首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
王蕊  曾宪录 《遗传》2010,32(4):301-306
染色质高度紧密的折叠阻止了转录因子和辅因子与DNA的结合, 因而通过染色质重塑以解除这样的抑制环境, 对于转录活动的正常进行是至关重要的。目前认为, 染色质重塑至少是通过两种机制来完成的, 一种是通过ATP依赖的染色质改构复合物, 另一种是通过对组蛋白尾部进行共价修饰的组蛋白修饰酶复合物。文章结合近年来的研究进展, 对前者进行染色质重塑的机制及两者在基因转录调控过程中如何相互协作等进行了论述。  相似文献   

2.
3.
Members of the ISWI family of chromatin remodeling factors hydrolyze ATP to reposition nucleosomes along DNA. Here we show that the yeast Isw2 complex interacts with DNA in a nucleotide-dependent manner at physiological ionic strength. Isw2 efficiently binds DNA in the absence of nucleotides and in the presence of a nonhydrolyzable ATP analog. Conversely, ADP promotes the dissociation of Isw2 from DNA. In contrast, Isw2 remains bound to mononucleosomes through multiple cycles of ATP hydrolysis. Solution studies show that Isw2 undergoes nucleotide-dependent alterations in conformation not requiring ATP hydrolysis. Our results indicate that during an Isw2 remodeling reaction, hydrolysis of successive ATP molecules coincides with cycles of DNA binding, release, and rebinding involving elements of Isw2 distinct from those interacting with nucleosomes. We propose that progression of the DNA-binding site occurs while nucleosome core contacts are maintained and generates a force dissipated by disruption of histone-DNA interactions.  相似文献   

4.
5.
6.
7.
8.
温度是限制物种适应性分布的重要环境因子,对极端环境温度的耐受性决定生物分布和扩散范围,而表观遗传可以提供快速的响应机制,促使生物快速适应极端环境温度。染色质重塑作为表观遗传的重要组成部分之一,其可以通过调控胁迫相关基因的表达从而促进生物适应不良环境条件。本文主要阐述了染色质重塑复合物的分类、组成和染色质重塑的方式,梳理了染色质重塑在生物温度适应性中的研究进展,提出染色质重塑在生物适应不良环境温度过程中发挥重要作用,并对未来染色质重塑与温度适应性研究提出建议。  相似文献   

9.
10.
11.
12.
《Molecular cell》2022,82(11):2098-2112.e4
  1. Download : Download high-res image (84KB)
  2. Download : Download full-size image
  相似文献   

13.
During their life cycle, flowering plants must experience a transition from vegetative to reproductive growth. Here, we report that double mutations in the Arabidopsis thaliana IMITATION SWITCH (AtISWI) genes, CHROMATIN REMODELING11 (CHR11) and CHR17, and the plant‐specific DDT‐domain containing genes, RINGLET1 (RLT1) and RLT2, resulted in plants with similar developmental defects, including the dramatically accelerated vegetative‐to‐reproductive transition. We demonstrated that AtISWI physically interacts with RLTs in preventing plants from activating the vegetative‐to‐reproductive transition early by regulating several key genes that contribute to flower timing. In particular, AtISWI and RLTs repress FT, SEP1, SEP3, FUL, and SOC1, but promote FLC in the leaf. Furthermore, AtISWI and RLTs may directly repress FT and SEP3 through associating with the FT and SEP3 loci. Our study reveals that AtISWI and RLTs represent a previously unrecognized genetic pathway that is required for the maintenance of the plant vegetative phase.  相似文献   

14.
15.
16.
Development is the process whereby a multipotent cell gives rise, through series of divisions, to progeny with successively restricted potentials. During T cell development, the process begins with a multipotent hematopoietic stem cell (HSC) in the bone marrow, moves to the thymus where early T cells or thymocytes pass through signal‐initiated developmental checkpoints, and ends in the periphery where mature T cells reside. At each step along this developmental pathway, T lymphocyte progenitors must be able to turn genes on and off, creating a specialized program of gene expression, to allow further development. How is gene expression coordinated? This review will summarize what has been learned about the function of chromatin structure in generating a “blueprint” of gene expression during T cell development. This will include discussion of mechanisms of chromatin remodeling, histone modification, and heritable gene silencing. In many cases, these processes are carried out by multi‐protein complexes whose components are largely ubiquitously expressed. The spatial and temporal specificity of these complexes is contributed by sequence specific DNA binding factors, some of which are cell type restricted in their expression. This review will summarize research underway to identify these key genetic “targeters.” Taken together, the research reviewed here provides a glimpse into the importance of regulation of chromatin structure in T cell development and the “players” involved. © 2005 Wiley‐Liss, Inc.  相似文献   

17.
18.
19.
表观遗传调控是真核生物基因表达精细调控的重要组成部分,主要包括DNA甲基化、组蛋白修饰和染色质重塑。其中,染色质重塑因子可影响组蛋白修饰酶和转录因子与特定位点的结合,在基因表达调控中占有重要地位。INO80复合物是进化上保守的染色质重塑复合物,能利用ATP水解获得的能量促进核小体的滑动和驱逐。INO80复合物除了在DNA复制、修复中发挥重要功能外,还通过改变DNA可及性调控酿酒酵母的基因表达。本文综述了染色质重塑复合物的分类及组成,重点介绍了酿酒酵母多亚基复合物INO80在基因表达调控中的重要功能,包括驱逐RNA聚合酶Ⅱ、响应信号转导途径和改变基因表达水平等,并着重总结了其在酿酒酵母环境胁迫响应机理中的研究进展。深入研究INO80染色质重塑复合物的功能,可为理解真核生物精细代谢调控的机制,并进一步开发基于染色质重塑等表观调控水平的微生物代谢工程和合成生物学改造策略,提高菌株的环境胁迫耐受性和发酵性能提供基础。  相似文献   

20.
《Molecular cell》2023,83(8):1350-1367.e7
  1. Download : Download high-res image (265KB)
  2. Download : Download full-size image
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号