首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Osmoregulated periplasmic glucans (OPGs) G protein (OpgG) is required for OPGs biosynthesis. OPGs from Escherichia coli are branched glucans, with a backbone of beta-1,2 glucose units and with branches attached by beta-1,6 linkages. In Proteobacteria, OPGs are involved in osmoprotection, biofilm formation, virulence and resistance to antibiotics. Despite their important biological implications, enzymes synthesizing OPGs are poorly characterized. Here, we report the 2.5 A crystal structure of OpgG from E.coli. The structure was solved using a selenemethionine derivative of OpgG and the multiple anomalous diffraction method (MAD). The protein is composed of two beta-sandwich domains connected by one turn of 3(10) helix. The N-terminal domain (residues 22-388) displays a 25-stranded beta-sandwich fold found in several carbohydrate-related proteins. It exhibits a large cleft comprising many aromatic and acidic residues. This putative binding site shares some similarities with enzymes such as galactose mutarotase and glucodextranase, suggesting a potential catalytic role for this domain in OPG synthesis. On the other hand, the C-terminal domain (residues 401-512) has a seven-stranded immunoglobulin-like beta-sandwich fold, found in many proteins where it is mainly implicated in interactions with other molecules. The structural data suggest that OpgG is an OPG branching enzyme in which the catalytic activity is located in the large N-terminal domain and controlled via the smaller C-terminal domain.  相似文献   

2.
Erwinia chrysanthemi is a phytopathogenic enterobacterium causing soft rot disease in a wide range of plants. Osmoregulated periplasmic glucans (OPGs) are intrinsic components of the gram-negative bacterial envelope. We cloned the opgGH operon of E. chrysanthemi, encoding proteins involved in the glucose backbone synthesis of OPGs, by complementation of the homologous locus mdoGH of Escherichia coli. OpgG and OpgH show a high level of similarity with MdoG and MdoH, respectively, and mutations in the opgG or opgH gene abolish OPG synthesis. The opg mutants exhibit a pleiotropic phenotype, including overproduction of exopolysaccharides, reduced motility, bile salt hypersensitivity, reduced protease, cellulase, and pectate lyase production, and complete loss of virulence. Coinoculation experiments support the conclusion that OPGs present in the periplasmic space of the bacteria are necessary for growth in the plant host.  相似文献   

3.
Summary The cyclic osmoregulated periplasmic glucan produced by Burkholderia solanacearum contains 13 glucose units, all -(1–2) linked except for one -(1–6) linkage. We report here the measurement of the 3J(C1-H2) and 3J(H1-C2) coupling constants, characterizing the glycosidic linkages, through the use of a 13C/12C double half-filtered NOESY experiment. The values obtained give information about the (, ) angles of the different linkages. The results presented form an important step towards a detailed experimental model of the cyclic glucan, which might allow us to clarify its biological role and establish whether the cavity of these molecules is compatible with the capability of complexing host molecular signals.  相似文献   

4.
Osmoregulated periplasmic glucans (OPGs) of Escherichia coli are anionic and highly branched oligosaccharides that accumulate in the periplasmic space in response to low osmolarity of the medium. The glucan length, ranging from 5 to 12 glucose residues, is under strict control. Two genes that form an operon, mdoGH, govern glucose backbone synthesis. The new gene mdoD, which appears to be a paralog of mdoG, was characterized in this study. Cassette inactivation of mdoD resulted in production of OPGs with a higher degree of polymerization, indicating that OpgD, the mdoD product (according to the new nomenclature), controls the glucose backbone structures. OpgD secretion depends on the Tat secretory pathway. Orthologs of the mdoG and mdoD genes are found in various proteobacteria. Most of the OpgD orthologs exhibit a Tat-dependent secretion signal, while most of the OpgG orthologs are Sec dependent.  相似文献   

5.
A mutant of Escherichia coli (mdoR) has been isolated which is defective in synthesis of the membrane-derived oligosaccharides (MDO) normally found in the periplasmic space. In media of high osmotic pressure this defect is suppressed and MDO levels approaching those of the wild type are produced. The mdoR mutant also fails to accumulate glycogen; however, genetic analysis showed that mdoR was not cotransducible with the known glg (glycogen) locus. A further relationship between MDO and glycogen metabolism was suggested by two observations that (i) certain glg mutants affect MDO accumulation and (ii) elevated osmotic pressure inhibits glycogen accumulation, in both wild-type and mdoR cells.  相似文献   

6.
Polysomes containing nascent chains of alkaline phosphatase have been isolated from a membrane-bound polysome preparation. Indirect immunoprecipitation using conformation-specific antibodies has been employed. This technique provides a good enrichment of these polyribosomes since routinely no more than than 10--15% of non-specific immunoprecipitation was observed. The yield of the procedure is generally 40% but can be increased if higher non-specific immunoprecipitation is tolerated. Antibodies, previously described, directed against uncoiled or folded monomers of alkaline phosphatase can be used as primary antibody to recognize the nascent chains contained in membrane-bound polysomes which suggests that these chains are partially folded.  相似文献   

7.
8.
Expression of the Escherichia coli torCAD operon, which encodes the trimethylamine N-oxide reductase system, is regulated by the presence of trimethylamine N-oxide through the action of the TorR response regulator. We have identified an additional gene, torT, located just downstream from the torR gene, which is necessary for torCAD structural operon expression. Insertion within the torT gene dramatically reduced the expression of a torA'-'lacZ fusion, while presence of the gene in trans restored the wild-type phenotype. Overproduction of TorR in a torT strain resulted in partial constitutive expression of the torA'-'lacZ fusion, suggesting that TorR acts downstream from TorT. The torT gene codes for a 35.7-kDa periplasmic protein which presents some homology with the periplasmic ribose-binding protein of E. coli. We discuss the possible role of TorT as an inducer-binding protein involved in signal transduction of the tor regulatory pathway.  相似文献   

9.
10.
Isolation of genes required for hydrogenase synthesis in Escherichia coli   总被引:10,自引:0,他引:10  
A mutant strain of Escherichia coli, strain AK23, is devoid of hydrogenase activity when grown anaerobically on glucose and cannot grow on H2 plus fumarate. From E. coli chromosomal DNA library, a plasmid, pAK23, was isolated which restored hydrogenase activity in this strain. Two smaller plasmids, pAK23C and pAK23S, containing different parts of the insert DNA fragment of plasmid pAK23, were isolated. The former plasmid restored activity in strain AK23 while the latter did not. The smallest active DNA fragment in plasmid pAK23C was 0.9 kb. This gene is designated hydE. Plasmids pAK23 and pAK23S restored activity in another hydrogenase-negative strain, SE-3-1 (hydB), while plasmid pAK23C did not, suggesting that plasmid pAK23 contains two genes required for hydrogenase expression. Strain AK23 was also devoid of formate hydrogenlyase and formate dehydrogenase activities and these activities were restored by some of the plasmids. Hydrogenase and formate-related activities in strain AK23 were restored by growth of cells in a high concentration of nickel. Plasmid pAK23C led to synthesis of a polypeptide of subunit molecular mass 36 kDa and plasmid pAK23S led to synthesis of polypeptides of subunit molecular masses 30 and 41 kDa.  相似文献   

11.
The ATP-ADP exchange activity previously described in a membrane farction of Escherichia coli appeared after a cold osmotic shock according to Neu and Heppel ((1965) J. Biol. Chem. 240, 3685--3692) in the shock fluid. Membranes derived from shocked cells had no activity. The enzyme responsible for this activity has been purified 125-fold and catalyzed the transfer of a phosphoryl radical from ribonucleosidetriphosphates (NTPs) to ribonucleosidediphosphates (NDPs); this is, therefore, a non-specific nucleosidediphosphate kinase (ATP:nucleosidediphosphate phosphotransferase, EC 2.7.4.6). The activity required the presence of a divalent cation, Mg2+, Mn2+ or Ca2+ at a unity mol/mol ratio of nucleotide for maximal activation. The enzyme exhibited simple saturation kinetics with respect to the phosphate donor but inhibition by excess substrate was observed upon increasing phosphate acceptor. The kinetics of the reaction indicated an ordered bi-molecular ping-pong reaction mechanism. Differential heat sensitivity of the enzyme whether it is heated alone with ATP, ADP or Mg2+ opens possibilities to study different enzyme-substrate complexes.  相似文献   

12.
13.
S Kamitani  Y Akiyama    K Ito 《The EMBO journal》1992,11(1):57-62
Tn5 insertion mutations of Escherichia coli were isolated that impaired the formation of correctly folded alkaline phosphatase (PhoA) in the periplasm. The PhoA polypeptide synthesized in the mutants was translocated across the cytoplasmic membrane but not released into the periplasmic space. It was susceptible to degradation by proteases in vivo and in vitro. The wild-type counterpart of this gene (named ppfA) has been sequenced and shown to encode a periplasmic protein with a pair of potentially redox-active cysteine residues. PhoA synthesized in the mutants indeed lacked disulfide bridges. These results indicate that the folding of PhoA in vivo is not spontaneous but catalyzed at least at the disulfide bond formation step.  相似文献   

14.
Treatment of growing Escherichia coli B with lanthanide ions [lanthanum(III), terbium(III), and europium(III)] and subsequent aldehyde-OsO4 fixation caused areas of high contrast to appear within the periplasm (the space between inner and outer membrane of the cell envelope). X-ray microanalysis of ultrathin sections of Epon-embedded or acrylic resin-embedded cells revealed the presence of the lanthanide and of phosphorus in the areas, whose contrast greatly exceeded that of other stained structures. Comparatively small amounts of the lanthanide were also present in the outer membrane and in the cytoplasm. The distribution of the periplasmic areas of high contrast was found to be random and not clustered at areas of current or future septum formation. Irregular cell shapes were observed after lanthanide treatment before onset of fixation. In contrast to glutaraldehyde-OsO4 fixation, glutaraldehyde used as the sole fixer caused a scattered distribution of the lanthanide. Cryofixation (slam-freezing) and freeze substitution revealed a lanthanum stain at both the periplasm and the outer part of the outer membrane. Deenergization of the cell membrane by either phage T4 or carbonyl cyanide m-chlorophenylhydrazone abolished the metal accumulation. Furthermore, addition of excess calcium, administered together with the lanthanide solution, diminished the quantity and size of areas of high contrast. Cells grown in media of high NaCl concentration revealed strongly stained areas of periplasmic precipitates, whereas cells grown under low-salt conditions showed very few high-contrast patches in the periplasm. Terbium treatment (during fixation) enhanced the visibility of the sites of inner-outer membrane contact (the membrane adhesion sites) in plasmolized cells, possibly as the result of an accumulation of the metal at the adhesion domains. The data suggest a rapid interaction of the lanthanides with components of the cell envelope, the periplasm, and the energized inner membrane.  相似文献   

15.
The membrane-bound hydrogenase (EC class 1.12) of aerobically grown Escherichia coli cells was solubilized by treatment with deoxycholate and pancreatin. The enzyme was further purified to electrophoretic homogeneity by chromoatographic methods, including hydrophobic-interaction chromatography, with a yield of 10% as judged by activity and an overall purification of 2140-fold. The hydrogenase was a dimer of identical subunits with a mol.wt. of 113,000 and contained 12 iron and 12 acid-labile sulphur atoms per molecule. The epsilon 400 was 49,000M-1 . cm-1. The hydrogenase catalysed both H2 evolution and H2 uptake with a variety of artificial electron carriers, but would not interact with flavodoxin, ferredoxin or nicotinamide and flavin nucleotides. We were unable to identify any physiological electron carrier for the hydrogenase. With Methyl Viologen as the electron carrier, the pH optimum for H2 evolution and H2 uptake was 6.5 and 8.5 respectively. The enzyme was stable for long periods at neutral pH, low temperatures and under anaerobic conditions. The half-life of the hydrogenase under air at room temperature was about 12 h, but it could be stabilized by Methyl Viologen and Benzyl Viologen, both of which are electron carriers for the enzyme, and by bovine serum albumin. The hydrogenase was strongly inhibited by carbon monoxide (Ki = 1870Pa), heavy-metal salts and high concentrations of buffers, but was resistant to inhibition by thiol-blocking and metal-complexing reagents. These aerobically grown E. coli cells lacked formate hydrogenlyase activity and cytochrome c552.  相似文献   

16.
The feed profile of glucose during fedbatch cultivation could be used to influence the retention of the periplasmic product ZZ-cutinase. An increased feed rate led to a higher production rate but also to an increased specific leakage, which reduced the periplasmic retention. Three growth rates: 0.3, 0.2 and 0.1 h(-1) where studied and resulted in 20, 9 and 6%, respectively, of the total ZZ-cutinase accumulating in the medium. It was also shown that leakage during fedbatch production of a Fab fragment was also influenced by the feed rate in a similar manner to ZZ-cutinase. If intracellular product accumulation is desired the advantage of a high productivity, resulting from a high substrate feed rate, is diminished because of a reduced product retention. Biochemical analysis revealed that the growth rate, resulting from a glucose limited feed, influenced the outer membrane protein compositions with respect to OmpF and LamB, whilst OmpA was largely unaffected. As the feed rate increased the amount of total outer membrane protein decreased. When ZZ-cutinase was produced there were further reductions in outer membrane protein accumulation, by 82, 100 and 22% for OmpF, LamB and OmpA, respectively, and the total reduction was almost 60% with a high product formation rate. We suggest that the reduced titre of the outer membrane proteins, OmpF and LamB, may have contributed to a reduced ability for the cell to retain recombinant protein secreted to the periplasm.  相似文献   

17.
Chromosomal DNA from Streptococcus mutans strain UAB90 (serotype c) was cloned into Escherichia coli K-12. The clone bank was screened for any sucrose-hydrolyzing activity by selection for growth on raffinose in the presence of isopropyl-beta-D-thiogalactoside. A clone expressing an S. mutans glucosyltransferase was identified. The S. mutans DNA encoding this enzyme is a 1.73-kilobase fragment cloned into the HindIII site of plasmid pBR322. We designated the gene gtfA. The plasmid-encoded gtfA enzyme, a 55,000-molecular-weight protein, is synthesized at 40% the level of pBR322-encoded beta-lactamase in E. coli minicells. Using sucrose as substrate, the gtfA enzyme catalyzes the formation of fructose and a glucan with an apparent molecular weight of 1,500. We detected the gtfA protein in S. mutans cells with antibody raised against the cloned gtfA enzyme. Immunologically identical gtfA protein appears to be present in S. mutans cells of serotypes c, e, and f, and a cross-reacting protein was made by serotype b cells. Proteins from serotype a, g, and d S. mutans cells did not react with antibody to gtfA enzyme. The gtfA activity was present in the periplasmic space of E. coli clones, since 15% of the total gtfA activity was released by cold osmotic shock and the clones were able to grow on sucrose as sole carbon source.  相似文献   

18.
The Escherichia coli NapA (periplasmic nitrate reductase) contains a [4Fe-4S] cluster and a Mo-bis-molybdopterin guanine dinucleotide cofactor. The NapA holoenzyme associates with a di-heme c-type cytochrome redox partner (NapB). These proteins have been purified and studied by spectropotentiometry, and the structure of NapA has been determined. In contrast to the well characterized heterodimeric NapAB systems ofalpha-proteobacteria, such as Rhodobacter sphaeroides and Paracoccus pantotrophus, the gamma-proteobacterial E. coli NapA and NapB proteins purify independently and not as a tight heterodimeric complex. This relatively weak interaction is reflected in dissociation constants of 15 and 32 mum determined for oxidized and reduced NapAB complexes, respectively. The surface electrostatic potential of E. coli NapA in the apparent NapB binding region is markedly less polar and anionic than that of the alpha-proteobacterial NapA, which may underlie the weaker binding of NapB. The molybdenum ion coordination sphere of E. coli NapA includes two molybdopterin guanine dinucleotide dithiolenes, a protein-derived cysteinyl ligand and an oxygen atom. The Mo-O bond length is 2.6 A, which is indicative of a water ligand. The potential range over which the Mo(6+) state is reduced to the Mo(5+) state in either NapA (between +100 and -100 mV) or the NapAB complex (-150 to -350 mV) is much lower than that reported for R. sphaeroides NapA (midpoint potential Mo(6+/5+) > +350 mV), and the form of the Mo(5+) EPR signal is quite distinct. In E. coli NapA or NapAB, the Mo(5+) state could not be further reduced to Mo(4+). We then propose a catalytic cycle for E. coli NapA in which nitrate binds to the Mo(5+) ion and where a stable des-oxo Mo(6+) species may participate.  相似文献   

19.
Ferrichrome-iron transport in Escherichia coli is initiated by the outer membrane receptor FhuA. Thirty-five anti-FhuA monoclonal antibodies (MAbs) were isolated to examine the surface accessibility of FhuA sequences and their contribution to ligand binding. The determinants of 32 of the MAbs were mapped to eight distinct regions in the primary sequence of FhuA by immunoblotting against (i) five internal deletion FhuA proteins and (ii) four FhuA peptides generated by cyanogen bromide cleavage. Two groups of MAbs bound to FhuA in outer membrane vesicles but not to intact cells, indicating that their determinants, located between residues 1 and 20 and 21 and 59, are exposed to the periplasm. One of the 28 strongly immunoblot-reactive MAbs bound to FhuA on intact cells in flow cytometry, indicating that its determinant, located between amino acids 321 and 381, is cell surface exposed. This MAb and four others which in flow cytometry bound to cells expressing FhuA were tested for the ability to block ligand binding. While no MAb inhibited growth promotion by ferrichrome or cell killing by microcin 25, some prevented killing by colicin M and were partially able to inhibit the inactivation of T5 phage. These data provide evidence for spatially distinct ligand binding sites on FhuA. The lack of surface reactivity of most of the immunoblot-reactive MAbs suggests that the majority of FhuA sequences which lie external to the outer membrane may adopt a tightly ordered organization with little accessible linear sequence.  相似文献   

20.
Precursors of two secreted periplasmic proteins in Escherichia coli, arabinose-binding protein and maltose-binding protein, were synthesized in vitro on membrane-bound polysomes. Addition of Triton X-100 to the system resulted in processing of the precursors to mature forms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号