首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
In this study, we aimed to investigate the adaptation of blood pressure (BP), heart rate (HR), and locomotor activity (LA) circadian rhythms to light cycle shift in transgenic rats with a deficit in brain angiotensin [TGR(ASrAOGEN)]. BP, HR, and LA were measured by telemetry. After baseline recordings (bLD), the light cycle was inverted by prolonging the light by 12 h and thereafter the dark period by 12 h, resulting in inverted dark-light (DL) or light-dark (LD) cycles. Toward that end, a 24-h dark was maintained for 14 days (free-running conditions). When light cycle was changed from bLD to DL, the acrophases (peak time of curve fitting) of BP, HR, and LA shifted to the new dark period in both SD and TGR(ASrAOGEN) rats. However, the readjustment of the BP and HR acrophases in TGR(ASrAOGEN) rats occurred significantly slower than SD rats. The LA acrophases changed similarly in both strains. When light cycle was changed from DL to LD by prolonging the dark period by 12 h, the reentrainment of BP and LA occurred faster than the previous shift in both strains. The readjustment of the BP and HR acrophases in TGR(ASrAOGEN) rats occurred significantly slower than SD rats. In free-running conditions, the circadian rhythms of the investigated parameters adapted in TGR(ASrAOGEN) and SD rats in a similar manner. These results demonstrate that the brain RAS plays an important role in mediating the effects of light cycle shifts on the circadian variation of BP and HR. The adaptive behavior of cardiovascular circadian rhythms depends on the initial direction of light-dark changes.  相似文献   

2.
Lighting regimen shifts can modify the effects of cefodizime, for the purpose of a chronoimmunomodulation. Two experiments were carried out on male and female LOU rats inoculated subcutaneously with plasmacytoma cells. Some rats were kept on their original LD12:12 regimen, whereas others, after tumor implantation, were subjected every second day to 6-h shifts, instituted, in alternation, as advance or delay. Daily treatment with cefodizime or placebo started when, overall, about 50% of the animals had developed a palpable tumor. A subgroup of animals contributed daily smears for the determination of the estrus cycle and further provided core temperature and activity data by telemetry. In Experiment I, the repeated shifting of the LD regimen was associated with survival time prolongation (p less than 0.05), irrespective of drug administration. Moreover, in those (female) rats repeatedly exposed to shifts of the lighting schedule, cefodizime was found to prolong survival time (p less than 0.05). The effects of cefodizime vs placebo on survival time were found to be circadian stage-dependent. In Experiment II, differing from Experiment I in the initial conditions before the institution of the shifts, cefodizime treatment was associated with a prolongation of survival time of the female rats kept on a fixed LD12:12 regimen. Both male and female rats again showed a circadian stage-dependence of the cefodizime effect. These results suggest that interactions between synchronizers of rhythms (such as shifts of the lighting regimen, the latter simulating the daily routine) and immunomodulating agents such as cefodizime may be optimized to improve treatment strategies against cancer and other diseases.  相似文献   

3.
The effect of pinealectomy and exogenous melatonin on circadian rhythm of triiodothyronine (T3), thyroxin (T4), corticosterone and testosterone in sham-operated and pinealectomized rats were investigated. The hormones concentration were RIA-measured and the circadian rhythm secretion were analysed by cosinor method. The findings suggest that pinealectomy abolishes the rhythmical character of corticosterone secretion and disturbs the circadian rhythm of T3, T4 and testosterone. Exogenous melatonin has the suppressive effect of diurnal secretion of T3, T4 and testosterone in pinealectomized rats but stimulates the rhythmical corticosterone secretion.  相似文献   

4.
The acute disruption in sleep quality, vigilance levels, and cognitive and athletic performance observed after transmeridian flights is presumed to be the result of a transient misalignment between the endogenous circadian pacemaker and the shifted sleep schedule. Several laboratory and field experiments have demonstrated that exposure to bright artificial light can accelerate circadian entrainment to a shifted sleep-wake schedule. In the present study, the authors investigated whether the schedule of exposure to indoor room light, to which urban dwellers are typically exposed, can substantially affect circadian adaptation to a simulated eastward voyage. We enrolled 15 healthy young men in a laboratory simulation of a Montreal-to-London voyage. Subjects were exposed to 6 h of room light (mean +/- SD: 379+/-10) prior to bedtime (n = 7) or when on a progressively advancing schedule (n = 8) early in the day. The remaining 10 hours of wakefulness were spent in dim light (4+/-1 lux). Circadian assessments, performed via the constant routine procedure, evaluated the phase of the endogenous circadian rhythms of core body temperature and plasma melatonin before and after 1 week on the shifted schedule. At the end of the study, only subjects exposed to room light on the advancing schedule expressed oscillations of the endogenous circadian pacemaker in phase with the new sleep-wake cycle. In this group, a mean advance shift of the nadir of core body temperature of +5:22+/-0:15 h was observed, with parallel shifts in plasma melatonin concentration and subjective alertness. The circadian rhythms of subjects exposed to room light later in the day remained much more adjusted to the departure than to the destination time zone. These results demonstrate that the schedule of exposure to room light can substantially affect circadian adaptation to a shifted sleep-wake schedule.  相似文献   

5.
Animals placed under short light-dark (LD) cycles show a dissociation of their circadian rhythms. However, this effect has only been studied in Wistar rats and with the motor activity (MA) rhythm. Thus, in the present experiment, we studied in TGR(mREN2)27 (TGR) rats, a strain of hypertensive rats, the effect of a short LD cycle on the circadian rhythms of MA, heart rate (HR), and blood pressure (BP). Our aim was [1] to investigate whether the exposure of TGR rats to a short LD cycle induced a dissociation of their circadian rhythms, [2] to study the effect of short LD cycles on the development of the circadian rhythms of TGR rats, and [3] to compare the effect of short LD cycles on young and adult TGR rats. One group of TGR rats was maintained under LD cycles of 22h periods (group G22). The progress in time of their rhythms was compared to that of TGR rats of the same age that had been kept under LD cycles of 24h periods (group G24). For the third point, the rhythms of a group of 5-week-old TGR rats kept under LD 22h cycles (young rats) were compared to those of a group of 11-week-old TGR rats (adult rats). Results showed that there is a dissociation of the circadian rhythms of all the variables monitored in TGR rats maintained under LD 22h cycles, independent of age. We have also found that group G22 showed a higher increase in BP with age and a higher mortality due to malignant hypertension compared to group G24. Finally, it seems that it is harder for young rats to entrain to short LD cycles than for adult rats, and young rats have a higher mortality due to malignant hypertension than adult rats. In conclusion, we demonstrated that short LD cycles produce a dissociation in the HR, BP, and MA circadian rhythms. The results of this experiment, compared to those previously obtained in Wistar rats, suggest that the light perception, the responses of the circadian system to light, or both are altered in the TGR rats. (Chronobiology International, 18(4), 641-656, 2001)  相似文献   

6.
7.
This study is aimed at verifying the causal relationship of chronic circadian desynchronization and changes in body weight control. Eight male albino F344 rats aged between 12-15 wk were subjected to twice weekly 12-h shifts of the daily light-dark (LD) cycle for 13 wk (3 mo). Continuous circadian phase shifts consisting of intermittent phase delay and advance and reduced circadian amplitudes were consistently displayed in all five experimental rats implanted intraperitoneally with heart rate, body temperature, and activity transponders. The experimental rat maintained a greater body weight during LD shifts and even after 10 days of recovery than that of the age-matched control rat, which was maintained on a regular LD cycle. Body weight gain was greater in the first 2 mo of LD shifts in the experimental rat than in the control rat. Relative to the baseline, food intake and activity percentages were increased and reduced, respectively, for the experimental rats. Features of these results, such as increased body weight gain and food intake, and reduced activity, suggest a causal relationship of chronic circadian desynchronization and changes in body weight control in male albino F344 rats.  相似文献   

8.
Effects of two different light intensities during daytime were examined on human circadian rhythms in plasma melatonin, core body temperature, and wrist activity under a fixed sleep schedule. Sleep qualities as indicated by polysomnography and subjective sleepiness were also measured. In the first week, under dim light conditions ( approximately 10 lx), the onset and peak of nocturnal melatonin rise were significantly delayed, whereas the end of melatonin rise was not changed. The peak level of melatonin rise was not affected. As a result, the width of nocturnal melatonin rise was significantly shortened. In the second week, under bright light conditions ( approximately 5,000 lx), the phases of nocturnal melatonin rise were not changed further, but the peak level was significantly increased. Core body temperature at the initial sleep phase was progressively elevated during the course of dim light exposure and reached the maximum level at the first night of bright light conditions. Subjective sleepiness gradually declined in the course of dim light exposure and reached the minimum level at the first day of bright light. These findings indicate that repeated exposures to daytime bright light are effective in controlling the circadian phase and increasing the peak level of nocturnal melatonin rise in plasma and suggest a close correlation between phase-delay shifts of the onset of nocturnal melatonin rise or body temperature rhythm and daytime sleepiness.  相似文献   

9.
Neural sites that interact with the suprachiasmatic nuclei (SCN) to generate rhythms of unrestricted feeding remain unknown. We used the targeted toxin, leptin conjugated to saporin (Lep-SAP), to examine the importance of leptin receptor-B (LepR-B)-expressing neurons in the arcuate nucleus (Arc) for generation of circadian feeding rhythms. Rats given Arc Lep-SAP injections were initially hyperphagic and rapidly became obese (the "dynamic phase" of weight gain). During this phase, Lep-SAP rats were arrhythmic under 12:12-h light-dark (LD) conditions, consuming 59% of their total daily intake during the daytime, compared with 36% in blank-SAP (B-SAP) controls. Lep-SAP rats were also arrhythmic in continuous dark (DD), while significant circadian feeding rhythms were detected in all B-SAP controls. Approximately 8 wk after injection, Lep-SAP rats remained obese but transitioned into a "static phase" of weight gain marked by attenuation of their hyperphagia and rate of weight gain. In this phase, Arc Lep-SAP rats exhibited circadian feeding rhythms under LD conditions, but were arrhythmic in continuous light (LL) and DD. Lep-SAP injections into the ventromedial hypothalamic nucleus did not cause hyperphagia, obesity, or arrhythmic feeding in either LD or DD. Electrolytic lesion of the SCN produced feeding arrhythmia in DD but not hyperphagia or obesity. Results suggest that both Arc Lep-SAP neurons and SCN are required for generation of feeding rhythms entrained to photic cues, while also revealing an essential role for the Arc in maintaining circadian rhythms of ad libitum feeding independent of light entrainment.  相似文献   

10.
While circadian rhythms of locomotion have been reported in the American lobster, Homarus americanus, it is unclear whether heart rate is also modulated on a circadian basis. To address this issue, both heart rate and locomotor activity were continuously monitored in light-dark (LD) cycles and constant darkness (DD). Lobsters in running wheels exhibited significant nocturnal increases in locomotor activity and heart rates during LD, and these measures were significantly correlated. In DD, most lobsters exhibited persistent circadian rhythms of both locomotion and heart rate. When heart rate was monitored in restrained lobsters in LD and DD, most animals also demonstrated clear daily and circadian rhythms in heart rate. Overall, this is the first demonstration of circadian rhythms of heart rate in H. americanus, the expression of which does not appear to be dependent on the expression of locomotor activity.  相似文献   

11.
The aim of the current investigation was to study the effect of lithium on circadian rhythms of pineal - testicular hormones by quantitations of pineal and serum serotonin, N-acetylserotonin and melatonin, and serum testosterone at four time points (06.00, 12.00, 18.00 and 24.00) of a 24-hr period under normal photoperiod (L:D), reversed photoperiod (D:L), constant light (L:L) and constant dark phase (D:D) in rats. Circadian rhythms were observed in pineal hormones in all the combinations of photoperiodic regimens, except in constant light, and in testosterone levels in all the photoperiodic combinations. Pineal and serum N-acetylserotonin and melatonin levels were higher than serotonin at night (24.00 hr), in natural L:D cycle, in reversed L:D cycle or similar to normal L:D cycle in constant dark phase, without any change in constant light. In contrast, testosterone level was higher in light phase (12.00 hr through 18.00 hr) than in the dark phase (24.00 hr through 06.00 hr) in normal L:D cycle, in reversed L:D cycle, similar to normal L:D cycle in constant dark (D:D), and reversed to that of the normal L:D cycle in constant light (L:L). Lithium treatment (2 mEq/kg body weight daily for 15 days) suppressed the magnitude of circadian rhythms of pineal and serum serotonin, N-acetylserotonin and melatonin, and testosterone levels by decreasing their levels at four time points of a 24-hr period in natural L:D or reversed D:L cycle and in constant dark (D:D). Pineal indoleamine levels were reduced after lithium treatment even in constant light (L:L). Moreover, lithium abolished the melatonin rhythms in rats exposed to normal (L:D) and reversed L:D (D:L) cycles, and sustained the rhythms in constant dark. But testosterone rhythm was abolished after lithium treatment in normal (L:D)/reversed L:D (D:L) cycle or even in constant light/dark. The findings indicate that the circadian rhythm exists in pineal hormones in alternate light - dark cycle (L:D/D:L) and in constant dark (D:D), but was absent in constant light phase (L:L) in rats. Lithium not only suppresses the circadian rhythms of pineal hormones, but abolishes the pineal melatonin rhythm only in alternate light - dark cycles, but sustains it in constant dark. The testosterone rhythm is abolished after lithium treatment in alternate light - dark cycle and constant light/dark. It is suggested that (a) normal circadian rhythms of pineal hormones are regulated by pulse dark phase in normal rats, (b) lithium abolishes pineal hormonal rhythm only in pulse light but sustains it in constant dark phase, and (c) circadian testosterone rhythm occurs in both pulse light or pulse dark phase in normal rats, and lithium abolishes the rhythm in all the combinations of the photoperiod. The differential responses of circadian rhythms of pineal and testicular hormones to pulse light or pulse dark in normal and lithium recipients are discussed.  相似文献   

12.
The effect of various photoperiods on circadian rhythms of chosen parameters was investigated in laboratory rats. SPF male Wistar rats were adapted for six weeks to artificial light-dark cycles (LD 8:16, 12:12, 16:8). The light was switched on at 07.00 h in all regimens. The rats were killed at 3-hour intervals within 24 h, the serum concentration of corticosterone, insulin, glucose, food and water intake was determined. The external and computative acrophases of corticosterone varied in every photoperiod being dependent on the duration of light, the mesor values decreased in LD 16:8 in comparison with other photoperiods. The external acrophase of insulin was located 4 h after light onset in LD 8:16 and 12:12, in LD 16:8 one hour before light onset. The mesor values were approximately equal in all photoperiods. The circadian rhythms of glucose were similar in all regimens. Circadian variation of food and water consumption culminated at the same time in all regimens, the amount of food consumed in light increased with the light duration. Various photoperiods remarkably influenced circadian oscillations of corticosterone and in part food and water intake which could be considered as photoperiodic traits.  相似文献   

13.

Background

The loss of diurnal rhythm in blood pressure (BP) is an important predictor of end-organ damage in hypertensive and diabetic patients. Recent evidence has suggested that two major physiological circadian rhythms, the metabolic and cardiovascular rhythms, are subject to regulation by overlapping molecular pathways, indicating that dysregulation of metabolic cycles could desynchronize the normal diurnal rhythm of BP with the daily light/dark cycle. However, little is known about the impact of changes in metabolic cycles on BP diurnal rhythm.

Methodology/Principal Findings

To test the hypothesis that feeding-fasting cycles could affect the diurnal pattern of BP, we used spontaneously hypertensive rats (SHR) which develop essential hypertension with disrupted diurnal BP rhythms and examined whether abnormal BP rhythms in SHR were caused by alteration in the daily feeding rhythm. We found that SHR exhibit attenuated feeding rhythm which accompanies disrupted rhythms in metabolic gene expression not only in metabolic tissues but also in cardiovascular tissues. More importantly, the correction of abnormal feeding rhythms in SHR restored the daily BP rhythm and was accompanied by changes in the timing of expression of key circadian and metabolic genes in cardiovascular tissues.

Conclusions/Significance

These results indicate that the metabolic cycle is an important determinant of the cardiovascular diurnal rhythm and that disrupted BP rhythms in hypertensive patients can be normalized by manipulating feeding cycles.  相似文献   

14.
Night shift work and rapid transmeridian travel result in a misalignment between circadian rhythms and the new times for sleep, wake, and work, which has health and safety implications for both the individual involved and the general public. Entrainment to the new sleep/wake schedule requires circadian rhythms to be phase-shifted, but this is often slow or impeded. The authors show superimposed light and melatonin PRCs to explain how to appropriately time these zeitgebers to promote circadian adaptation. They review studies in which bright light and melatonin were administered to try to counteract jet lag or to produce circadian adaptation to night work. They demonstrate how jet lag could be prevented entirely if rhythms are shifted before the flight using their preflight plan and discuss the combination of interventions that they now recommend for night shift workers.  相似文献   

15.
While circadian rhythms of locomotion have been reported in the American lobster, Homarus americanus, it is unclear whether heart rate is also modulated on a circadian basis. To address this issue, both heart rate and locomotor activity were continuously monitored in light-dark (LD) cycles and constant darkness (DD). Lobsters in running wheels exhibited significant nocturnal increases in locomotor activity and heart rates during LD, and these measures were significantly correlated. In DD, most lobsters exhibited persistent circadian rhythms of both locomotion and heart rate. When heart rate was monitored in restrained lobsters in LD and DD, most animals also demonstrated clear daily and circadian rhythms in heart rate. Overall, this is the first demonstration of circadian rhythms of heart rate in H. americanus, the expression of which does not appear to be dependent on the expression of locomotor activity.  相似文献   

16.
The transgenic TGR(mREN-2)27 rat is not only characterized by fulminant hypertension, but also by a disturbance in circadian blood pressure regulation, resulting in inverse circadian blood pressure profiles. The reasons for these alterations are not very well understood at present. We therefore investigated the circadian rhythms in several hormones participating in blood pressure regulation. From TGR and Sprague-Dawley (SPRD) control rats synchronized to 12h light and 12h dark (LD 12:12) blood was collected at different circadian times (07, 11, 15, 19, 23, 03, and 07 again, 5 rats per strain and time). The activities of plasma renin and converting enzyme, as well as plasma concentrations of corticosterone and aldosterone, were determined by radioimmunoassay (RIA). SPRD rats showed significant circadian rhythms in all variables except plasma renin activity, with maxima occurring during the day. TGR rats showed significant circadian rhythmicity in plasma renin activity and corticosterone and daily variation in aldosterone; angiotensin-converting enzyme (ACE) activity did not reach statistical significance. In TGR rats, 24h means in plasma renin activity and aldosterone were approximately sevenfold and fourfold higher, respectively, than in SPRD rats. Peak concentrations in corticosterone around 15h were more than two times higher in TGR rats than in SPRD rats, whereas no differences were observed during the night. It is concluded that, in TGR rats, the overall increase in plasma renin activity and aldosterone may contribute to the elevated blood pressure. The comparatively high levels in corticosterone and plasma renin activity during daytime may be involved in the inverse circadian blood pressure profiles in the transgenic animals. (Chronobiology International, 17(5), 645–658, 2000)  相似文献   

17.
The transgenic TGR(mREN-2)27 rat is not only characterized by fulminant hypertension, but also by a disturbance in circadian blood pressure regulation, resulting in inverse circadian blood pressure profiles. The reasons for these alterations are not very well understood at present. We therefore investigated the circadian rhythms in several hormones participating in blood pressure regulation. From TGR and Sprague-Dawley (SPRD) control rats synchronized to 12h light and 12h dark (LD 12:12) blood was collected at different circadian times (07, 11, 15, 19, 23, 03, and 07 again, 5 rats per strain and time). The activities of plasma renin and converting enzyme, as well as plasma concentrations of corticosterone and aldosterone, were determined by radioimmunoassay (RIA). SPRD rats showed significant circadian rhythms in all variables except plasma renin activity, with maxima occurring during the day. TGR rats showed significant circadian rhythmicity in plasma renin activity and corticosterone and daily variation in aldosterone; angiotensin-converting enzyme (ACE) activity did not reach statistical significance. In TGR rats, 24h means in plasma renin activity and aldosterone were approximately sevenfold and fourfold higher, respectively, than in SPRD rats. Peak concentrations in corticosterone around 15h were more than two times higher in TGR rats than in SPRD rats, whereas no differences were observed during the night. It is concluded that, in TGR rats, the overall increase in plasma renin activity and aldosterone may contribute to the elevated blood pressure. The comparatively high levels in corticosterone and plasma renin activity during daytime may be involved in the inverse circadian blood pressure profiles in the transgenic animals. (Chronobiology International, 17(5), 645-658, 2000)  相似文献   

18.
The indolamine melatonin is an important rhythmic endocrine signal in the circadian system. Exogenous melatonin can entrain circadian rhythms in physiology and behavior, but the role of endogenous melatonin and the two membrane-bound melatonin receptor types, MT1 and MT2, in reentrainment of daily rhythms to light-induced phase shifts is not understood. The present study analyzed locomotor activity rhythms and clock protein levels in the suprachiasmatic nuclei (SCN) of melatonin-deficient (C57BL/6J) and melatonin-proficient (C3H/HeN) mice, as well as in melatonin-proficient (C3H/HeN) mice with targeted deletion of the MT1, MT2, or both receptors, to determine effects associated with phase delays or phase advances of the light/dark (LD) cycle. In all mouse strains and genotypes, reentrainment of locomotor activity rhythms was significantly faster after a 6-h phase delay than a 6-h phase advance. Reentrainment after the phase advance was, however, significantly slower than in melatonin-deficient animals and in mice lacking functional MT2 receptors than melatonin-proficient animals with intact MT2 receptors. To investigate whether these behavioral differences coincide with differences in reentrainment of clock protein levels in the SCN, mPER1, mCRY1 immunoreactions were compared between control mice kept under the original LD cycle and killed at zeitgeber time 04 (ZT04) or at ZT10, respectively, and experimental mice subjected to a 6-h phase advance of the LD cycle and sacrificed at ZT10 on the third day after phase advance. This ZT corresponds to ZT04 of the original LD cycle. Under the original LD cycle, the numbers of mPER1- and mCRY1-immunoreactive cell nuclei were low at ZT04 and high at ZT10 in the SCN of all mouse strains and genotypes investigated. Notably, mouse strains with intact melatonin signaling and functional MT2 receptors showed a significant increase in the number of mPER1- and mCRY1-immunoreactive cell nuclei at the new ZT10 as compared to the former ZT04. These data suggest the endogenous melatonin signal facilitates reentrainment of the circadian system to phase advances on the level of the SCN molecular clockwork by acting upon MT2 receptors.  相似文献   

19.
Surprisingly, in our modern 24/7 society, there is scant information on the impact of developmental chronodisruption like the one experienced by shift worker pregnant women on fetal and postnatal physiology. There are important differences between the maternal and fetal circadian systems; for instance, the suprachiasmatic nucleus is the master clock in the mother but not in the fetus. Despite this, several tissues/organs display circadian oscillations in the fetus. Our hypothesis is that the maternal plasma melatonin rhythm drives the fetal circadian system, which in turn relies this information to other fetal tissues through corticosterone rhythmic signaling. The present data show that suppression of the maternal plasma melatonin circadian rhythm, secondary to exposure of pregnant rats to constant light along the second half of gestation, had several effects on fetal development. First, it induced intrauterine growth retardation. Second, in the fetal adrenal in vivo it markedly affected the mRNA expression level of clock genes and clock-controlled genes as well as it lowered the content and precluded the rhythm of corticosterone. Third, an altered in vitro fetal adrenal response to ACTH of both, corticosterone production and relative expression of clock genes and steroidogenic genes was observed. All these changes were reversed when the mother received a daily dose of melatonin during the subjective night; supporting a role of melatonin on overall fetal development and pointing to it as a 'time giver' for the fetal adrenal gland. Thus, the present results collectively support that the maternal circadian rhythm of melatonin is a key signal for the generation and/or synchronization of the circadian rhythms in the fetal adrenal gland. In turn, low levels and lack of a circadian rhythm of fetal corticosterone may be responsible of fetal growth restriction; potentially inducing long term effects in the offspring, possibility that warrants further research.  相似文献   

20.
Experiments were conducted in male rats to study the effects of streptozotocin-induced diabetes on circadian rhythms of (a) plasma corticosterone concentrations; (b) motor activity; and (c) metabolic patterns. Animals were entrained to LD cycles of 12: 12 hr and fed ad libitum.

A daily rhythm of plasma corticosterone concentrations was found in controls animals with peak levels at 2400 hr and low values during the remaining hours. This rhythm was statistically confirmed by the cosinor method and had an amplitude of 3.37μg/100 ml and the acrophase at 100 hr. A loss of the normal circadian variation was observed in diabetic animals, with a nadir at the onset of light period and high values throughout the remaining hours; cosinor analysis of these data showed no circadian rhythm, delete and a higher mean level than controls.

As expected, normal rats presented most of their motor activity during the dark period with 80+ of total daily activity; the cosinor method demonstrated a circadian rhythm with an amplitude of 60+ of the mean level and the acrophase at 0852 hr. Both diabetic and control rats showed a similar activity during the light phase, but diabetic animals had less activity than controls during the night and their percentage of total daily activity was similar in both phases of the LD cycle (50+ for each one). With the cosinor method we were able to show the persistence of a circadian rhythm in the motor activity of diabetic rats, but with a mesor and amplitude lower than in controls (amplitude rested at 60+ of the mean level) and its acrophase advanced to 0148 hr.

The metabolic activity pattern of diabetic rats also changed: whereas controls showed a greater metabolic activity during the night (70+ food; 82+ water; 54+ urine; 67+ faeces), diabetics did not show differences between both phases of the LD cycle. Water ingested and urine excreted by the diabetic group were higher than normal during light and dark periods; food consumed and faeces excreted were higher than controls only in the light phase.

These data suggest that alterations in circadian rhythms of plasma corticosterone and motor activity are consecutive to the loss of the feeding circadian pattern, due to polyphagia and polydipsia showed by these animals, which need to extend intakes during the light and dark phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号