首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we investigated the effects of castration on androstenedione (A), testosterone (T) and dihydrotestosterone (DHT) plasma levels in adult male rats 5 and 47 days after castration. In another group of 60-day-old castrated rats, the three steroids have been evaluated during testosterone propionate administration. Our data show that 5 days after orchiectomy all three steroids were significantly decreased (p less than 0.001) with respect to control values. 47 days after orchiectomy, T and DHT were also significantly decreased with respect to the control group. In both groups of orchiectomized rats the A/T ratio increased significantly with respect to controls. On the contrary, the T/DHT ratio sharply decreased. This suggests that DHT, in orchiectomized rats, could derive from precursors other than T. A negative correlation between A and the T/DHT ratio was observed 47 days after castration in adult animals and emphasized upon testosterone propionate administration. In the latter group, T was significantly lower while A is significantly augmented with respect to control values. Finally, the above-mentioned negative correlation indicates a possible prevalent role of A in contributing to the circulating levels of DHT in adult orchiectomized rats.  相似文献   

2.
We studied the effects of adjuvant arthritis (AA) on the endocrine circadian rhythms of plasma prolactin (PRL), growth hormone (GH), insulin-like growth factor-1 (IGF-1), luteinizing hormone (LH), testosterone, and melatonin and of pituitary PRL and GH mRNA in male Long Evans rats. Groups of control and AA rats (studied 23 days after AA induction) that were housed under a 12/12 h light/dark cycle (light on at 06:00 h) were killed at 4 h intervals starting at 14:00 h. Cosinor analysis revealed a significant 12 h rhythm in PRL and PRL mRNA (p < 0.001) in controls with peaks at 14:00 h and 02:00 h, respectively. The peak at 02:00 h was abolished in the AA group resulting in a significant 24 h rhythm in parallel with that of PRL (p < 0.05) and PRL mRNA (p < 0.0001). Growth hormone showed no rhythm, but a significant rhythm of GH mRNA was present in both groups (p < 0.0001). Insulin-like growth factor-1 showed a 24 h rhythm in control but not in AA rats. The mean values of GH, GH mRNA, and IGF-1 were significantly reduced in AA. Luteinizing hormone displayed a significant 24 h rhythm (p < 0.01) peaking in the dark period in the control but not AA group. Testosterone showed in phase temporal changes of LH levels with AA abolishing the 02:00 h peak. Melatonin exhibited a significant 24 h rhythm in control (p < 0.001) and AA (p < 0.01) rats with maximum levels during the dark phase; the mesor value was higher in the AA males. These results demonstrate that AA interferes with the rhythms of all the studied hormones except the non-24 h (arrhythmic) GH secretion pattern and the rhythm in melatonin. The persistence of a distinct melatonin rhythm in AA suggests the observed disturbances of hormonal rhythms in this condition do not occur at the level of the pineal gland.  相似文献   

3.
Male rats castrated before puberty (when 26 days of age) showed a progressively decreasing susceptibility to the inhibitory effects of morphine (5 mg/kg) upon LH secretion for up to 28 days after gonadectomy (approximately 100%, 40% and 10% inhibition at 5, 12 and 28 days after castration), but thereafter morphine again caused approximately 50% reduction in serum LH values; the minimum inhibition found at 28 days after castration (age 54 days) occurred at the time at which male rats normally reach puberty. When rats were castrated at 59 days of age, morphine maximally suppressed serum LH concentrations (to less than 70%) 2 and 5 days after castration, but had no effect thereafter. In prepubertal castrates, testosterone replacement between Days 26 and 50 of life resulted in responses to morphine similar to those found in rats castrated after puberty, i.e. serum LH levels were not reduced. Morphine significantly reduced LH levels in prepubertal castrates given testosterone after 60 days of age. Treatment with morphine consistently elevated serum prolactin concentrations (greater than 100%) in castrated rats of all ages, regardless of the time elapsed after gonadectomy. These results indicate a transient fall in the inhibitory opioidergic tone upon LH secretion as the normal age of puberty approaches, that the ability of opiates to alter LH release in adulthood may depend upon testicular steroids secreted during the peripubertal period, and that the LH responses do not reflect general changes in the neuroendocrine response to opiates after castration since the prolactin response to morphine remains intact in rats castrated before and after puberty.  相似文献   

4.
The magnitude of gonadotropin releasing hormone (GnRH) induced lutei nizing hormone (LH) release prior to castration, following castration, a nd during testosterone replacement in males, was compared, using 6 9-mon th-old Holstein bulls. Also, the effects of castration and testosterone replacement on patterns of episodic changes in serum LH were studied. Blood samples were collected at hourly intervals for 24 hours prior to castration, at 21 days after castration, and at 23 days postcastration a fter testosterone, 20 mg thrice daily, has been given for 24 hours. Each animal was given GnRH, 40 mcg iv, at 24 hours before castration, at 7 and 14 days after castration, and at 28 days postcastration following 6 days of testosterone treatment. GnRH caused LH release before and after castration. The LH increase was 2.5-fold at 14 days postcastratio n. Testosterone replacement did not reduce the magnitude of LH response to GnRH to precastration levels. The number of episodic increases in serum LH prior to castration averaged 3.7 daily and increased to 6.5 daily at 21 days after castration (p less than .05). The magnitude of increase in LH concentration in these epidsodic events was not affected by castration. Testosterone replacement failed to restore either the average number or change the magniture of LH increase above precastratio n levels. It was shown that LH is normally released episodically in bulls. The peaks of LH release were followed by increased testosterone in serum. Results suggest that LH release in bulls is controlled by gonadic factors other than testosterone.  相似文献   

5.
We have shown previously that androgens negatively regulate LH alpha and beta-subunit mRNA levels, but have little or no effect on FSH beta mRNA levels in rats in vivo. In contrast, estrogen negatively regulates all three gonadotropin subunit mRNA levels in vivo. We have examined the effects of these sex steroids on gonadotropin subunit synthesis directly at the level of the pituitary gland by using cultured rat pituitary cells. Adult female and male rat pituitaries were dissected, dispersed enzymatically, and maintained in culture for 2 days. At that time, cells were treated for varying lengths of time with either medium alone or sex-steroid hormone treatments (estradiol or testosterone). Dose-response and time-course experiments were performed. Cells were then harvested and total RNA was extracted. Gonadotropin subunit mRNA levels were assessed by blot hybridization techniques. Sex-steroid hormones were added to achieve final concentrations ranging from 10(-12) to 10(-6) M for dose response experiments and 10(-8) M for time-course experiments. Testosterone treatment (10(-8) M) increased FSH beta mRNA levels 3-fold in females (P less than 0.01) and males (P less than 0.05), but had no effect on alpha or LH beta mRNA levels in either sex. Dose-related increases in FSH beta mRNA levels with increasing concentrations of testosterone were observed in both female and male pituitary cell cultures. Time-course studies revealed that the testosterone-stimulated increases in FSH beta mRNA levels are statistically significant by 12 h and 6 h after hormone addition in female and male cultures, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Male rats exhibit erections in the presence of inaccessible estrous females, and we investigated which gonadal steroids regulate these noncontact erections (NCEs). Sexually experienced Wistar males (n >/= 8/group) were tested for NCE four times (every 3 days) before castration, after castration, and after receiving subcutaneous implants of 10-mm Silastic capsules that were empty or filled with crystalline testosterone propionate (TP), dihydrotestosterone (DHT), estradiol benzoate (EB), or DHT + EB (10 mm each). Before castration, males responded with NCE in approximately 50% of tests. No males had NCEs after castration, beginning 3 days after surgery. Also, no males responded after treatment with EB or empty capsules. After receiving implants of TP, DHT, or DHT + EB, 50% of males had NCEs, beginning with the first test 3 days after treatment. On every measure of NCE, males treated with DHT or DHT + EB were indistinguishable from each other and from TP-treated males. Among the sexual responses of male rats, NCE appears to be more sensitive than other behaviors to changes in gonadal condition. In its profile of response to gonadal steroids (testosterone+, dihydrotestosterone+, estradiol-), NCE is similar to reflexive erection, for which spinal systems are sufficient, and unlike copulation (T+, DHT-, E+), which depends on discrete areas of the brain. We nonetheless conclude that NCE depends on androgen-sensitive systems in the brain, but androgen-sensitive neurons in the lumbosacral spinal cord may also play a role.  相似文献   

7.
Rats after adrenalectomy-testectomy showed a gradual increase in diencephalon 3-oxo-5 alpha-steroid: (acceptor) delta4-oxidoreductase (5 alpha-reductase) activity for 3 days. The activity then returned near to the normal range on the 4th postoperative day. When rats were given testosterone propionate (TP) 3 days after adrenalectomy-testectomy, diencephalon 5 alpha-reductase activity returned to the preoperative range 2 hr after TP administration. Diencephalon 5 alpha-reductase activity showed a highly significant increase (p less than 0.01) after a single administration of carbamazepine, reserpine, diazepam, phenytoin, phenobarbital or disulfiram. A significant increase (p less than 0.05) was also found after a single administration of methylphenidate, caffeine or methamphetamine. Plasma testosterone decreased concurrently after administration of all these agents, except diazepam. Diencephalon enzyme activity decreased significantly after repeated disulfiram administrations (p less than 0.01) but increased significantly after methamphetamine administrations (p less than 0.05). Plasma testosterone showed a tendency to decrease after repeated methamphetamine administrations but tended to increase after repeated disulfiram administrations.  相似文献   

8.
Characterization of specific vasopressin binding sites was investigated in purified mouse Leydig cells using tritiated arginine-vasopressin. Binding of radioligand was saturable, time- and temperature-dependent and reversible. (3H)-AVP was found to bind to a single class of sites with high affinity (Kd = 2.20 +/- 0.18 nM) and low capacity (Bmax = 17.4 +/- 1.8 fmol/10(6) Leydig cells). Binding displacements with specific selective analogs of AVP indicated the presence of V1 subtype receptors on Leydig cells. The ability of AVP to displace (3H)-AVP binding was greater than LVP and oxytocin. The unrelated peptides, somatostatin and substance P, were less potent, while neurotensin and LHRH did not displace (3H)-AVP binding. The time-course effects of AVP-pretreatment on basal and hCG-stimulated testosterone and cAMP accumulations were studied in primary culture of Leydig cells. Basal testosterone accumulation was significantly increased by a 24 h AVP-pretreatment of Leydig cells (P less than 0.001). This effect was potentiated by the phosphodiesterase inhibitor (MIX) and was concomitantly accompanied by a slight but significant increase in cAMP accumulation (P less than 0.01). AVP-pretreatment of the cells for 72 h had no effect on basal testosterone accumulation, but exerted a marked inhibitory effect on the hCG-stimulated testosterone accumulation (P less than 0.001). This reduction of testosterone accumulation occurred even in the presence of MIX and was not accompanied by any significant change of cAMP levels. We conclude from these data that AVP is capable of modulating steroidogenesis in Leydig cells through specific and functionally V1 receptor subtype and postulate that this effect may be part of an intratesticular paracrine/autocrine control mechanism.  相似文献   

9.
Immature female rats treated with superovulatory doses of pregnant mare serum gonadotropin (PMSG) were used to study the effects of the antiandrogen hydroxyflutamide on steroid production, particularly the biologically active androgens, in two experiments. In the first experiment, animals were given either 5 mg hydroxyflutamide or vehicle alone at 30 and 36 h following 40 IU PMSG. Compared with the vehicle group, hydroxyflutamide treatment significantly reduced the percentage of degenerate oocytes recovered from oviducts (p less than 0.05). Serum levels of testosterone and androstenedione, and their aromatized product 17 beta-estradiol, significantly decreased (p less than 0.05) in the hydroxyflutamide-treated group; however, nonaromatizable androgen, 5 alpha-dihydrotestosterone, was not affected. In the second experiment, ovaries obtained 48 h after stimulation with 4 or 40 IU PMSG were incubated with and without hydroxyflutamide (10(-5) M) and (or) testosterone (10(-7) M) to study [4-14C]pregnenolone metabolism to major steroids. In 40 IU stimulated ovaries, hydroxyflutamide significantly decreased the metabolism of pregnenolone to progesterone (p less than 0.01) and androstenedione (p less than 0.01), while the production of 17 beta-estradiol increased significantly (p less than 0.05); however, pregnenolone conversions to testosterone and 5 alpha-dihydrotestosterone were not affected. Testosterone completely reversed the hydroxyflutamide-induced alteration of pregnenolone metabolism. In contrast, there was no difference in the pregnenolone conversion patterns between untreated and hydroxyflutamide or hydroxyflutamide plus testosterone groups in 4 IU stimulated ovaries. Present results confirm our previous finding that hydroxyflutamide decreases the percentage of abnormal oocytes recovered from superovulating rats and indicates that this hydroxyflutamide effect may be partly mediated by altered ovarian steroidogenesis following inhibition of androgen binding in the ovary.  相似文献   

10.
Thymic secretory peptides thymosin beta 4 and alpha 1 have possible endocrine roles in both immune and reproductive systems; thus, they should respond to endocrine feedback control mechanisms consistent with gonadal function. In an initial experiment, male pigs (boars; n = 90; 10/time) were bled at 1, 3, 6, 12, 18, 24, 30, 36, and 96 wk of age before and 24 h after hCG stimulation. Thymosin beta 4 concentrations were significantly depressed 24 h after hCG challenge. Testosterone concentrations increased with age up to 36 wk and were further increased with hCG stimulation (p less than 0.01). In a subsequent experiment, boars (n = 12) and barrows (males castrated shortly after birth; n = 12) were blood-sampled, administered hCG, and sampled again 24 h later at 1, 3, 6, 12, 18, and 24 wk of age. Barrows (n = 12) were administered testosterone with the same protocol. Testosterone concentrations increased in boars with maturity and were further increased from the hCG stimulation (p less than 0.01). Thymosin beta 4 concentrations decreased with age in boars and barrows (p less than 0.01), and hCG challenge depressed thymosin alpha 1 and beta 4 concentrations in boars and thymosin beta 4 in barrows (p less than 0.01). Testosterone treatment of barrows also depressed thymosin beta 4 and alpha 1 in barrows (p less than 0.01). The depression of thymosins by hCG treatment points to a role for gonadotropins in altering circulating thymosin concentrations independent of, but in conjunction with, the effect of gonadal steroids.  相似文献   

11.
Testosterone plays an essential role in sexual differentiation of the male sheep brain. The ovine sexually dimorphic nucleus (oSDN), is 2 to 3 times larger in males than in females, and this sex difference is under the control of testosterone. The effect of testosterone on oSDN volume may result from enhanced expansion of soma areas and/or dendritic fields. To test this hypothesis, cells derived from the hypothalamus-preoptic area (HPOA) and cerebral cortex (CTX) of lamb fetuses were grown in primary culture to examine the direct morphological effects of testosterone on these cellular components. We found that within two days of plating, neurons derived from both the HPOA and CTX extend neuritic processes and express androgen receptors and aromatase immunoreactivity. Both treated and control neurites continue to grow and branch with increasing time in culture. Treatment with testosterone (10 nM) for 3 days significantly (P < 0.05) increased both total neurite outgrowth (35%) and soma size (8%) in the HPOA and outgrowth (21%) and number of branch points (33%) in the CTX. These findings indicate that testosterone-induced somal enlargement and neurite outgrowth in fetal lamb neurons may contribute to the development of a fully masculine sheep brain.  相似文献   

12.
Hydrogen sulfide (H2S) is endogenously produced in the brain from L-cysteine by the enzyme cystathionine beta-synthase (CBS) and functions as a neuromodulator in the brain. H2S selectively enhances NMDA receptor-mediated responses and alters hippocampal long-term potentiation (LTP). The production of H2S is regulated by Ca2+/calmodulin-mediated pathways and is enhanced in response to neuronal excitation. In addition to this fast regulation, we describe here a slower form of the regulation of H2S production by testosterone and S-adenosyl-L-methionine (SAM), a CBS activator. Endogenous H2S in the mouse brain increases after birth, reaches a maximum level at 8 weeks and then decreases. Female brain contains less H2S than male brain at each age. A single administration of testosterone to female mice increases the endogenous H2S and SAM, which reach levels similar to those of male mice. In contrast, castration of male mice decreases the levels of testosterone, SAM and H2S in the brain. Administration of SAM once a day for 3 days increases the brain H2S without significantly changing the testosterone level. These observations suggest that testosterone can regulate the brain H2S level via changing the level of SAM.  相似文献   

13.
Aromatase activity in adult guinea pig brain is androgen dependent   总被引:2,自引:0,他引:2  
Androgen metabolism in target tissues constitutes an important step for understanding hormone action. The in situ aromatization of androgen represents one of these metabolic events. We characterized aromatase activity (AA) in a microsomal preparation of brain tissue from adult guinea pigs since earlier reports questioned its presence in neural tissues of this species. Analyses revealed an apparent substrate affinity (approximately 17 nM) that was equivalent in adult males and females. However, adult male brains contained greater quantities of AA than female brains. Specifically, AA in the preoptic area (POA: p less than 0.05) and the medial basal hypothalamus (MBH; p less than 0.01) was greater in males than in females. AA was concentrated in the limbic system and hypothalamus (amygdala greater than POA greater than septum greater than MBH), whereas low levels were consistently measured in cortical tissue. In vitro estrogen formation was significantly lower in POA (p less than 0.05) and MBH (p less than 0.01) after castration. After dihydrotestosterone treatment, AA returned to levels equal to or greater than those observed in intact males. These data indicate that AA does exist in the guinea pig brain and is modulated by androgens through the androgen receptor. The presence of high levels of aromatase activity may suggest a role for locally formed estrogens in brain function in this species.  相似文献   

14.
Degenerative and regenerative changes in the ductal architecture of the ventral and dorsolateral prostates (VP and DLP) of the adult mouse were investigated in microdissected specimens over a time-course of 14 days following castration and subsequently during 14 days of administration of testosterone propionate. After castration, about 35% of the ductal tips and branch-points were lost in distal regions (usually near the capsule) in both prostatic lobes. By contrast, in more proximal regions of the prostate (closer to the urethra), the ducts survived in an atrophic condition. The ductal morphology that had been lost in the distal regions completely regenerated after testosterone propionate was administered to the castrated males. In the VP, androgen replacement simply returned the gland to its former size with moderate ductal distension; in the DLP, excessive epithelial infoldings and ductal distension were elicited in the distal regions of the ducts after 14 days of treatment with testosterone propionate. These results suggest that androgenic responsiveness and dependency are different in distal versus proximal ducts. Distal ducts are exquisitely androgen-dependent and androgen-sensitive; in proximal regions, androgen-dependency is not as strict.  相似文献   

15.
Exogenous androgens can lower HDL-cholesterol (HDL-C) concentrations, yet men with low serum testosterone have elevated rates of cardiovascular disease (CVD). HDL function may better predict CVD risk than absolute HDL-C quantity. We evaluated the acute effects of medical castration in men on HDL-C, cholesterol efflux capacity and HDL protein composition. Twenty-one healthy men, ages 18-55, received the GnRH antagonist acyline and one of the following for 28days: Group 1: placebo, Group 2: transdermal testosterone gel and placebo, Group 3: transdermal testosterone gel and an aromatase inhibitor. Sex steroids, fasting lipids, and cholesterol efflux to apoB-depleted serum were measured in all subjects. The HDL proteome was assessed in Group 1 subjects only. In Group 1, serum testosterone concentrations were reduced by >95%, and HDL-C and cholesterol efflux capacity increased (p=0.02 and p=0.03 vs. baseline, respectively). HDL-associated clusterin increased significantly with sex steroid withdrawal (p=0.007 vs. baseline). Testosterone withdrawal in young, healthy men increases HDL-C and cholesterol efflux capacity. Moreover, sex steroid deprivation changes HDL protein composition. Further investigation of the effects of sex steroids on HDL composition and function may help resolve the apparently conflicting data regarding testosterone, HDL-C, and CVD risk.  相似文献   

16.
Anabolic steroid effects on immune function: differences between analogues   总被引:2,自引:0,他引:2  
As an untoward effect of chronic anabolic steroid use, immunologic alterations may be induced. To evaluate this possibility five commercially available steroids with various types of structural differences were studied in male Sprague-Dawley rats. Animals were divided into five groups and treated with testosterone (Group 1), testosterone propionate (Group 2), testolactone (Group 3), oxandrolone (Group 4), and stanozolol (Group 5). Androgenic anabolic steroids were administered daily, subcutaneously dissolved in oil, at a dose of 1.1 mg/kg. Immune alterations were assessed by skin-test responses to phytohemagglutinin. After five days of treatment (1.1 mg/kg/day) a significant immuno-suppression was observed with all groups. However, by day 10, groups 3, 4, and 5 showed an immuno-stimulation. Using oxandrolone as the model stimulant, serum testosterone levels were significantly suppressed, while castration abolished the stimulatory effect. These observations indicate that immune alterations do occur with anabolic steroids which are immuno-suppressive when the steroid nucleus is intact and immuno-stimulatory with nuclear alterations. It appears that these changes are associated with altered gonadal testosterone release.  相似文献   

17.
Female mice of the NMRI strain were treated with the synthetic oestrogen diethylstilboestrol (DES) for the first 5 days after birth. Pools of ovaries were removed from groups of 6-, 12-, 21-, 28- and 56-day-old females. An homogenate of an ovarian pool was incubated for 1 h in the presence of [3H]pregnenolone. Synthesized steroids were extracted and separated in a two-dimensional thin-layer chromatography system. Homogeneity of tentative steroids was verified with recrystallization to constant specific activity. Synthesis of [3H]progesterone and [3H]testosterone was demonstrated at 6 days, [3H]androstenedione at 12 days, [3H]17 alpha-hydroxyprogesterone at 21 days, and [3H]oestradiol-17 beta at 28 days. Up to 28 days (21 days for progesterone), the synthetic activity was lower in homogenates of DES-exposed ovaries than in control homogenates. After 28 days, values for recovered [3H]progesterone, [3H]androstenedione and [3H]oestradiol-17 beta were higher in DES homogenates than in control homogenates while the reverse was true for [3H]17 alpha-hydroxyprogesterone and [3H]testosterone. The results are compatible with an early and direct DES inhibitory effect on ovarian steroidogenesis and, later in immature life, a DES-induced disruption of the normal FSH-LH stimulation of ovarian development.  相似文献   

18.
The concentrations of dehydroepiandrosterone (DHEA), its sulfate (DHEAS), androstenedione (A-dione), testosterone (T) and dihydrotestosterone (DHT) have been measured before and after castration in men and two animal models, namely the rat and the guinea pig. In adult men, the pre-castration levels of plasma DHEAS and DHEA were measured at 1839 +/- 320 and 2.4 +/- 0.5 ng/ml, respectively, while in both animal models, the concentrations of these two steroids were below 0.3 ng/ml. Orchiectomy in men reduced plasma T and DHT levels from 2.9 +/- 0.1 and 0.60 +/- 0.10 to 0.42 +/- 0.21 and 0.05 +/- 0.01 ng/ml (P less than 0.01), respectively, while there was no significant effect observed on DHEAS, DHEA and A-dione levels. By contrast, castration in the rat reduced the low levels of circulating DHEA and A-dione below the detection of the radioimmunoassay (RIA) used. In castrated guinea pig, a small quantity of plasma A-dione (0.07 +/- 0.02 ng/ml) was measured while DHEA was undetectable. Moreover, in the rat and guinea pig, plasma T and DHT levels became undetectable. Following administration of the antiandrogen Flutamide for two weeks in the castrated rat and guinea pig, prostate weight was not further reduced, thus indicating that there is no significant androgenic activity left following castration of these two species. In fact, castration in the rat and guinea pig caused a decrease in prostatic levels of DHT from 4.24 +/- 0.351 and 9.42 +/- 1.43 ng/g, respectively, to undetectable levels. In men, on the other hand, the prostatic DHT levels were only inhibited from 5.24 +/- 0.59 to 2.70 +/- 1.50 ng/g, respectively. As expected, when Flutamide was administered to the rat and the guinea pig, the levels of prostatic steroids remained undetectable while, in men, the DHT content in the prostate was further reduced to undetectable values. In summary, the plasma levels of DHEAS, DHEA, delta 4-dione are markedly different between men and both animal models used and furthermore, measurements of prostatic levels of androgens suggest that the high plasma levels of these steroids are likely responsible for the presence of important amounts of DHT in human prostate after castration.  相似文献   

19.
20.
Autologous down-regulation of androgen receptor messenger ribonucleic acid   总被引:6,自引:0,他引:6  
Autoregulation of androgen receptor (AR) mRNA was investigated using Northern blot analysis with AR cDNA fragments as probes. The amount of AR mRNA increased 2- to 10-fold with androgen withdrawal and decreased below control levels after androgen stimulation in rat ventral prostate, coagulating gland, epididymis, seminal vesicle, kidney, and brain, and in a human prostate cancer cell line, LNCaP. In rat ventral prostate, AR mRNA increased 2- to 3-fold within 24 h after castration and remained elevated for 4 days. Treatment with testosterone propionate beginning 24 h after castration reduced ventral prostate AR mRNA 4-fold within 8 h of androgen replacement. Administration of estradiol 24 h after castration had no significant effect on prostatic AR mRNA. Androgens, including testosterone and the synthetic androgen methyltrienolone (R1881), or the antiandrogen cyproterone acetate down-regulated AR mRNA in vitro in LNCaP cells, whereas estradiol was without effect. Administration of testosterone propionate to rats with androgen insensitivity did not decrease AR mRNA. Down-regulation of AR mRNA by androgen is therefore a receptor-mediated process which occurs in vivo in rat tissues that differ in androgen responsiveness and in cultured human prostate cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号