首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sequence-structure-function information is critical in understanding the mechanism of pMHC and TR/pMHC binding and recognition. A database for sequence-structure-function information on pMHC and TR/pMHC interactions, MHC-Peptide Interaction Database-TR version 2 (MPID-T2), is now available augmented with the latest PDB and IMGT/3Dstructure-DB data, advanced features and new parameters for the analysis of pMHC and TR/pMHC structures. AVAILABILITY: http://biolinfo.org/mpid-t2. CONTACT: shoba.ranganathan@mq.edu.au SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.  相似文献   

2.
The B-cell Epitope Interaction Database (BEID; http://datam.i2r.a-star.edu.sg/BEID) is an open-access database describing sequence-structure-function information on immunoglobulin (Ig)-antigen interactions. The current version of the database contains 164 antigens, 126 Ig and 189 Ig-antigen complexes extracted from the Protein Data Bank (PDB). Each entry is manually verified, classified, and analyzed for intermolecular interactions between antigens and the corresponding bound Ig molecules. Ig-antigen interaction information that is stored in BEID includes solvent accessibility, hydrogen bonds, non-hydrogen bonds, gap volume, gap index, interface area and contact residues. The database can be searched with a user-friendly search tool and schematic diagrams for Ig-antigen interactions are available for download in PDF format. The ultimate purpose of BEID is to enhance the understanding of the rules of engagement between antigen and the corresponding bound Ig molecules. It is also a precious data source for developing computational predictors for B-cell epitopes.  相似文献   

3.
The ATLAS (Altered TCR Ligand Affinities and Structures) database ( https://zlab.umassmed.edu/atlas/web /) is a manually curated repository containing the binding affinities for wild‐type and mutant T cell receptors (TCRs) and their antigens, peptides presented by the major histocompatibility complex (pMHC). The database links experimentally measured binding affinities with the corresponding three dimensional (3D) structures for TCR‐pMHC complexes. The user can browse and search affinities, structures, and experimental details for TCRs, peptides, and MHCs of interest. We expect this database to facilitate the development of next‐generation protein design algorithms targeting TCR‐pMHC interactions. ATLAS can be easily parsed using modeling software that builds protein structures for training and testing. As an example, we provide structural models for all mutant TCRs in ATLAS, built using the Rosetta program. Utilizing these structures, we report a correlation of 0.63 between experimentally measured changes in binding energies and our predicted changes. Proteins 2017; 85:908–916. © 2016 Wiley Periodicals, Inc.  相似文献   

4.
SUMMARY: Binding of short antigenic peptides to Major histocompatibility complex (MHC) proteins is the first step in T-cell mediated immune response. To understand the structural principles governing MHC-specific peptide recognition and binding, we have developed the MHC-Peptide Interaction Database (MPID), containing sequence-structure-function information. MPID (version 1.2) contains curated x-ray crystallographic data on 86 MHC peptide complexes, with precomputed interaction parameters (solvent accessibility, hydrogen bonds, gap volume and gap index). A user-friendly web interface and query tools will facilitate the development of predictive algorithms for MHC-peptide binding from a structural viewpoint. AVAILABILITY: Freely accessible from http://surya.bic.nus.edu.sg/mpid.  相似文献   

5.
The CD8 coreceptor plays a crucial role in both T cell development in the thymus and in the activation of mature T cells in response to Ag-specific stimulation. In this study we used soluble peptides-MHC class I (pMHC) multimeric complexes bearing mutations in the CD8 binding site that impair their binding to the MHC, together with altered peptide ligands, to assess the impact of CD8 on pMHC binding to the TCR. Our data support a model in which CD8 promotes the binding of TCR to pMHC. However, once the pMHC/TCR complex is formed, the TCR dominates the pMHC/TCR dissociation rates. As a consequence of these molecular interactions, under physiologic conditions CD8 plays a key role in complex formation, resulting in the enhancement of CD8 T cell functions whose specificity, however, is determined by the TCR.  相似文献   

6.
7.
T-cell receptor (TCR) recognition of the myelin basic protein (MBP) peptide presented by major histocompatibility complex (MHC) protein HLA-DR2a, one of the MHC class II alleles associated with multiple sclerosis, is highly variable. Interactions in the trimolecular complex between the TCR of the MBP83-99-specific T cell clone 3A6 with the MBP-peptide/HLA-DR2a (abbreviated TCR/pMHC) lead to substantially different proliferative responses when comparing the wild-type decapeptide MBP90-99 and a superagonist peptide, which differs mainly in the residues that point toward the TCR. Here, we investigate the influence of the peptide sequence on the interface and intrinsic plasticity of the TCR/pMHC trimolecular and pMHC bimolecular complexes by molecular dynamics simulations. The intermolecular contacts at the TCR/pMHC interface are similar for the complexes with the superagonist and the MBP self-peptide. The orientation angle between TCR and pMHC fluctuates less in the complex with the superagonist peptide. Thus, the higher structural stability of the TCR/pMHC tripartite complex with the superagonist peptide, rather than a major difference in binding mode with respect to the self-peptide, seems to be responsible for the stronger proliferative response.  相似文献   

8.
Antibodies recognizing peptide bound to a major histocompatibility complex (MHC) protein usually have a higher affinity for the composite peptide.MHC (pMHC) ligand than T cell receptors (TCR) with the same specificity. Because the solvent-accessible peptide area constitutes only a small portion of the contacting pMHC surface, we hypothesized that the contribution of the MHC moiety to the TCR-pMHC complex stability is limited, ensuring a small increment of the binding energy delivered by the peptide to be distinguishable by the TCR or the peptide-specific antibody. This suggests that the gain in affinity of the antibody-pMHC interaction can be achieved through an increase in the on-rate without a significant change in the off-rate of the interaction. To test the hypothesis, we have analyzed the binding of an ovalbumin peptide (pOV8) and its variants associated with soluble H-2Kb protein to the 25-D1.16 monoclonal antibody and compared it with the binding of the same pMHC complexes to the OT-1 TCR. This comparison revealed a substantially higher on-rate of the antibody-pMHC interaction compared with the TCR-pMHC interaction. In contrast, both the antibody and the TCR-pMHC complexes exhibited comparably fast off-rates. Sequencing of the 25-D1.16 VH and VL genes showed that they have very few somatic mutations and those occur mainly in framework regions. We propose that the above features constitute a signature of the recognition of MHC-bound peptide antigens by TCR and TCR-like antibodies, which could explain why the latter are rarely produced in vivo.  相似文献   

9.
10.
Binding of peptide/MHC (pMHC) complexes by TCR initiates T cell activation. Despite long interest, the exact relationship between the biochemistry of TCR/pMHC interaction (particularly TCR affinity or ligand off-rate) and T cell responses remains unresolved, because the number of complexes examined in each independent system has been too small to draw a definitive conclusion. To test the current models of T cell activation, we have analyzed the interactions between the mouse P14 TCR and a set of altered peptides based on the lymphocytic choriomeningitis virus epitope gp33-41 sequence bound to mouse class I MHC D(b). pMHC binding, TCR-binding characteristics, CD8+ T cell cytotoxicity, and IFN-gamma production were measured for the peptides. We found affinity correlated well with both cytotoxicity and IFN-gamma production. In contrast, no correlation was observed between any kinetic parameter of TCR-pMHC interaction and cytotoxicity or IFN-gamma production. This study strongly argues for an affinity threshold model of T cell activation.  相似文献   

11.
Alphabeta T-cell receptor (TcR) recognition of antigenic peptides bound to the major histocompatibility complex (pMHC), is integral to the cellular immune system. Crystallographic studies over the last decade have provided significant insight into this unique trimolecular recognition event. The TcR-pMHC structural information has been paralleled by biophysical studies that have further explored the emerging binding models in an attempt to answer fundamental immunological questions regarding MHC restriction, T-cell immunodominance and TcR cross-reactivity. However, despite the important data that has been generated regarding TcR-pMHC interactions, the scope of this information is still incomplete due to the limited range of TcRs that have been studied. These limitations are primarily due to difficulties in obtaining high yields of recombinant alphabeta TcR for crystallographic and biophysical analysis; here we will discuss some of the protein engineering strategies that have been employed to expand the pool of recombinant TcRs suitable for crystallographic studies and the subsequent studies that have utilized these proteins.  相似文献   

12.
αβ T-cell receptors (TCRs) engage antigens using complementarity-determining region (CDR) loops that are either germ line-encoded (CDR1 and CDR2) or somatically rearranged (CDR3). TCR ligands compose a presentation platform (major histocompatibility complex (MHC)) and a variable antigenic component consisting of a short “foreign” peptide. The sequence of events when the TCR engages its peptide-MHC (pMHC) ligand remains unclear. Some studies suggest that the germ line elements of the TCR engage the MHC prior to peptide scanning, but this order of binding is difficult to reconcile with some TCR-pMHC structures. Here, we used TCRs that exhibited enhanced pMHC binding as a result of mutations in either CDR2 and/or CDR3 loops, that bound to the MHC or peptide, respectively, to dissect the roles of these loops in stabilizing TCR-pMHC interactions. Our data show that TCR-peptide interactions play a strongly dominant energetic role providing a binding mode that is both temporally and energetically complementary with a system requiring positive selection by self-pMHC in the thymus and rapid recognition of non-self-pMHC in the periphery.  相似文献   

13.
The mouse H13 minor histocompatibility (H) Ag, originally detected as a barrier to allograft transplants, is remarkable in that rejection is a consequence of an extremely subtle interchange, P4(Val/Ile), in a nonamer H2-D(b)-bound peptide. Moreover, H13 peptides lack the canonical P5(Asn) central anchor residue normally considered important for forming a peptide/MHC complex. To understand how these noncanonical peptide pMHC complexes form physiologically active TCR ligands, crystal structures of allelic H13 pD(b) complexes and a P5(Asn) anchored pD(b) analog were solved to high resolution. The structures show that the basis of TCRs to distinguish self from nonself H13 peptides is their ability to distinguish a single solvent-exposed methyl group. In addition, the structures demonstrate that there is no need for H13 peptides to derive any stabilization from interactions within the central C pocket to generate fully functional pMHC complexes. These results provide a structural explanation for a classical non-MHC-encoded H Ag, and they call into question the requirement for contact between anchor residues and the major MHC binding pockets in vaccine design.  相似文献   

14.
The TCR recognizes its peptide:MHC (pMHC) ligand by assuming a diagonal orientation relative to the MHC helices, but it is unclear whether and to what degree individual TCRs exhibit docking variations when contacting similar pMHC complexes. We analyzed monospecific and cross-reactive recognition by diverse TCRs of an immunodominant HVH-1 glycoprotein B epitope (HSV-8p) bound to two closely related MHC class I molecules, H-2K(b) and H-2K(bm8). Previous studies indicated that the pMHC portion likely to vary in conformation between the two complexes resided at the N-terminal part of the complex, adjacent to peptide residues 2-4 and the neighboring MHC side chains. We found that CTL clones sharing TCR beta-chains exhibited disparate recognition patterns, whereas those with drastically different TCRbeta-chains but sharing identical TCRalpha CDR3 loops displayed identical functional specificity. This suggested that the CDRalpha3 loop determines the TCR specificity in our model, the conclusion supported by modeling of the TCR over the actual HSV-8:K(b) crystal structure. Importantly, these results indicate a remarkable conservation in CDRalpha3 positioning, and, therefore, in docking of diverse TCRalphabeta heterodimers onto variant peptide:class I complexes, implying a high degree of determinism in thymic selection and T cell activation.  相似文献   

15.
Adaptive immune responses are driven by interactions between T cell antigen receptors (TCRs) and complexes of peptide antigens (p) bound to Major Histocompatibility Complex proteins (MHC) on the surface of antigen-presenting cells. Many experiments support the hypothesis that T cell response is quantitatively and qualitatively dependent on the so-called strength of TCR/pMHC association. Most available data are correlations between binding parameters measured in solution (three-dimensional) and pMHC activation potency, suggesting that full lymphocyte activation required a minimal lifetime for TCR/pMHC interaction. However, recent reports suggest important discrepancies between the binding properties of ligand-receptor couples measured in solution (three-dimensional) and those measured using surface-bound molecules (two-dimensional). Other reports suggest that bond mechanical strength may be important in addition to kinetic parameters. Here, we used a laminar flow chamber to monitor at the single molecule level the two-dimensional interaction between a recombinant human TCR and eight pMHCs with variable potency. We found that 1), two-dimensional dissociation rates were comparable to three-dimensional parameters previously obtained with the same molecules; 2), no significant correlation was found between association rates and activating potency of pMHCs; 3), bond mechanical strength was partly independent of bond lifetime; and 4), a suitable combination of bond lifetime and bond strength displayed optimal correlation with activation efficiency. These results suggest possible refinements of contemporary models of signal generation by T cell receptors. In conclusion, we reported, for the first time to our knowledge, the two-dimensional binding properties of eight TCR/pMHC couples in a cell-free system with single bond resolution.  相似文献   

16.
Crystallographic data about T-Cell Receptor – peptide – major histocompatibility complex class I (TCRpMHC) interaction have revealed extremely diverse TCR binding modes triggering antigen recognition. Understanding the molecular basis that governs TCR orientation over pMHC is still a considerable challenge. We present a simplified rigid approach applied on all non-redundant TCRpMHC crystal structures available. The CHARMM force field in combination with the FACTS implicit solvation model is used to study the role of long-distance interactions between the TCR and pMHC. We demonstrate that the sum of the coulomb interactions and the electrostatic solvation energies is sufficient to identify two orientations corresponding to energetic minima at 0° and 180° from the native orientation. Interestingly, these results are shown to be robust upon small structural variations of the TCR such as changes induced by Molecular Dynamics simulations, suggesting that shape complementarity is not required to obtain a reliable signal. Accurate energy minima are also identified by confronting unbound TCR crystal structures to pMHC. Furthermore, we decompose the electrostatic energy into residue contributions to estimate their role in the overall orientation. Results show that most of the driving force leading to the formation of the complex is defined by CDR1,2/MHC interactions. This long-distance contribution appears to be independent from the binding process itself, since it is reliably identified without considering neither short-range energy terms nor CDR induced fit upon binding. Ultimately, we present an attempt to predict the TCR/pMHC binding mode for a TCR structure obtained by homology modeling. The simplicity of the approach and the absence of any fitted parameters make it also easily applicable to other types of macromolecular protein complexes.  相似文献   

17.
Multiple factors determine the ability of a peptide to elicit a cytotoxic T cell lymphocyte response. Binding to a major histocompatibility complex class I (MHC-I) molecule is one of the most essential factors, as no peptide can become a T cell epitope unless presented on the cell surface in complex with an MHC-I molecule. As such, peptide-MHC (pMHC) binding affinity predictors are currently the premier methods for T cell epitope prediction, and these prediction methods have been shown to have high predictive performances in multiple studies. However, not all MHC-I binders are T cell epitopes, and multiple studies have investigated what additional factors are important for determining the immunogenicity of a peptide. A recent study suggested that pMHC stability plays an important role in determining if a peptide can become a T cell epitope. Likewise, a T cell propensity model has been proposed for identifying MHC binding peptides with amino acid compositions favoring T cell receptor interactions. In this study, we investigate if improved accuracy for T cell epitope discovery can be achieved by integrating predictions for pMHC binding affinity, pMHC stability, and T cell propensity. We show that a weighted sum approach allows pMHC stability and T cell propensity predictions to enrich pMHC binding affinity predictions. The integrated model leads to a consistent and significant increase in predictive performance and we demonstrate how this can be utilized to decrease the experimental workload of epitope screens. The final method, NetTepi, is publically available at www.cbs.dtu.dk/services/NetTepi.  相似文献   

18.
Major histocompatibility complex (MHC) class I molecules present peptide ligands on the cell surface for recognition by appropriate cytotoxic T cells. MHC-bound peptides are critical for the stability of the MHC complex, and standard strategies for the production of recombinant MHC complexes are based on in vitro refolding reactions with specific peptides. This strategy is not amenable to high-throughput production of vast collections of MHC molecules. We have developed conditional MHC ligands that form stable complexes with MHC molecules but can be cleaved upon UV irradiation. The resulting empty, peptide-receptive MHC molecules can be charged with epitopes of choice under native conditions. Here we describe in-depth procedures for the high-throughput production of peptide-MHC (pMHC) complexes by MHC exchange, the analysis of peptide exchange efficiency by ELISA and the parallel production of MHC tetramers for T-cell detection. The production of the conditional pMHC complex by an in vitro refolding reaction can be achieved within 2 weeks, and the actual high-throughput MHC peptide exchange and subsequent MHC tetramer formation require less than a day.  相似文献   

19.
20.
Peptides bind with high affinity to MHC class I molecules by anchoring certain side-chains (anchors) into specificity pockets in the MHC peptide-binding groove. Peptides that do not contain these canonical anchor residues normally have low affinity, resulting in impaired pMHC stability and loss of immunogenicity. Here, we report the crystal structure at 1.6 A resolution of an immunogenic, low-affinity peptide from the tumor-associated antigen MUC1, bound to H-2Kb. Stable binding is still achieved despite small, non-canonical residues in the C and F anchor pockets. This structure reveals how low-affinity peptides can be utilized in the design of novel peptide-based tumor vaccines. The molecular interactions elucidated in this non-canonical low-affinity peptide MHC complex should help uncover additional immunogenic peptides from primary protein sequences and aid in the design of alternative approaches for T-cell vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号