首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We have compared the RNA sequences and secondary structures of the Drosophila melanogaster and Drosophila virilis doublesex (dsx) splicing enhancers. The sequences of the two splicing enhancers are highly divergent except for the presence of nearly identical 13-nt repeat elements (six in D. melanogaster and four in D. virilis) and a stretch of nucleotides at the 5' and 3' ends of the enhancers. In vitro RNA structure probing of the two enhancers revealed that the 13-nt repeats are predominantly single-stranded. Thus, both the primary sequences and single-stranded nature of the repeats are conserved between the two species. The significance of the primary sequence conservation was demonstrated by showing that the two enhancers are functionally interchangeable in Tra-/Tra2-dependent in vitro splicing. In addition, inhibition of splicing enhancer activity by antisense oligonucleotides complementary to the repeats demonstrated the importance of the conserved single-stranded structure of the repeats. In vitro binding studies revealed that Tra2 interacts with each of the D. melanogaster repeat elements, except for repeat 2, with affinities that are indistinguishable, whereas Tra binds nonspecifically to the enhancer. Taken together, these observations indicate that the organization of sequences within the dsx splicing enhancers of D. melanogaster and D. virilis results in a structure in which each of the repeat elements is single-stranded and therefore accessible for specific recognition by the RNA-binding domain of Tra2.  相似文献   

2.
3.
The RNA recognition motif (RRM), also known as RNA-binding domain (RBD) or ribonucleoprotein domain (RNP) is one of the most abundant protein domains in eukaryotes. Based on the comparison of more than 40 structures including 15 complexes (RRM-RNA or RRM-protein), we reviewed the structure-function relationships of this domain. We identified and classified the different structural elements of the RRM that are important for binding a multitude of RNA sequences and proteins. Common structural aspects were extracted that allowed us to define a structural leitmotif of the RRM-nucleic acid interface with its variations. Outside of the two conserved RNP motifs that lie in the center of the RRM beta-sheet, the two external beta-strands, the loops, the C- and N-termini, or even a second RRM domain allow high RNA-binding affinity and specific recognition. Protein-RRM interactions that have been found in several structures reinforce the notion of an extreme structural versatility of this domain supporting the numerous biological functions of the RRM-containing proteins.  相似文献   

4.
Transformer 2β1 (Tra2β1) is a splicing effector protein composed of a core RNA recognition motif flanked by two arginine-serine-rich (RS) domains, RS1 and RS2. Although Tra2β1-dependent splicing is regulated by phosphorylation, very little is known about how protein kinases phosphorylate these two RS domains. We now show that the serine-arginine protein kinase-1 (SRPK1) is a regulator of Tra2β1 and promotes exon inclusion in the survival motor neuron gene 2 (SMN2). To understand how SRPK1 phosphorylates this splicing factor, we performed mass spectrometric and kinetic experiments. We found that SRPK1 specifically phosphorylates 21 serines in RS1, a process facilitated by a docking groove in the kinase domain. Although SRPK1 readily phosphorylates RS2 in a splice variant lacking the N-terminal RS domain (Tra2β3), RS1 blocks phosphorylation of these serines in the full-length Tra2β1. Thus, RS2 serves two new functions. First, RS2 positively regulates binding of the central RNA recognition motif to an exonic splicing enhancer sequence, a phenomenon reversed by SRPK1 phosphorylation on RS1. Second, RS2 enhances ligand exchange in the SRPK1 active site allowing highly efficient Tra2β1 phosphorylation. These studies demonstrate that SRPK1 is a regulator of Tra2β1 splicing function and that the individual RS domains engage in considerable cross-talk, assuming novel functions with regard to RNA binding, splicing, and SRPK1 catalysis.  相似文献   

5.
Short RNAs (21–27 nt) silence genes that contain homologous nucleotide sequences; this is known as RNA silencing. This review considers the generation of short RNAs from their precursors: double-stranded RNAs, capable of inducing RNA interference, and hairpin RNAs, whose processing yields microRNAs, as well as the properties of RNA-binding domains that were initially identified in proteins operating in RNA interference. The interactions between these domains and known RNA-binding modules within proteins involved in RNA interference and microRNA generation are described.  相似文献   

6.
7.
An RNA-binding protein of 28 kD (28RNP) has been previously isolated from spinach chloroplasts and was found to be required for 3' end processing of chloroplast mRNAs. The amino acid sequence of 28RNP revealed two approximately 80 amino-acid RNA-binding domains, as well as an acidic and glycine-rich amino terminal domain. Each domain by itself, as well as in combination with other domains, was expressed in bacterial cells and the polypeptides were purified to homogeneity. We have investigated the RNA-binding properties of the different structural domains using UV-crosslinking, saturation binding and competition between the different domains on RNA-binding. It was found that the acidic domain does not bind RNA, but that each of the RNA-binding domains, expressed either individually or together, do bind RNA, although with differing affinities. When either the first or second RNA-binding domain was coupled to the acidic domain, the affinity for RNA was greatly reduced. However, the acidic domain has a positive effect on the binding of the full-length protein to RNA, because the mature protein binds RNA with a better affinity than the truncated protein which lacks the acidic domain. In addition, it was found that a stretch of two or three G residues is enough to mediate binding of the 28RNP, whereas four U residues were insufficient. The implications of the RNA-binding properties of 28RNP to its possible function in the processing of chloroplast RNA is discussed.  相似文献   

8.
Transformer-2 (Tra2), an RNA-binding protein, is an important regulator in Drosophila sex determination. In vertebrates, however, the role of Tra2 homologues is not known. We identified two teleost homologues of Tra2, which we named Tra2a and Tra2b, in medaka (Oryzias latipes). Furthermore, we demonstrated that both Tra2 mRNAs were predominantly expressed in germ cells of both sexes before the onset of sex differentiation, suggesting that both Tra2 homologues might be involved in the sex differentiation in medaka.  相似文献   

9.
Protein–RNA interactions regulate all aspects of RNA metabolism and are crucial to the function of catalytic ribonucleoproteins. Until recently, the available technologies to capture RNA-bound proteins have been biased toward poly(A) RNA-binding proteins (RBPs) or involve molecular labeling, limiting their application. With the advent of organic–aqueous phase separation–based methods, we now have technologies that efficiently enrich the complete suite of RBPs and enable quantification of RBP dynamics. These flexible approaches to study RBPs and their bound RNA open up new research avenues for systems-level interrogation of protein–RNA interactions.  相似文献   

10.
We have investigated the sequence elements influencing RNA recognition in two closely related small nuclear ribonucleoprotein particle (snRNP) proteins, U1 snRNP-A and U2 snRNP-B". A 5-amino-acid segment in the RNA-binding domain of the U2 snRNP-B" protein was found to confer U2 RNA recognition when substituted into the corresponding position in the U1 snRNP-A protein. In addition, B", but not A, was found to require the U2 snRNP-A' protein as an accessory factor for high-affinity binding to U2 RNA. The pentamer segment in B" that conferred U2 RNA recognition was not sufficient to allow the A' enhancement of U2 RNA binding by B", thus implicating other sequences in this protein-protein interaction. Sequence elements involved in these interactions have been localized to variable loops of the RNA-binding domain as determined by nuclear magnetic resonance spectroscopy (D. Hoffman, C.C. Query, B. Golden, S.W. White, and J.D. Keene, Proc. Natl. Acad. Sci. USA, in press). These findings suggest a role for accessory proteins in the formation of RNP complexes and pinpoint amino acid sequences that affect the specificity of RNA recognition in two members of a large family of proteins involved in RNA processing.  相似文献   

11.
Identification of the protein domains that are responsible for RNA recognition has lagged behind the characterization of protein-DNA interactions. However, it is now becoming clear that a range of structural motifs bind to RNA and their structures and molecular mechanisms of action are beginning to be elucidated. In this report, we have expressed and purified one of the two putative RNA-binding domains from ZNF265, a protein that has been shown to bind to the spliceosomal components U1-70K and U2AF35 and to direct alternative splicing. We show that this domain, which contains four highly conserved cysteine residues, forms a stable, monomeric structure upon the addition of 1 molar eq of Zn(II). Determination of the solution structure of this domain reveals a conformation comprising two stacked beta-hairpins oriented at approximately 80 degrees to each other and sandwiching the zinc ion; the fold resembles the zinc ribbon class of zinc-binding domains, although with one less beta-strand than most members of the class. Analysis of the structure reveals a striking resemblance to known RNA-binding motifs in terms of the distribution of key surface residues responsible for making RNA contacts, despite a complete lack of structural homology. Furthermore, we have used an RNA gel shift assay to demonstrate that a single crossed finger domain from ZNF265 is capable of binding to an RNA message. Taken together, these results define a new RNA-binding motif and should provide insight into the functions of the >100 uncharacterized proteins in the sequence data bases that contain this domain.  相似文献   

12.
The nucleocapsid phosphoprotein N plays critical roles in multiple processes of the severe acute respiratory syndrome coronavirus 2 infection cycle: it protects and packages viral RNA in N assembly, interacts with the inner domain of spike protein, binds to structural membrane (M) protein during virion packaging and maturation, and to proteases causing replication of infective virus particle. Even with its importance, very limited biophysical studies are available on the N protein because of its high level of disorder, high propensity for aggregation, and high susceptibility for autoproteolysis. Here, we successfully prepare the N protein and a 1000-nucleotide fragment of viral RNA in large quantities and purity suitable for biophysical studies. A combination of biophysical and biochemical techniques demonstrates that the N protein is partially disordered and consists of an independently folded RNA-binding domain and a dimerization domain, flanked by disordered linkers. The protein assembles as a tight dimer with a dimerization constant of sub-micromolar but can also form transient interactions with other N proteins, facilitating larger oligomers. NMR studies on the ~100-kDa dimeric protein identify a specific domain that binds 1–1000-nt RNA and show that the N-RNA complex remains highly disordered. Analytical ultracentrifugation, isothermal titration calorimetry, multiangle light scattering, and cross-linking experiments identify a heterogeneous mixture of complexes with a core corresponding to at least 70 dimers of N bound to 1–1000 RNA. In contrast, very weak binding is detected with a smaller construct corresponding to the RNA-binding domain using similar experiments. A model that explains the importance of the bivalent structure of N to its binding on multivalent sites of the viral RNA is presented.  相似文献   

13.
14.
C Z Lee  J H Lin  M Chao  K McKnight    M M Lai 《Journal of virology》1993,67(4):2221-2227
Hepatitis delta antigen (HDAg) is an RNA-binding protein with binding specificity for hepatitis delta virus (HDV) RNA (J. H. Lin, M. F. Chang, S. C. Baker, S. Govindarajan, and M. M. C. Lai, J. Virol. 64:4051-4058, 1990). By amino acid sequence homology search, we have identified within its RNA-binding domain two stretches of an arginine-rich motif (ARM), which is present in many prokaryotic and eukaryotic RNA-binding proteins. The first one is KERQDHRRRKA and the second is EDEKRERRIAG, and they are separated by 29 amino acids. Deletion of either one of these ARM sequences resulted in the total loss of the in vitro RNA-binding activity of HDAg. Thus, HDAg is different from other RNA-binding proteins in that it requires two ARM-like sequences for its RNA-binding activity. Replacement of the spacer sequence between the two ARMs with a shorter stretch of sequence also reduced RNA binding in vitro. Furthermore, site-specific mutations of the basic amino acid residues in both ARMs resulted in the total loss or reduction of RNA-binding activity. The biological significance of the RNA-binding activity was studied by examining the trans-activating activity of the RNA-binding mutants. The plasmids expressing HDAgs with various mutations in the RNA-binding motifs were cotransfected with a replication-defective HDV dimer cDNA construct into COS cells. It was found that all the HDAg mutants which had lost the in vitro RNA-binding activity also lost the ability to complement the defect of HDV RNA replication. We conclude that the trans-activating function of HDAg requires its binding to HDV RNA.  相似文献   

15.
Sexual differentiation in Drosophila is regulated through alternative splicing of doublesex. Female-specific splicing is activated through the activity of splicing enhancer complexes assembled on multiple repeat elements. Each of these repeats serves as a binding platform for the cooperative assembly of a heterotrimeric complex consisting of the SR proteins Tra, Tra2 and 9G8. Using quantitative kinetic analyses, we demonstrate that each component of the enhancer complex is capable of recruiting the spliceosome. Surprisingly, Tra, Tra2 and 9G8 are much stronger splicing activators than other SR protein family members and their activation potential is significantly higher than expected from their serine/arginine content. 9G8 activates splicing not only through its RS domains but also through its RNA-binding domain. The RS domains of Tra and Tra2 are required but not sufficient for efficient complex assembly. Thus, the regulated assembly of the dsx enhancer complexes leads to the generation of an extended activation domain to guarantee the ‘all or none’ splicing switch that is required during Drosophila sexual differentiation.  相似文献   

16.
The serine/arginine-rich (SR) proteins are one type of major actors in regulation of pre-mRNA splicing. Their functions are closely related to the intracellular spatial organization. The RS domain and phosphorylation status of SR proteins are two critical factors in determining the subcellular distribution. Mammalian Transformer-2β (Tra2β) protein, a member of SR proteins, is known to play multiple important roles in development and diseases. In the present study, we characterized the subcellular and subnuclear localization of Tra2β protein and its related mechanisms. The results demonstrated that in the brain the nuclear and cytoplasmic localization of Tra2β were correlated with its phosphorylation status. Using deletional mutation analysis, we showed that the nuclear localization of Tra2β was determined by multiple nuclear localization signals (NLSs) in the RS domains. The point-mutation analysis disclosed that phosphorylation of serine residues in the NLSs inhibited the function of NLS in directing Tra2β to the nucleus. In addition, we identified at least two nuclear speckle localization signals within the RS1 domain, but not in the RS2 domain. The nuclear speckle localization signals determined the localization of RS1 domain-contained proteins to the nuclear speckle. The function of the signals did not depend on the presence of serine residues. The results provide new insight into the mechanisms by which the subcellular and subnuclear localization of Tra2β proteins are regulated.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号