The approximately 70-kDa protein that we identified may correspond to the other subunit Gaa1p, while the other proteins possibly represent additional, hitherto unidentified subunits of the mammalian GPtdIns transamidase complex.  相似文献   

8.
For characterizing how the glycosylphosphatidylinositol (GPI) transamidase complex functions, we exploited a two-step miniPLAP (placental alkaline phosphatase) in vitro translation system. With this system, rough microsomal membranes (RM) containing either [(35)S]-labeled Gaa1p or epitope-tagged Gpi8p, alternative components of the enzymatic complex, were first prepared. In a second translation, unmodified or mutant miniPLAP mRNA was used such that [(35)S]-labeled native or variant miniPLAP nascent protein was introduced. Following this, the RM were solubilized and anti-PLAP or anti-epitope immunoprecipitates were analyzed. With transamidase competent HeLa cell RM, anti-PLAP or anti-epitope antibody coprecipitated both Gaa1p and Gpi8p consistent with the assembly of the proprotein into a Gaa1p:Gpi8p-containing complex. When RM from K562 mutant K cells which lack Gpi8p were used, anti-PLAP antibody coprecipitated Gaa1p. The proprotein coprecipitation of Gaa1p increased with a nonpermissive GPI anchor addition (omega) site. In contrast, if a miniPLAP mutant devoid of its C-terminal signal was used, no coprecipitation occurred. During the transamidation reaction, a transient high Mr band forms. To definitively characterize this product, RM from K cells transfected with FLAG-tagged GPI8 were employed. Western blots of anti-FLAG bead isolates of solubilized RM from the cells showed that the high Mr band corresponded to Gpi8p covalently bound to miniPLAP. Loss of the band following hydrazinolysis demonstrated that the two components were associated in a thioester linkage. The data indicate that recognition of the proprotein involves Gaa1p, that the interaction with the complex does not depend on a permissive omega site, and that Gpi8p forms a thioester intermediate with the proprotein. The method could be useful for rapid analysis of nascent protein interactions with transamidase components, and possibly for helping to prepare a functional in vitro transamidase system.  相似文献   

9.
Glycosylphosphatidylinositol (GPI)-anchored proteins are synthesized on membrane-bound ribosomes, translocated across the endoplasmic reticulum membrane, and GPI-anchored by GPI transamidase (GPIT). GPIT is a minimally heterotetrameric membrane protein complex composed of Gaa1, Gpi8, PIG-S and PIG-T. We describe structure-function analyses of Gaa1, the most hydrophobic of the GPIT subunits, with the aim of assigning a functional role to the different sequence domains of the protein. We generated epitope-tagged Gaa1 mutants and analyzed their membrane topology, subcellular distribution, complex-forming capability, and ability to restore GPIT activity in Gaa1-deficient cells. We show that (i) detergent-extracted, Gaa1-containing GPIT complexes sediment unexpectedly rapidly at approximately 17 S, (ii) Gaa1 is an endoplasmic reticulum-localized membrane glycoprotein with a cytoplasmically oriented N terminus and a lumenally oriented C terminus, (iii) elimination of C-terminal transmembrane segments allows Gaa1 to interact with other GPIT subunits but renders the resulting GPIT complex nonfunctional, (iv) interaction between Gaa1 and other GPIT subunits occurs via the large lumenal domain of Gaa1 located between the first and second transmembrane segments, and (v) the cytoplasmic N terminus of Gaa1 is not required for formation of a functional GPIT complex but may act as a membrane-sorting determinant directing Gaa1 and associated GPIT subunits to an endoplasmic reticulum membrane domain.  相似文献   

10.
Ohishi K  Inoue N  Kinoshita T 《The EMBO journal》2001,20(15):4088-4098
Many eukaryotic cell surface proteins are anchored to the plasma membrane via glycosylphosphatidylinositol (GPI). The GPI transamidase mediates GPI anchoring in the endoplasmic reticulum, by replacing a protein's C-terminal GPI attachment signal peptide with a pre-assembled GPI. During this transamidation reaction, the GPI transamidase forms a carbonyl intermediate with a substrate protein. It was known that the GPI transamidase is a complex containing GAA1 and GPI8. Here, we report two new components of this enzyme: PIG-S and PIG-T. To determine roles for PIG-S and PIG-T, we disrupted these genes in mouse F9 cells by homologous recombination. PIG-S and PIG-T knockout cells were defective in transfer of GPI to proteins, particularly in formation of the carbonyl intermediates. We also demonstrate that PIG-S and PIG-T form a protein complex with GAA1 and GPI8, and that PIG-T maintains the complex by stabilizing the expression of GAA1 and GPI8. Saccharomyces cerevisiae Gpi16p (YHR188C) and Gpi17p (YDR434W) are orthologues of PIG-T and PIG-S, respectively.  相似文献   

11.
Anchoring of proteins to membranes by glycosylphosphatidylinositols (GPIs) is ubiquitous among all eukaryotes and heavily used by parasitic protozoa. GPI is synthesized and transferred en bloc to form GPI- anchored proteins. The key enzyme in this process is a putative GPI:protein transamidase that would cleave a peptide bond near the COOH terminus of the protein and attach the GPI by an amide linkage. We have identified a gene, GAA1, encoding an essential ER protein required for GPI anchoring. gaal mutant cells synthesize the complete GPI anchor precursor at nonpermissive temperatures, but do not attach it to proteins. Overexpression of GAA1 improves the ability of cells to attach anchors to a GPI-anchored protein with a mutant anchor attachment site. Therefore, Gaa1p is required for a terminal step of GPI anchor attachment and could be part of the putative GPI:protein transamidase.  相似文献   

12.
Eukaryotic proteins can be post-translationally modified with a glycosylphosphatidylinositol (GPI) membrane anchor. This modification reaction is catalyzed by GPI transamidase (GPI-T), a multimeric, membrane-bound enzyme. Gpi8p, an essential component of GPI-T, shares low sequence similarity with caspases and contains all or part of the enzyme's active site [U. Meyer, M. Benghezal, I. Imhof, A. Conzelmann, Biochemistry 39 (2000) 3461-3471]. Structural predictions suggest that the soluble portion of Gpi8p is divided into two domains: a caspase-like domain that contains the active site machinery and a second, smaller domain of unknown function. Based on these predictions, we evaluated a soluble truncation of Gpi8p (Gpi8(23-306)). Dimerization was investigated due to the known proclivity of caspases to homodimerize; a Gpi8(23-306) homodimer was detected by native gel and confirmed by mass spectrometry and N-terminal sequencing. Mutations at the putative caspase-like dimerization interface disrupted dimer formation. When combined, these results demonstrate an organizational similarity between Gpi8p and caspases.  相似文献   

13.
Yeast Gpi8p is essential for GPI anchor attachment onto proteins.   总被引:17,自引:2,他引:15       下载免费PDF全文
Glycosylphosphatidylinositol (GPI) anchors are added onto newly synthesized proteins in the ER. Thereby a putative transamidase removes a C-terminal peptide and attaches the truncated protein to the free amino group of the preformed GPI. The yeast mutant gpi8-1 is deficient in this addition of GPIs to proteins. GPI8 encodes for an essential 47 kDa type I membrane glycoprotein residing on the luminal side of the ER membrane. GPI8 shows significant homology to a novel family of vacuolar plant endopeptidases one of which is supposed to catalyse a transamidation step in the maturation of concanavalin A and acts as a transamidase in vitro. Humans have a gene which is highly homologous to GPI8 and can functionally replace it.  相似文献   

14.
After integration into the endoplasmic reticulum (ER) membrane, ER-resident membrane proteins must be segregated from proteins that are exported to post-ER compartments. Here we analyze how human Gaa1 and PIG-T, two of the five subunits of the ER-localized glycosylphosphatidylinositol transamidase complex, are retained in the ER. Neither protein contains a known ER localization signal. Gaa1 is a polytopic membrane glycoprotein with a cytoplasmic N terminus and a large luminal loop between its first two transmembrane spans; PIG-T is a type I membrane glycoprotein. To simplify our analyses, we studied Gaa1 and PIG-T constructs that could not interact with other subunits of the transamidase. We now show that Gaa1(282), a truncated protein consisting of the first TM domain and luminal loop of Gaa1, is correctly oriented, N-glycosylated, and ER-localized. Removal of a potential ER localization signal in the form of a triple arginine cluster near the N terminus of Gaa1 or Gaa1(282) had no effect on ER localization. Fusion proteins consisting of different elements of Gaa1(282) appended to alpha2,6-sialyltransferase or transferrin receptor could exit the ER, indicating that Gaa1(282), and by implication Gaa1, does not contain any dominant ER-sorting determinants. The data suggest that Gaa1 is passively retained in the ER by a signalless mechanism. In contrast, similar analyses of PIG-T revealed that it is ER-localized because of information in its transmembrane span; fusion of the PIG-T transmembrane span to Tac antigen, a plasma membrane-localized protein, caused the fusion protein to remain in the ER. These data are discussed in the context of models that have been proposed to account for retention of ER membrane proteins.  相似文献   

15.
Glycosylphosphatidylinositols (GPIs) are critical for membrane anchoring and intracellular transport of certain secretory proteins. GPIs have a conserved trimannosyl core bearing a phosphoethanolamine (EthN-P) moiety on the third mannose (Man-3) through which the glycolipid is linked to protein, but diverse GPI precursors with EthN-Ps on Man-1 and Man-2 have also been described. We report on two essential yeast genes whose products are required late in GPI assembly. GPI11 (YDR302w) encodes a homologue of human Pig-Fp, a protein implicated in the addition of EthN-P to Man-3. PIG-F complements the gpi11 deletion, but the rescued haploids are temperature sensitive. Abolition of Gpi11p or Pig-Fp function in GPI11 disruptants blocks GPI anchoring and formation of complete GPI precursors and leads to accumulation of two GPIs whose glycan head groups contain four mannoses but differ in the positioning and number of side chains, probably EthN-Ps. The less polar GPI bears EthN-P on Man-2, whereas the more polar lipid has EthN-P on Man-3. The latter finding indicates that Gpi11p is not required for adding EthN-P to Man-3. Gpi13p (YLL031cp), a member of a family of phosphoryltransferases, is a candidate for the enzyme responsible for adding EthN-P to Man-3. Depletion of Gpi13p in a Gpi11p-defective strain prevents formation of the GPI bearing EthN-P on Man-3, and Gpi13p-deficient strains accumulate a Man(4)-GPI isoform that bears EthN-P on Man-1. We further show that the lipid accumulation phenotype of Gpi11p-deficient cells resembles that of cells lacking Gpi7p, a sequence homologue of Gpi13p known to add EthN-P to Man-2 of a late-stage GPI precursor. This result suggests that in yeast a Gpi11p-deficiency can affect EthN-P addition to Man-2 by Gpi7p, in contrast to the Pig-Fp defect in mammalian cells, which prevents EthN-P addition to Man-3. Because Gpi11p and Pig-Fp affect EthN-P transfer to Man-2 and Man-3, respectively, these proteins may act in partnership with the GPI-EthN-P transferases, although their involvement in a given EthN-P transfer reaction varies between species. Possible roles for Gpi11p in the supply of the EthN-P donor are discussed. Because Gpi11p- and Gpi13p-deficient cells accumulate isoforms of Man(4)-GPIs with EthN-P on Man-2 and on Man-1, respectively, and because the GPIs that accumulate in Gpi11p-defective strains are likely to have been generated independently of one another, we propose that the yeast GPI assembly pathway is branched.  相似文献   

16.
Many eukaryotic proteins are anchored to the cell surface via glycosylphosphatidylinositol (GPI), which is posttranslationally attached to the carboxyl-terminus by GPI transamidase. The mammalian GPI transamidase is a complex of at least four subunits, GPI8, GAA1, PIG-S, and PIG-T. Here, we report Chinese hamster ovary cells representing a new complementation group of GPI-anchored protein-deficient mutants, class U. The class U cells accumulated mature and immature GPI and did not have in vitro GPI transamidase activity. We cloned the gene responsible, termed PIG-U, that encoded a 435-amino-acid hydrophobic protein. The GPI transamidase complex affinity-purified from cells expressing epitope-tagged-GPI8 contained PIG-U and four other known components. Cells lacking PIG-U formed complexes of the four other components normally but had no ability to cleave the GPI attachment signal peptide. Saccharomyces cerevisiae Cdc91p, with 28% amino acid identity to PIG-U, partially restored GPI-anchored proteins on the surface of class U cells. PIG-U and Cdc91p have a functionally important short region with similarity to a region conserved in long-chain fatty acid elongases. Taken together, PIG-U and the yeast orthologue Cdc91p are the fifth component of GPI transamidase that may be involved in the recognition of either the GPI attachment signal or the lipid portion of GPI.  相似文献   

17.
Glycosylphosphatidylinositol (GPI) is widely used by eukaryotic cell surface proteins for membrane attachment. De novo synthesized GPI precursors are attached to proteins post-translationally by the enzyme complex, GPI transamidase. TbGPI16, a component of the trypanosome transamidase, shares similarity with human PIG-T. Here, we show that TbGPI16 is the orthologue of PIG-T and an essential component of GPI transamidase by creating a TbGPI16 knockout. TbGPI16 forms a disulfide-linked complex with TbGPI8. A cysteine to serine mutant of TbGPI16 was unable to fully restore the surface expression of GPI-anchored proteins upon transfection into the knockout cells, indicating that its disulfide linkage with TbGPI8 is important for the full transamidase activity.  相似文献   

18.
Many eukaryotic proteins are tethered to the plasma membrane via glycosylphosphatidylinositol (GPI). GPI transamidase is localized in the endoplasmic reticulum and mediates post-translational transfer of preformed GPI to proteins bearing a carboxyl-terminal GPI attachment signal. Mammalian GPI transamidase is a multimeric complex consisting of at least five subunits. Here we report that two subunits of mammalian GPI transamidase, GPI8 and PIG-T, form a functionally important disulfide bond between conserved cysteine residues. GPI8 and PIG-T mutants in which relevant cysteines were replaced with serines were unable to fully restore the surface expression of GPI-anchored proteins upon transfection into their respective mutant cells. Microsomal membranes of these transfectants had markedly decreased activities in an in vitro transamidase assay. The formation of this disulfide bond is not essential but required for full transamidase activity. Antibodies against GPI8 and PIG-T revealed that endogenous as well as exogenous proteins formed a disulfide bond. Furthermore trypanosome GPI8 forms a similar intermolecular disulfide bond via its conserved cysteine residue, suggesting that the trypanosome GPI transamidase is also a multimeric complex likely containing the orthologue of PIG-T. We also demonstrate that an inactive human GPI transamidase complex that consists of non-functional GPI8 and four other components was co-purified with the proform of substrate proteins, indicating that these five components are sufficient to hold the substrate proteins.  相似文献   

19.
The GPI (glycosylphosphatidylinositol) transamidase complex catalyses the attachment of GPI anchors to eukaryotic proteins in the lumen of ER (endoplasmic reticulum). The Saccharomyces cerevisiae GPI transamidase complex consists of the subunits yPIG-K (Gpi8p), yPIG-S (Gpi17p), yPIG-T (Gpi16p), yPIG-U (CDC91/GAB1) and yGPAA1. We present the production of the two recombinant proteins yGPAA170–247 and yGPAA170–339 of the luminal domain of S. cerevisiae GPAA1, covering the amino acids 70–247 and 70–339 respectively. The secondary structural content of the stable and monodisperse yGPAA170–247 has been determined to be 28% α-helix and 27% β-sheet. SAXS (small-angle X-ray scattering) data showed that yGPAA170–247 has an Rg (radius of gyration) of 2.72±0.025 nm and Dmax (maximum dimension) of 9.14 nm. These data enabled the determination of the two domain low-resolution solution structure of yGPAA170–247. The large elliptical shape of yGPAA170–247 is connected via a short stalk to the smaller hook-like domain of 0.8 nm in length and 3.5 nm in width. The topological arrangement of yGPAA170–247 will be discussed together with the recently determined low-resolution structures of yPIG-K24–337 and yPIG-S38–467 from S. cerevisiae in the GPI transamidase complex.  相似文献   

20.
The addition of glycosylphosphatidylinositol (GPI) anchors to proteins occurs by a transamidase-catalyzed reaction mechanism soon after completion of polypeptide synthesis and translocation. We show that placental alkaline phosphatase becomes efficiently GPI-anchored when translated in the presence of semipermeabilized K562 cells but is not GPI-anchored in cell lines defective in the transamidase subunit hGpi8p. By studying the synthesis of placental alkaline phosphatase, we demonstrate that folding of the protein is not influenced by the addition of a GPI anchor and conversely that GPI anchor addition does not require protein folding. These results demonstrate that folding of the ectodomain and GPI addition are two distinct processes and can be mutually exclusive. When GPI addition is prevented, either by synthesis of the protein in the presence of cell lines defective in GPI addition or by mutation of the GPI carboxyl-terminal signal sequence cleavage site, the substrate forms a prolonged association with the transamidase subunit hGpi8p. The ability of the transamidase to recognize and associate with GPI anchor signal sequences provides an explanation for the retention of GPI-anchored protein within the ER in the absence of GPI anchor addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号