首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Apparent alteration in properties of arl mutants of Escherichia coli   总被引:1,自引:0,他引:1  
The published properties of lambda phages grown in Escherichia coli arl mutants, and plasmids maintained in them, included increased homologous recombination, decreased DNA-cytosine methylation, and increased sensitivity of DNA to nuclease S1. Some of these properties now appear altered; others remain approximately as published.  相似文献   

2.
In Escherichia coli, cytosine DNA methylation is catalyzed by the DNA cytosine methyltransferase (Dcm) protein and occurs at the second cytosine in the sequence 5'CCWGG3'. Although the presence of cytosine DNA methylation was reported over 35?years ago, the biological role of 5-methylcytosine in E.?coli remains unclear. To gain insight into the role of cytosine DNA methylation in E.?coli, we (1) screened the 72 strains of the ECOR collection and 90 recently isolated environmental samples for the presence of the full-length dcm gene using the polymerase chain reaction; (2) examined the same strains for the presence of 5-methylcytosine at 5'CCWGG3' sites using a restriction enzyme isoschizomer digestion assay; and (3) quantified the levels of 5-methyl-2'-deoxycytidine in selected strains using liquid chromatography tandem mass spectrometry. Dcm-mediated cytosine DNA methylation is conserved in all 162 strains examined, and the level of 5-methylcytosine ranges from 0.86% to 1.30% of the cytosines. We also demonstrate that Dcm reduces the expression of ribosomal protein genes during stationary phase, and this may explain the highly conserved nature of this DNA modification pathway.  相似文献   

3.
Survival and induction of the SOS system by 5-azacytidine, an analog of cytidine, were studied in Escherichia coli K-12. This compound did not produce any effect on the viability of dcm and dam dcm mutants. Furthermore, recA430 and lexA1 strains (both mutations interfere with LexA repressor cleavage but not recombination proficiency) were more resistant than the wild-type strain of E. coli K-12. In contrast, recBC and recA13 mutants were more sensitive to 5-azacytidine than the wild type. Transient exposure of E. coli to 5-azacytidine for 60 min induced both recA-dependent inhibition of cell division and induction of lambda prophage in Dcm+ strains but not in Dcm- mutants. Expression of both functions was dependent on recBC exonuclease. On the other hand, 5-azacytidine was unable to trigger the induction of umuCD and mucB genes and no amplification of RecA protein synthesis in either Dcm+ or Dcm- strains was observed. These last results are in agreement with previously reported data suggesting that there is a discrimination in the expression of the several SOS functions and that some SOS genes may be induced without amplification of RecA protein synthesis.  相似文献   

4.
Mismatch repair of deaminated 5-methyl-cytosine   总被引:19,自引:0,他引:19  
Deamination of 5-methyl-cytosine in double-stranded DNA produces a G-T mismatch. Heteroduplexes of bacteriophage lambda DNA containing a G-T mismatch at the site of a G-5-meC base-pair in one of the parental phages were constructed and used to transfect Escherichia coli cells. Genetic analysis of the progeny phages derived from such heteroduplexes suggests that, in E. coli, mismatches resulting from the deamination of 5-methyl-cytosine are repaired by a system requiring the E. coli dcm methylase and some, but not all, of the functions of the E. coli methyl-directed mismatch repair system. The repair appears to act only on the G-T mismatch and acts specifically to restore the cytosine methylation sequence.  相似文献   

5.
A Sohail  M Lieb  M Dar    A S Bhagwat 《Journal of bacteriology》1990,172(8):4214-4221
Deamination of 5-methylcytosine in DNA results in T/G mismatches. If unrepaired, these mismatches can lead to C-to-T transition mutations. The very short patch (VSP) repair process in Escherichia coli counteracts the mutagenic process by repairing the mismatches in favor of the G-containing strand. Previously we have shown that a plasmid containing an 11-kilobase fragment from the E. coli chromosome can complement a chromosomal mutation defective in both cytosine methylation and VSP repair. We have now mapped the regions essential for the two phenotypes. In the process, we have constructed plasmids that complement the chromosomal mutation for methylation, but not for repair, and vice versa. The genes responsible for these phenotypes have been identified by DNA sequence analysis. The gene essential for cytosine methylation, dcm, is predicted to code for a 473-amino-acid protein and is not required for VSP repair. It is similar to other DNA cytosine methylases and shares extensive sequence similarity with its isoschizomer, EcoRII methylase. The segment of DNA essential for VSP repair contains a gene that should code for a 156-amino-acid protein. This gene, named vsr, is not essential for DNA methylation. Remarkably, the 5' end of this gene appears to overlap the 3' end of dcm. The two genes appear to be transcribed from a common promoter but are in different translational registers. This gene arrangement may assure that Vsr is produced along with Dcm and may minimize the mutagenic effects of cytosine methylation.  相似文献   

6.
Two novel phenotypes previously associated with arl mutations of Escherichia coli, increased frequencies of genetic recombination and unusual sensitivity of DNA to the single-strand-specific nuclease S1, have been defined most completely by the properties of λ bacteriophages grown on arl bacteria (Arl? phages). We now find that plasmids maintained in arl mutants (Arl? plasmids) exhibit elevated recombination frequencies, unusual sensitivity to nuclease S1 (in a limited number of regions) and a new Arl phenotype, partially deficient methylation of the inner cytosine at C-C-(A/T)-G-G sequences.A variety of Arl? plasmids (all pBR322 derivatives) show elevated recombination (4 to 10-fold) by three different assays (frequencies of homomultimers and of heteromultimers, efficiency of intramolecular recombination). Plasmids from arl bacteria (after conversion to linear form) are nicked by nuclease S1 about 0.7 times per duplex; Arl+ plasmids are nuclease S1-resistant. Restriction endonuclease EcoRII (recognition sequence, C-C-(A/T)-G-G) cuts Arl? plasmid DNA more readily than Arl+ DNA, but Arl? plasmids are still more EcoRII-resistant than Dcm? plasmids (from E. coli dcm mutants, which lack the chromosomal cytosine methylase; recognition sequence, also C-C-(A/T)-G-G). By chromatographic analyses, Arl? plasmid DNA contains less 5-methylcytosine than Arl+ (0.07% versus 0.15%). although the 6-methyladenine content is the same (0.5mol%).  相似文献   

7.
M Lieb 《Journal of bacteriology》1987,169(11):5241-5246
Certain amber mutations in the cI gene of bacteriophage lambda appear to recombine very frequently with nearby mutations. The aberrant mutations included C-to-T transitions at the second cytosine in 5'CC(A/T)GG sequences (which are subject to methylation by bacterial cytosine methylase) and in 5'CCAG and 5'CAGG sequences. Excess cI+ recombinants arising in crosses that utilize these mutations are attributable to the correction of mismatches by a bacterial very-short-patch (VSP) mismatch repair system. In the present study I found that two genes required for methyladenine-directed (long-patch) mismatch repair, mutL and mutS, also functioned in VSP mismatch repair; mutH and mutU (uvrD) were dispensable. VSP mismatch repair was greatly reduced in a dcm Escherichia coli mutant, in which 5-methylcytosine was not methylated. However, mismatches in heteroduplexes prepared from lambda DNA lacking 5-methylcytosine were repaired in dcm+ bacteria. These results indicate that the product of gene dcm has a repair function in addition to its methylase activity.  相似文献   

8.
M. Lieb 《Genetics》1991,128(1):23-27
In many strains of Escherichia coli, the product of gene dcm methylates the internal cytosines in the sequence 5'CC(A or T)GG. Spontaneous deamination of 5-methylcytosine produces thymine which, if not corrected, can result in a transition mutation. 5-Methylcytosines in the lacI gene are hotspots for spontaneous C to T mutations. dcm is linked to vsr, a gene required for very short patch (VSP) repair. VSP repair corrects T.G mispairs in the following contexts:CTAAGGGGTCC, CTTGGGGACC, TAGGGTCC and CTAGGGTC. I have investigated the relationships between cytosine methylation, mutation, and VSP repair. Spontaneous mutations in the repressor (cI) gene of lambda prophage were isolated in wild-type and mutant lysogens. A hotspot for spontaneous mutation that corresponds with a 5-methylcytosine was observed in wild-type lysogens but was not present in bacteria lacking both methylase and VSP repair activity. Introduction of a plasmid containing dcm+ and vsr+ restored the mutation hotspot. If the added plasmid carried only dcm+, the frequency of spontaneous mutations at the 5-methylcytosine was over 10-fold higher than in Dcm+Vsr+ lysogens. The addition of vsr on a plasmid to a wild-type lysogen resulted in a 4-fold reduction in mutation at the hotspot. These findings support the previously untested hypothesis that VSP repair prevents mutations resulting from deamination of 5-methylcytosine.  相似文献   

9.
The necessary amplification step in bacteria of any plasmid currently used in DNA immunization or gene therapy introduces modification in the nucleotide sequence of plasmid DNA used in gene transfer. These changes affect the adenine and the internal cytosine in respectively all of the GATC and CC(A/T)GG sequences. These modifications which introduce 6-methyladenine and 5-methylcytosine in plasmidic DNA are the consequence of the existence of the bacterial modification systems Dam and Dcm. In eucaryotes, the presence of 5-methylcytosine at dinucleotides -CG- is involved in silencing gene expression, but the possible consequences of the presence of the bacterial G(m)ATC and C(m)C(A/T)GG sequences in the plasmids used in gene transfer experiments are presently unknown. Since the possibility exists to obtain plasmid DNA lacking this specific bacterial pattern of methylation by using (dam(-), dcm(-)) bacteria we performed experiments to compare in vitro and in vivo gene transfer efficiency of a pCMV-luc reporter plasmid amplified either in the JM109 (dam(+), dcm(+)) or JM110 (dam(-), dcm(-)) bacteria. Data obtained demonstrated that the presence of 6-methyladenine in GATC sequences and 5-methylcytosine in the second C of CC(A/T)GG motifs does not reduce the levels of luciferase activity detected following in vitro or in vivo gene transfer. On the contrary, gene transfer with a pCMV-luc amplified in JM109 (dam(+), dcm(+)) bacteria gives greater amounts of luciferase than the same transfection performed with a plasmid amplified in the mutated JM110 (dam(-), dcm(-)) counterpart. Therefore, these data do not suggest that the use of (dam(-), dcm(-)) bacteria to amplify plasmid DNA may increase gene transfer efficiency. However, the persistence of the use of (dam(+), dcm(+)) bacteria in order to amplify plasmid DNA raises the question of the possible biological consequences of the introduction of the bacterial G(m)ATC and C(m)C(A/T)GG sequences in eukaryotic cells or organisms.  相似文献   

10.
The shuttle Escherichia coli - Streptomyces plasmids were used to transform S. lividans 66. Plasmid DNAs isolated from this strain transform it 10-1000-fold more efficiently than DNAs from E. coli. Rare transformant cured from most restricted plasmid is more efficient recipient of plasmid DNA from E. coli and has the property of R +/- M+ mutant. Restriction in S. lividans 66 correlates with the appearance in DNA from E. coli of the sites susceptible to Scg2I restriction endonuclease. The latter was isolated earlier from recombinant strain Rcg2, a hybrid between S. griseus Kr. 15 and S. coelicolor A3(2). Scg2I possesses the recognition sequence CCTAGG, like EcoRII, MvaI and Eco dcm methylase. The DNA resistant to Scg2I cleavage retained this ability after in vitro modification by EcoRII methylase. So, the resistance of DNA to Scg2I cleavage is not connected with methylation at 4th and 5th position of second cytosine in the recognition sequence. Neither restriction of plasmid DNA in S. lividans 66 is dependent on dcm modification in E. coli, though its dependence on dam modification is not excluded. It is assumed that the restriction in S. lividans 66 is specified by endonuclease analogous to Scg2I.  相似文献   

11.
DNA containing 5-azacytidine (5-azaC) has been shown to form stable detergent-resistant complexes with cytosine methylases. We reasoned that if 5-azaC treatment causes protein-DNA cross-links in vivo, then mutations in DNA repair and recombination genes may increase the sensitivity of a cell to 5-azaC. We found that although recA (defective) and lexA (induction-negative) mutants of Escherichia coli were very sensitive to the drug, mutations in uvrA and ung genes had little effect on cell lethality. The sensitivity of recA strains to 5-azaC was dose dependent and was enhanced by the overproduction of a DNA cytosine methylase in the cell. Unexpectedly, a strain of E. coli carrying a recA mutation and a deletion of the DNA cytosine methylase gene (dcm) was found to be significantly sensitive to 5-azaC. Study of mutations in the pyrimidine salvage pathway of E. coli suggests that direct phosphorylation of 5-azaC, rather than phosphorylation of its degradation products, is largely responsible for the lethal effects of the drug. The addition of uracil to the growth medium has little effect on cell lethality of recA mutants, but it partially reversed the inhibition of cell growth caused by 5-azaC. This reversal of the bacteriostatic effects of the drug could not be achieved by adding cytosine or orotic acid to the growth medium and required the presence of functional UMP-pyrophosphorylase (gene upp) in the cell.  相似文献   

12.
Deoxyribonucleic acid (DNA)-cytosine methylation specified by the wild-type Escherichia coli K 12 mec+ gene and by the N-3 drug resistance (R) factor was studied in vivo and in vitro. Phage lambda and fd were propagated in the presence of L-[methyl-3H]methionine in various host bacteria. The in vivo labeled DNA was isolated from purified phage and depurinated by formic acid-diphenylamine treatment. The resulting pyrimidine oligonucleotide tracts were separated according to size and base composition by chromatography on diethylaminoethyl-cellulose in 7 M urea at pH 5.5 and 3.5, respectively. The distribution of labeled 5-methylcytosine in DNA pyrimidine tracts was identical for phage grown in mec+ and mec minus (N-3) cells. For phage lambda the major 5-methylcytosine containing tract was the tripyrimidine, C2T; for both fd-mec minus (N-3) DNA and fd-mec+DNA, C2T was the sole 5-methylcytosine-containing tract. When various lambda DNAs were methylated to saturation in vitro by crude extracts from mec+ and mec minus (N-3) cells, the extent of cytosine methylation was the same. This is in contrast to in vivo methylation where lambda-mec minus (N-3) DNA contains twice as many 5-methylcytosines per genome as lambda-mec+ DNA. Therefore, we suggest that the K12 met+ cytosine methylase and the N-3 plasmid modification methylase are capable of recognizing the same nucleotide sequences, but that the in vivo methylation rate is lower in mec+ cells.  相似文献   

13.
Methylation of parental and progeny DNA strands in Physarum polycephalum   总被引:5,自引:0,他引:5  
Although 5-methylcytosine comprises 4 to 8% of the cytosine residues in the major nuclear DNA of Physarum polycephalum (Evans &; Evans, 1970), only 1 % of the cytosine residues of progeny DNA become methylated during replication. Further methylation occurs during the same and subsequent mitotic cycles, so that 6 to 7 cycles after its synthesis, 5-methylcytosine comprises 5 to 7% of the DNA-cytosine residues of a single generation of DNA. The extent of methylation occurring during the S period has been measured by the determination of the specific activity of the precursor (S-adenosylmethionine) and the product (DNA-5-methylcytosine) and by comparison of the radioactivity in DNA-cytosine and DNA-5-methylcytosine after incorporation of [14C]deoxycytidine. Continuing methylation of parental DNA has been shown, by density shift experiments and by the conversion of prelabeled DNA-cytosine to DNA-5-methylcytosine. The DNA-5-methylcytosine once formed was found to be stable.  相似文献   

14.
DNA cytosine methylation is a widespread epigenetic mark. Biological effects of DNA methylation are mediated by the proteins that preferentially bind to 5-methylcytosine (5mC) in different sequence contexts. Until now two different structural mechanisms have been established for 5mC recognition in eukaryotes; however, it is still unknown how discrimination of the 5mC modification is achieved in prokaryotes. Here we report the crystal structure of the N-terminal DNA-binding domain (McrB-N) of the methyl-specific endonuclease McrBC from Escherichia coli. The McrB-N protein shows a novel DNA-binding fold adapted for 5mC-recognition. In the McrB-N structure in complex with methylated DNA, the 5mC base is flipped out from the DNA duplex and positioned within a binding pocket. Base flipping elegantly explains why McrBC system restricts only T4-even phages impaired in glycosylation [Luria, S.E. and Human, M.L. (1952) A nonhereditary, host-induced variation of bacterial viruses. J. Bacteriol., 64, 557-569]: flipped out 5-hydroxymethylcytosine is accommodated in the binding pocket but there is no room for the glycosylated base. The mechanism for 5mC recognition employed by McrB-N is highly reminiscent of that for eukaryotic SRA domains, despite the differences in their protein folds.  相似文献   

15.
The dcm locus of Escherichia coli K-12 has been shown to code for a methylase that methylates the second cytosine within the sequence 5'-CC(A/T)GG-3'. This sequence is also recognized by the EcoRII restriction-modification system coded by the E. coli plasmid N3. The methylase within the EcoRII system methylates the same cytosine as the dcm protein. We have isolated, from a library of E. coli K-12 DNA, two overlapping clones that carry the dcm locus. We show that the two clones carry overlapping sequences that are present in a dcm+ strain, but are absent in a delta dcm strain. We also show that the cloned gene codes for a methylase, that it complements mutations in the EcoRII methylase, and that it protects EcoRII recognition sites from cleavage by the EcoRII endonuclease. We found no phage restriction activity associated with the dcm clones.  相似文献   

16.
Restriction analysis of plasmid pHV14 deoxyribonucleic acid isolated from Escherichia coli K-12, Bacillus subtilis, and staphylococcus aureus with restriction endonucleases MboI, Sau3AI, and EcoRII was used to study the methylation of those nucleotide sequences which in E. coli contain the major portions of N6-methyladenine and 5-methylcytosine. The results showed that neither B. subtilis nor S. aureus methylates deoxyribonucleic acid at the same sites and nucleotides which are recognized and methylated by dam and dcm enzymes in E. coli K-12.  相似文献   

17.
Very short patch repair: reducing the cost of cytosine methylation   总被引:11,自引:1,他引:10  
In Escherichia coli and related bacteria, the product of gene dcm methylates the second cytosine of 5'-CCWGG sequences (where W is A or T). Deamination of 5-methylcytosine (5meC) results in C to T mutations. The mutagenic potential of 5meC is reduced by a system called very short patch (VSP) repair, which replaces T with C. T:G and U:G mispairs in the methylatable sequence and in related sequences are recognized by the product of vsr , a gene adjacent to dcm . Vsr creates a nick just 5' of the mispaired pyrimidine to initiate the repair. Additional products known to be required for VSP repair are DNA polymerase I and DNA ligase. MutS and MutL have a stimulatory role but are not required. The ability of Vsr to recognize T:G mispairs in sequences related to CCWGG is probably responsible for over- and under-representation of certain tetranucleotides in the E. coli genome. Although VSP repair reduces spontaneous mutations at 5meCs in replicating bacteria, mutation hot-spots persist at these sites. Under conditions that more accurately mimic the natural environment of E. coli , VSP repair appears to be effective in preventing mutation at 5meC.  相似文献   

18.
The N-3 drug resistance (R) factor specifies a deoxyribonucleic acid (DNA)-cytosine methylase and a DNA restriction-modification (hspII) system. We have isolated three independent mutants that are conditionally defective in their ability to modify bacteriophage lambda and to methylate DNA-cytosine residues. The ratio of 5-methylcytosine to N(6)-methyladenine in bacterial DNA and in the DNA of phages lambda and fd was determined after labeling with [methyl-(3)H]methionine at various growth temperatures. Although the ability of the wild-type N-3 factor to modify phage lambda and to methylate DNA-cytosine residues was unaffected with increasing temperature, two of the mutants exhibited a parallel loss in modification and cytosine methylation ability. The ability of the third mutant to carry out these functions was dependent on the presence or absence of an amber suppressor mutation in the host genome. These results offer further support for the notion that hspII modification is mediated by a DNA-cytosine methylase. Evidence is also presented that the modification methylase is responsible for the in vivo methylation of phage fd DNA (which is not subject to hspII restriction in vivo).  相似文献   

19.
On growing the cells of Bacillus brevis S methionine-auxotroph mutant in the presence of [Me-3H]methionine, practically all the radioactivity incorporated into DNA is found to exist in 5-methylcytosine and N6-methyladenine. The analysis of pyrimidine isopliths isolated from DNA shows that radioactivity only exists in mono- and dinucleotides and the content of 5-methylcytosine in R-m5 C-R and R-m5 C-T-R oligonucleotides is equal. The analysis of dinucleotides isolated from DNA by means of pancreatic DNAase hydrolysis allows the nature of purine residues neighbouring 5-methylcytosine to be identified and shows that 5-methylcytosine localizes in G-m5 C-A and G-m5 C-Tr fragments. B. brevis S DNA methylase modifying cytosine residues recognizes the GCA/TGC degenerate nucleotide sequence which is a part of the following complementary structure with a two-fold rotational axis of symmetry: (5')...N'-G-C-T-G-C-N... (3') (3')...N-C-G-A-C-G-N'... (5') (Methylated cytosine residues are askerisked). Cytosine-modifying DNA methylase activity is isolated from B. brevis cells; it is capable of methylating in vitro homologous and heterologous DNA. Hence DNA in bacterial cells can be undermethylated. This enzyme methylates cytosine residues in native and denatured DNA in the same nucleotide sequences. Specificity of methylation of cytosine residues in vitro and in vivo does not depend on the nature of substrate DNA. DNA methylases of different variants of B. brevis (R, S, P+, P-)) methylate cytosine residues in the same nucleotide sequences. It means that specificity or methylation of DNA cytosine residues in the cells of different variants of B. brevis is the same.  相似文献   

20.
A simple, highly selective, and sensitive method has been developed to quantify methylation of DNA extracted from human peripheral blood mononuclear cells. Assay has been performed at nucleobases level. Cytosine and 5-methylcytosine DNA content has been detected by gas chromatography-mass spectrometry using [2-(13)C]cytosine and [2-(13)C]5-methylcytosine as internal standards. The methylation level has been calculated as 5-methylcytosine/total cytosine ratio. The working range selected on calibration curve, obtained by evaluation of standards and matrix-added standards measurements, is suitable for 5 microg DNA analysis. In this range, healthy human DNA methylation percentage is within 5-6%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号