首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wood ZA  Poole LB  Karplus PA 《Biochemistry》2001,40(13):3900-3911
AhpF, a homodimer of 57 kDa subunits, is a flavoenzyme which catalyzes the NADH-dependent reduction of redox-active disulfide bonds in the peroxidase AhpC, a member of the recently identified peroxiredoxin class of antioxidant enzymes. The structure of AhpF from Salmonella typhimurium at 2.0 A resolution, determined using multiwavelength anomalous dispersion, shows that the C-terminal portion of AhpF (residues 210-521) is structurally like Escherichia coli thioredoxin reductase. In addition, AhpF has an N-terminal domain (residues 1-196) formed from two contiguous thioredoxin folds, but containing just a single redox-active disulfide (Cys129-Cys132). A flexible linker (residues 197-209) connects the domains, consistent with experiments showing that the N-terminal domain acts as an appended substrate, first being reduced by the C-terminal portion of AhpF, and subsequently reducing AhpC. Modeling studies imply that an intrasubunit electron transfer accounts for the reduction of the N-terminal domain in dimeric AhpF. Furthermore, comparing the N-terminal domain with protein disulfide oxidoreductase from Pyrococcus furiosis, we describe a new class of protein disulfide oxidoreductases based on a novel mirror-image active site arrangement, with a distinct carboxylate (Glu86) being functionally equivalent to the key acid (Asp26) of E. coli thioredoxin. A final fortuitous result is that the N-terminal redox center is reduced and provides a high-resolution view of the thiol-thiolate hydrogen bond that has been predicted to stabilize the attacking thiolate in thioredoxin-like proteins.  相似文献   

2.
Drosophila melanogaster thioredoxin reductase-1 (DmTrxR-1) is a key flavoenzyme in dipteran insects, where it substitutes for glutathione reductase. DmTrxR-1 belongs to the family of dimeric, high Mr thioredoxin reductases, which catalyze reduction of thioredoxin by NADPH. Thioredoxin reductase has an N-terminal redox-active disulfide (Cys57-Cys62) adjacent to the flavin and a redox-active C-terminal cysteine pair (Cys489'-Cys490' in the other subunit) that transfer electrons from Cys57-Cys62 to the substrate thioredoxin. Cys489'-Cys490' functions similarly to Cys495-Sec496 (Sec = selenocysteine) and Cys535-XXXX-Cys540 in human and parasite Plasmodium falciparum enzymes, but a catalytic redox center formed by adjacent Cys residues, as observed in DmTrxR-1, is unprecedented. Our data show, for the first time in a high Mr TrxR, that DmTrxR-1 oscillates between the 2-electron reduced state, EH2, and the 4-electron state, EH4, in catalysis, after the initial priming reduction of the oxidized enzyme (Eox) to EH2. The reductive half-reaction consumes 2 eq of NADPH in two observable steps to produce EH4. The first equivalent yields a FADH--NADP+ charge-transfer complex that reduces the adjacent disulfide to form a thiolate-flavin charge-transfer complex. EH4 reacts with thioredoxin rapidly to produce EH2. In contrast, Eox formation is slow and incomplete; thus, EH2 of wild-type cannot reduce thioredoxin at catalytically competent rates. Mutants lacking the C-terminal redox center, C489S, C490S, and C489S/C490S, are incapable of reducing thioredoxin and can only be reduced to EH2 forms. Additional data suggest that Cys57 attacks Cys490' in the interchange reaction between the N-terminal dithiol and the C-terminal disulfide.  相似文献   

3.
Sequence analyses of the Streptococcus faecalis NADH peroxidase and the flavoprotein component of the Salmonella typhimurium alkyl hydroperoxide reductase indicate clear evolutionary links with members of the flavoprotein disulfide reductase family. However, chemical and spectroscopic evidence demonstrate that the non-flavin redox center in NADH peroxidase is an unusual stabilized cysteine-sulfenic acid (Cys-SOH) derivative, and not a cystine disulfide as found in the disulfide reductases. This redox-active element, when appropriately stabilized by the respective protein environment, appears to play key roles in both the catalytic and regulatory aspects of the bacterial response to oxidative stress.  相似文献   

4.
Physiological functions of thioredoxin and thioredoxin reductase.   总被引:46,自引:0,他引:46  
  相似文献   

5.
The DNA sequence of the Salmonella typhimurium ahp locus was determined. The locus was found to contain two genes that encode the two proteins (C22 and F52a) that comprise the S. typhimurium alkyl hydroperoxide reductase activity. The predicted sequence of the F52a protein component of the alkyl hydroperoxide reductase was found to be highly homologous to the Escherichia coli thioredoxin reductase protein (34% identity with many conservative substitutions). The homology was found to be particularly striking in the region containing the redox-active cysteines of the thioredoxin reductase molecule, and among the identities were the redox-active cysteines themselves. Aside from the strong similarity to thioredoxin reductase, overall homology between the F52a protein and other flavoprotein disulfide oxidoreductases such as glutathione reductase, dihydrolipoamide dehydrogenase, and mercuric reductase was found to be rather limited, and the conserved active site segment common to the three proteins was not observed within the F52a protein. However, three short segments that have been implicated in FAD and NAD binding were found to be conserved between the F52a protein and the other disulfide reductases. These results suggest that the alkyl hydroperoxide reductase is the second known member of a class of disulfide oxidoreductases which was represented previously by thioredoxin reductase alone; they also allow the putative assignment of several functional domains.  相似文献   

6.
Reynolds CM  Poole LB 《Biochemistry》2001,40(13):3912-3919
AhpF, the flavoprotein reductase component of the Salmonella typhimurium alkyl hydroperoxide reductase system, catalyzes the reduction of an intersubunit disulfide bond in the peroxidatic active site of the system's other component, AhpC, a member of the peroxiredoxin family. Previous studies have shown that AhpF can be dissected into two functional units, a thioredoxin reductase-like C-terminus (containing FAD and a redox-active disulfide, Cys345-Cys348) and an N-terminal domain containing a second redox-active disulfide center (Cys129-Cys132). The role of the N-terminal domain as the direct reductant of AhpC, mediating electron transfer from the C-terminal redox centers of AhpF, has been firmly established by several approaches. Not known, however, was whether the transfer of electrons between the C-terminal and N-terminal disulfide centers occurred as an inter- or intrasubunit process in dimeric AhpF. Two heterodimeric AhpF species were therefore created in which one of the two pathways was completely disrupted while the other was left partially intact in each construct. Only the heterodimer containing one monomer of wild type AhpF and a monomer of mutated (and truncated) AhpF exhibited peroxidase activity with AhpC indicating that electron transfer between domains of AhpF is an intrasubunit process.  相似文献   

7.
The gene encoding the streptococcal flavoprotein NADH oxidase (NOXase), which catalyzes the four-electron reduction of O2-->2H2O, has been cloned and sequenced from the genome of Streptococcus (Enterococcus) faecalis 10C1 (ATCC 11700). The deduced NOXase protein sequence corresponds to a molecular mass of 48.9 kDa and contains three previously sequenced cysteinyl peptides obtained with the purified enzyme. In Escherichia coli, the expressed nox gene produced a catalytically active product, which retained its immunoreactivity to affinity-purified NOXase antisera. Alignment of the NOXase protein sequence with that of streptococcal NADH peroxidase (NPXase) revealed that the proteins are 44% identical. Among the most highly conserved segments is a sequence containing Cys42; this residue is known to exist as a stabilized cysteine-sulfenic acid (Cys-SOH) in NPXase and serves as the non-flavin redox center. In addition, three previously identified NPXase segments, known to be involved in FAD and NAD(P)-binding in other pyridine nucleotide-linked flavoprotein oxidoreductases, are strongly conserved in NOXase. Overall, the extensive homology observed between NOXase and NPXase suggests that the monomer chain fold of the oxidase closely resembles that of the peroxidase. Both sequences share limited but significant homology to those of glutathione reductase and other members of the flavoprotein disulfide reductase family. These and other considerations suggest that these two unusual streptococcal flavoproteins constitute a distinct class of FAD-dependent oxidoreductases, the flavoprotein peroxide reductases, easily contrasted with enzymes such as glutathione reductase and thioredoxin reductase.  相似文献   

8.
Reynolds CM  Poole LB 《Biochemistry》2000,39(30):8859-8869
AhpF of Salmonella typhimurium, the flavoprotein reductase required for catalytic turnover of AhpC with hydroperoxide substrates in the alkyl hydroperoxide reductase system, is a 57 kDa protein with homology to thioredoxin reductase (TrR) from Escherichia coli. Like TrR, AhpF employs tightly bound FAD and redox-active disulfide center(s) in catalyzing electron transfer from reduced pyridine nucleotides to the disulfide bond of its protein substrate. Homology of AhpF to the smaller (35 kDa) TrR protein occurs in the C-terminal part of AhpF; a stretch of about 200 amino acids at the N-terminus of AhpF contains an additional redox-active disulfide center and is required for catalysis of AhpC reduction. We have demonstrated that fusion of the N-terminal 207 amino acids of AhpF to full-length TrR results in a chimeric protein (Nt-TrR) with essentially the same catalytic efficiency (k(cat)/K(m)) as AhpF in AhpC reductase assays; both k(cat) and the K(m) for AhpC are decreased about 3-4-fold for Nt-TrR compared with AhpF. In addition, Nt-TrR retains essentially full TrR activity. Based on results from two mutants of Nt-TrR (C129, 132S and C342,345S), AhpC reductase activity requires both centers while TrR activity requires only the C-terminal-most disulfide center in Nt-TrR. The high catalytic efficiency with which Nt-TrR can reduce thioredoxin implies that the attached N-terminal domain does not block access of thioredoxin to the TrR-derived Cys342-Cys345 center of Nt-TrR nor does it impede the putative conformational changes that this part of Nt-TrR is proposed to undergo during catalysis. These studies indicate that the C-terminal part of AhpF and bacterial TrR have very similar mechanistic properties. These findings also confirm that the N-terminal domain of AhpF plays a direct role in AhpC reduction.  相似文献   

9.
The flavoprotein component (AhpF) of Salmonella typhimurium alkyl hydroperoxide reductase contains an N-terminal domain (NTD) with two contiguous thioredoxin folds but only one redox-active disulfide (within the sequence -Cys129-His-Asn-Cys132-). This active site is responsible for mediating the transfer of electrons from the thioredoxin reductase-like segment of AhpF to AhpC, the peroxiredoxin component of the two-protein peroxidase system. The previously reported crystal structure of AhpF possessed a reduced NTD active site, although fully oxidized protein was used for crystallization. To further investigate this active site, we crystallized an isolated recombinant NTD (rNTD); using diffraction data sets collected first at our in-house X-ray source and subsequently at a synchrotron, we showed that the active site disulfide bond (Cys129-Cys132) is oxidized in the native crystals but becomes reduced during synchrotron data collection. The NTD disulfide bond is apparently particularly sensitive to radiation cleavage compared with other protein disulfides. The two data sets provide the first view of an oxidized (disulfide) form of NTD and show that the changes in conformation upon reduction of the disulfide are localized and small. Furthermore, we report the apparent pKa of the active site thiol to be approximately 5.1, a relatively low pKa given its redox potential (approximately 265 mV) compared with most members of the thioredoxin family.  相似文献   

10.
Protein disulfide oxidoreductases (PDOs) are redox enzymes that catalyze dithiol–disulfide exchange reactions. Their sequences and structure reveal the presence of two thioredoxin fold units, each of which is endowed with a catalytic site CXXC motif. PDOs are the outcome of an ancient gene duplication event. They have been described in a number of thermophilic and hyperthermophilic species, where they play a critical role in the structural stabilization of intracellular proteins. PDOs are homologous to both the N-terminal domain of the bacterial alkyl hydroperoxide reductase (AhpF) and to the eukaryotic protein disulfide isomerase (PDI). Phylogenetic analysis of PDOs suggests that they first evolved in the crenarchaeota, spreading from them into the Bacteria via the euryarchaeota. These results imply that the last common ancestor (LCA) of all extant living beings lacked a PDO and argue, albeit weakly, against a thermophilic LCA. Reviewing Editor: Martin Kreitman  相似文献   

11.
Amphibacillus xylanus and Sporolactobacillus inulinus NADH oxidases belonging to the peroxiredoxin oxidoreductase family show extremely high peroxide reductase activity for hydrogen peroxide and alkyl hydroperoxides in the presence of the small disulfide redox protein, AhpC (peroxiredoxin). In order to investigate the distribution of this enzyme system in bacteria, 15 bacterial strains were selected from typical aerobic, facultatively anaerobic, and anaerobic bacteria. AhpC-linked alkyl hydroperoxide reductase activities were detected in most of the tested strains, and especially high activities were shown in six bacterial species that grow well under aerobic conditions, including aerobic bacteria (Alcaligenes faecalis and Bacillus licheniformis) and facultatively anaerobic bacteria (Amphibacillus xylanus, Sporolactobacillus inulinus, Escherichia coli, and Salmonella enterica serovar Typhimurium). In the absence of AhpC, the purified enzymes from A. xylanus and S. inulinus catalyze the NADH-linked reduction of oxygen to hydrogen peroxide. Similar activities were observed in the cell extracts from each of these six strains. The cell extract of B. licheniformis revealed the highest AhpC-linked alkyl hydroperoxide reductase activity in the four strains, with V(max) values for hydrogen peroxide and alkyl hydroperoxides being similar to those for the enzymes from A. xylanus and S. inulinus. Southern blot analysis of the three strains probed with the A. xylanus peroxiredoxin reductase gene revealed single strong bands, which are presumably derived from the individual peroxiredoxin reductase genes. Single bands were also revealed in other strains which show high AhpC-linked reductase activities, suggesting that the NADH oxidases belonging to the peroxiredoxin oxidoreductase family are widely distributed and possibly play an important role both in the peroxide-scavenging systems and in an effective regeneration system for NAD in aerobically growing bacteria.  相似文献   

12.
Luba J  Charrier V  Claiborne A 《Biochemistry》1999,38(9):2725-2737
An unusual flavoprotein disulfide reductase, which catalyzes the NADPH-dependent reduction of CoASSCoA, has recently been purified from the human pathogen Staphylococcus aureus [delCardayré, S. B., Stock, K. P., Newton, G. L., Fahey, R. C., and Davies, J. E. (1998) J. Biol. Chem. 273, 5744-5751]. Coenzyme A-disulfide reductase (CoADR) lacks the redox-active protein disulfide characteristic of the disulfide reductases; instead, NADPH reduction yields 1 protein-SH and 1 CoASH. Furthermore, the CoADR sequence reveals the presence of a single putative active-site Cys (Cys43) within an SFXXC motif also seen in the Enterococcus faecalis NADH oxidase and NADH peroxidase, which use a single redox-active cysteine-sulfenic acid in catalysis. In this report, we provide a detailed examination of the equilibrium properties of both wild-type and C43S CoADRs, focusing on the role of Cys43 in the catalytic redox cycle, the behavior of both enzyme forms on reduction with dithionite and NADPH, and the interaction of NADP+ with the corresponding reduced enzyme species. The results of these analyses, combined with electrospray mass spectrometric data for the two oxidized enzyme forms, fully support the catalytic redox role proposed for Cys43 and confirm that this is the attachment site for bound CoASH. In addition, we provide evidence indicating dramatic thermodynamic inequivalence between the two active sites per dimer, similar to that documented for the related enzymes mercuric reductase and NADH oxidase; only 1 FAD is reduced with NADPH in wild-type CoADR. The EH2.NADPH/EH4.NADP+ complex which results is reoxidized quantitatively in titrations with CoASSCoA, supporting a possible role for the asymmetric reduced dimer in catalysis.  相似文献   

13.
Cho SH  Porat A  Ye J  Beckwith J 《The EMBO journal》2007,26(15):3509-3520
The membrane-embedded domain of the unusual electron transporter DsbD (DsbDbeta) uses two redox-active cysteines to catalyze electron transfer between thioredoxin-fold polypeptides on opposite sides of the bacterial cytoplasmic membrane. How the electrons are transferred across the membrane is unknown. Here, we show that DsbDbeta displays an inherent functional and structural symmetry: first, the two cysteines of DsbDbeta can be alkylated from both the cytoplasm and the periplasm. Second, when the two cysteines are disulfide-bonded, cysteine scanning shows that the C-terminal halves of the cysteine-containing transmembrane segments 1 and 4 are exposed to the aqueous environment while the N-terminal halves are not. Third, proline residues located pseudo-symmetrically around the two cysteines are required for redox activity and accessibility of the cysteines. Fourth, mixed disulfide complexes, apparent intermediates in the electron transfer process, are detected between DsbDbeta and thioredoxin molecules on each side of the membrane. We propose a model where the two redox-active cysteines are located at the center of the membrane, accessible on both sides of the membrane to the thioredoxin proteins.  相似文献   

14.
The main function of reduced glutathione (GSH) is to protect from oxidative stress as a reactive oxygen scavenger. However, in the context of redox regulation, the ratio between GSH and its oxidized form (GSSG) determines the redox state of redox-sensitive cysteines in some proteins and, thus, acts as a signaling system. While GSH/GSSG can catalyze oxido-reduction of intra- and inter-chain disulfides by thiol-disulfide exchange, this review focuses on the formation of mixed disulfides between glutathione and proteins, also known as glutathionylation. The review discusses the regulatory role of this post-translational modification and the role of protein disulfide oxidoreductases (thioredoxin/thioredoxin reductase, glutaredoxin, protein disulfide isomerase) in the reversibility of this process.  相似文献   

15.
Poole LB  Godzik A  Nayeem A  Schmitt JD 《Biochemistry》2000,39(22):6602-6615
AhpF, the flavin-containing component of the Salmonella typhimurium alkyl hydroperoxide reductase system, catalyzes the NADH-dependent reduction of an active-site disulfide bond in the other component, AhpC, which in turn reduces hydroperoxide substrates. The amino acid sequence of the C-terminus of AhpF is 35% identical to that of thioredoxin reductase (TrR) from Escherichia coli. AhpF contains an additional 200-residue N-terminal domain possessing a second redox-active disulfide center also required for AhpC reduction. Our studies indicate that this N-terminus contains a tandem repeat of two thioredoxin (Tr)-like folds, the second of which contains the disulfide redox center. Structural and catalytic properties of independently expressed fragments of AhpF corresponding to the TrR-like C-terminus (F[208-521]) and the 2Tr-like N-terminal domain (F[1-202]) have been addressed. Enzymatic assays, reductive titrations, and circular dichroism studies of the fragments indicate that each folds properly and retains many functional properties. Electron transfer between F[208-521] and F[1-202] is, however, relatively slow (4 x 10(4) M(-)(1) s(-)(1) at 25 degrees C) and nonsaturable up to 100 microM F[1-202]. TrR is nearly as efficient at F[1-202] reduction as is F[208-521], although neither the latter fragment, nor intact AhpF, can reduce Tr. An engineered mutant AhpC substrate with a fluorophore attached via a disulfide bond has been used to demonstrate that only F[1-202], and not F[208-521], is capable of electron transfer to AhpC, thereby establishing the direct role this N-terminal domain plays in mediating electron transfer between the TrR-like part of AhpF and AhpC.  相似文献   

16.
Reynolds CM  Meyer J  Poole LB 《Biochemistry》2002,41(6):1990-2001
Many eubacterial genomes including those of Salmonella typhimurium, Streptococcus mutans, and Thermus aquaticus encode a dedicated flavoprotein reductase (AhpF, Nox1, or PrxR) just downstream of the structural gene for their peroxiredoxin (Prx, AhpC) homologue to reduce the latter protein during turnover. In contrast, the obligate anaerobe Clostridium pasteurianum codes for a two-component reducing system upstream of the ahpC homologue. These three structural genes, herein designated cp34, cp9, and cp20, were previously identified upstream of the rubredoxin gene in C. pasteurianum, but were not linked to expression of the latter gene [Mathieu, I., and Meyer, J. (1993) FEMS Microbiol. Lett. 112, 223-227]. cp34, cp9, and cp20 have been expressed in Escherichia coli, and their products have been purified and characterized. Cp34 and Cp9 together catalyze the NADH-dependent reduction of Cp20 to effect the reduction of various hydroperoxide substrates. Cp34, containing noncovalently bound FAD and a redox-active disulfide center, is an unusual member of the low-M(r) thioredoxin reductase (TrxR) family. Like Escherichia coli TrxR, Cp34 lacks the 200-residue N-terminal AhpC-reducing domain present in S. typhimurium AhpF. Although Cp34 is more similar to TrxR than to AhpF in sequence comparisons of the nucleotide-binding domains, experiments demonstrated that NADH was the preferred reductant (Km = 2.65 microM). Cp9 (a distant relative of bacterial glutaredoxins) is a direct electron acceptor for Cp34, possesses a redox-active CXXC active site, and mediates the transfer of electrons from Cp34 to several disulfide-containing substrates including 5,5'-dithiobis(2-nitrobenzoic acid), insulin, and Cp20. These three proteins are proposed to play a vital role in the defense of C. pasteurianum against oxidative damage and may help compensate for the putative lack of catalase activity in this organism.  相似文献   

17.
The activity of pure calf-liver and Escherichia coli thioredoxin reductases decreased drastically in the presence of NADPH or NADH, while NADP+, NAD+ and oxidized E. coli thioredoxin activated both enzymes significantly, particularly the bacterial one. The loss of activity under reducing conditions was time-dependent, thus suggesting an inactivation process: in the presence of 0.24 mM NADPH the half-lives for the E. coli and calf-liver enzymes were 13.5 and 2 min, respectively. Oxidized E. coli thioredoxin fully protected both enzymes from inactivation, and also promoted their complete reactivation after only 30 min incubation at 30° C. Lower but significant protection and reactivation was also observed with NADP+ and NAD+. EDTA protected thioredoxin reductase from NADPH inactivation to a great degree, thus indicating the participation of metals in the process; EGTA did not protect the enzyme from redox inactivation. Thioredoxin reductase was extensively inactivated by NADPH under aerobic and anaerobic conditions, thus excluding the participation of O2 or oxygen active species in redox inactivation. The loss of thioredoxin reductase activity promoted by NADPH was much faster and complete in the presence of NAD+ glycohydrolase, thus suggesting that inactivation was related to full reduction of the redox-active disulfide. Those results indicate that thioredoxin reductase activity can be modulated in bacteria and mammals by the redox status of NADP(H) and thioredoxin pools, in a similar way to glutathione reductase. This would considerably expand the regulatory potential of the thioredoxin-thioredoxin reductase system with the enzyme being self-regulated by its own substrate, a regulatory protein.Abbreviations DTNB 5,5-dithiobis(2-nitrobenzoate) - EGTA Ethylenglycoltetraacetic Acid - TNB 5-thio-2-nitrobenzoate - Trx Thioredoxin - Trx(SH)2 Reduced Thioredoxin - Trx-S2 Oxidized Thioredoxin  相似文献   

18.
Jönsson TJ  Ellis HR  Poole LB 《Biochemistry》2007,46(19):5709-5721
AhpC and AhpF from Salmonella typhimurium undergo a series of electron transfers to catalyze the pyridine nucleotide-dependent reduction of hydroperoxide substrates. AhpC, the peroxide-reducing (peroxiredoxin) component of this alkyl hydroperoxidase system, is an important scavenger of endogenous hydrogen peroxide in bacteria and acts through a reactive, peroxidatic cysteine, Cys46, and a second cysteine, Cys165, that forms an active site disulfide bond. AhpF, a separate disulfide reductase protein, regenerates AhpC every catalytic cycle via electrons from NADH which are transferred to AhpC through a tightly bound flavin and two disulfide centers, Cys345-Cys348 and Cys129-Cys132, through putative large domain movements. In order to assess cysteine reactivity and interdomain interactions in both proteins, a comprehensive set of single and double cysteine mutants (replacing cysteine with serine) of both proteins were prepared. Based on 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) and AhpC reactivity with multiple mutants of AhpF, the thiolate of Cys129 in the N-terminal domain of AhpF initiates attack on Cys165 of the intersubunit disulfide bond within AhpC for electron transfer between proteins. Cys348 of AhpF has also been identified as the nucleophile attacking the Cys129 sulfur of the N-terminal disulfide bond to initiate electron transfer between these two redox centers. These findings support the modular architecture of AhpF and its need for domain rotations for function, and emphasize the importance of Cys165 in the reductive reactivation of AhpC. In addition, two new constructs have been generated, an AhpF-AhpC complex and a "twisted" form of AhpF, in which redox centers are locked together by stable disulfide bonds which mimic catalytic intermediates.  相似文献   

19.
The DNA sequence of the Escherichia coli gene encoding thioredoxin reductase has been determined. The predicted protein sequence agrees with an earlier determination of the 17 amino-terminal amino acids and with a fragment of the protein containing the redox-active half-cystines. Similarity between E. coli thioredoxin reductase and other flavoprotein disulfide oxidoreductases is quite limited, but three short segments, two of which are probably involved in FAD and NADPH binding, are highly conserved between thioredoxin reductase, glutathione reductase, dihydrolipoamide dehydrogenase, and mercuric reductase.  相似文献   

20.
We have demonstrated that calf liver protein disulfide-isomerase (Mr 57,000) is a substrate for calf thymus thioredoxin reductase and catalyzes NADPH-dependent insulin disulfide reduction. This reaction can be used as a simple assay for protein disulfide-isomerase during purification in place of the classical method of reactivation of incorrectly oxidized ribonuclease A. Protein disulfide-isomerase contains two redox-active disulfides/molecule which were reduced by NADPH and calf thioredoxin reductase (Km approximately 35 microM). The isomerase was a poor substrate for NADPH and Escherichia coli thioredoxin reductase, but the addition of E. coli thioredoxin resulted in rapid reduction of two disulfides/molecule. Tryptophan fluorescence spectra were shown to monitor the redox state of protein disulfide-isomerase. Fluorescence measurements demonstrated that thioredoxin--(SH)2 reduced the disulfides of the isomerase and allowed the kinetics of the reaction to be followed; the reaction was also catalyzed by calf thioredoxin reductase. Equilibrium measurements showed that the apparent redox potential of the active site disulfide/dithiols of the thioredoxin domains of protein disulfide-isomerase was about 30 mV higher than the disulfide/dithiol of E. coli thioredoxin. Consistent with this, experiments using dithiothreitol or NADPH and thioredoxin reductase-dependent reduction and precipitation of insulin demonstrated differences between protein disulfide-isomerase and thioredoxin, thioredoxin being a better disulfide reductase but less efficient isomerase. Protein disulfide-isomerase is thus a high molecular weight member of the thioredoxin system, able to interact with both mammalian NADPH-thioredoxin reductase and reduced thioredoxin. This may be important for nascent protein disulfide formation and other thiol-dependent redox reactions in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号