共查询到20条相似文献,搜索用时 15 毫秒
1.
It’s favorable to alter KRas mutation’s location to endomembrane by interfering the binding of PDEδ (the prenyl-binding protein phosphodiesterase delta) to KRas. In the present work, the binding of four inhibitors (Deltarasin, allyl analogue, pyrazolopyridazinone derivative, and Deltazinone 1) to PDEδ is investigated with all-atom Molecular Dynamic (MD) simulations. The binding free energy calculation results reveal that van der Waals (VDW) energy provides the major force for affinity binding. Moreover, the binding energy decomposition indicates that residues R61 and I129 provide important contributions to binding energies in all systems. The conserved hydrogen bonds play crucial roles in anchoring the inhibitors to the exact site for binding. The results for conformational analysis of PDEδ/free and PDEδ/inhibitors systems show that the structures are more stable after the inhibitors’ binding to the PDEδ. It is also found that the most unstable system among four complexes is PDEδ/pyrazolopyridazinone derivative system whose α3-helix formed by the residues P113-Q116 disappears. This study may provide valuable information for the design of high potency PDEδ inhibitors. Communicated by Ramaswamy H. Sarma 相似文献
2.
Matriptase is a serine protease associated with a wide variety of human tumors and carcinoma progression. Up to now, many promising anti-cancer drugs have been developed. However, the detailed structure–function relationship between inhibitors and matriptase remains elusive. In this work, molecular dynamics simulation and binding free energy studies were performed to investigate the biochemistry behaviors of two class inhibitors binding to matriptase. The binding free energies predicted by MM/GBSA methods are in good agreement with the experimental bioactivities, and the analysis of the individual energy terms suggests that the van der Waals interaction is the major driving force for ligand binding. The key residues responsible for achieving strong binding have been identified by the MM/GBSA free energy decomposition analysis. Especially, Trp215 and Phe99 had an important impact on active site architecture and ligand binding. The results clearly identify the two class inhibitors exist different binding modes. Through summarizing the two different modes, we have mastered some important and favorable interaction patterns between matriptase and inhibitors. Our findings would be helpful for understanding the interaction mechanism between the inhibitor and matriptase and afford important guidance for the rational design of potent matriptase inhibitors. 相似文献
3.
Aldose reductase (AKR1B1) has been considered as a significant target for designing drugs to counteract the development of diabetic complications. In the present study, molecular dynamics (MD) simulations and molecular mechanics generalized Born surface area (MM-GB/SA) calculations were performed to make sure which tautomer is the preferred one among three tautomeric forms (Mtia1, Mtia2, and Mtia3) of 3-Mercapto-5H-1,2,4-triazino[5,6-b]indole-5-acetic acid (Mtia) for binding to AKR1B1. The overall structural features and the results of calculated binding free energies indicate that Mtia1 and Mtia2 have more superiority than Mtia3 in terms of binding to AKR1B1. Furtherly, the local active site conformational characteristics and non-covalent interaction analysis were identified. The results indicate that the combination of Mtia2 and AKR1B1 is more stable than that of Mtia1. Furthermore, two extra hydrogen bonds between AKR1B1 and Mtia2 are found with respect to Mtia1. In addition, Mtia2 makes slightly stronger electrostatic interaction with the positively charged nicotinamide group of NADP + than Mtia1. Based on the results above, Mtia2 is the preferred tautomeric form among the three tautomers. Our study can provide an insight into the details of the interaction between AKR1B1 and Mtia at the atomic level, and will be helpful for the further design of AKR1B1 inhibitors. 相似文献
4.
Focal adhesion kinase (FAK) and CD4 fulfil vital functions in cellular signal transduction: FAK is a central component in integrin signalling, whereas CD4 plays essential roles in the immune defence. In T lymphocytes, FAK and CD4 localise to the same signalling complexes after stimulation by either the human immunodeficiency virus (HIV) gp120 glycoprotein or an antigen, suggesting the concerted action of FAK and CD4 in these cells. Using crystallography and microcalorimetry, we here show that the focal adhesion targeting (FAT) domain of FAK binds specifically to the CD4 endocytosis motif in vitro. This FAT-CD4 complex is structurally and thermodynamically similar to the one FAT forms with paxillin LD motifs. The CD4 binding site on FAT presents the same features as the established CD4 binding site on the HIV-1 Nef protein. The binding of FAT to CD4 is incompatible with the binding of Lck to CD4. We further show that HIV-1 gp120 triggers the association of CD4 with FAK in T cells, under conditions that are known to dissociate Lck from CD4. Our results suggest that the FAK-CD4 complex represents an alternative route for eliciting T-cell-specific signals and that it links gp120 engagement to distinctive T-cell signalling during HIV infection. In infected cells, HIV-1 Nef may displace FAK from CD4 to protect the cells from apoptosis. 相似文献
5.
Type II dehydroquinase (DHQ2) is the third enzyme of the shikimic acid pathway, and it has been the effective target for tuberculosis (TB). So far, developing multiple potent inhibitors of the DHQ2 of Mycobacterium tuberculosis (DHQ2-Mt) has been considered to be the new therapy to TB. Molecular dynamics simulations followed by molecular mechanics-generalised Born surface area were carried out to calculate the free binding energy and to determine the affinity ability of the four chosen inhibitor molecules, L1, L2, L3 and L4. Energy decomposition analyses show the electrostatic interaction and van der Waals interaction of the ligands to every residue of the DHQ2-Mt. The results suggest that some important residues have different interactions with the four ligands, such as Arg19 and Tyr24. These interactions may have an effect on the ligand binding affinity. The binding affinity of monosubstituted inhibitor is higher than that of disubstituted inhibitor, due to some important interactions with the DHQ2-Mt residues. These computational works will be significant to the theoretical research in the future. 相似文献
7.
Abstract Mesenchymal-epithelial transition factor (c-Met) is a member of receptor tyrosine kinase. It involves in various cellular signaling pathways which includes proliferation, motility, migration, and invasion. Over-expression of c-Met has been reported in various cancers. Hence, it is an ideal therapeutic target for cancer. The main objective of the study is to identify crucial residues involved in the inhibition of c-Met kinase and to design a series of potent imidazo [4,5-b] pyrazine derivatives as c-Met inhibitors. Docking was used to identify important active site residues involved in the inhibition of c-Met kinase which was further validated by 100 ns of molecular dynamics simulation and free energy calculation using molecular mechanics generalized born surface area. Furthermore, binding energy decomposition identified that residues Tyr1230, Met1211, Asp1222, Tyr1159, Met1160, Val1092, Ala1108, and Leu1157 contributed favorably to the binding stability of compound 32. Receptor-guided Comparative Molecular Field Analysis (CoMFA) (q2 = 0.751, NOC = 6, r2 = 0.933) and Comparative Molecular Similarity Indices Analysis (COMSIA) (q2 = 0.744, NOC = 6, r2 = 0.950) models were generated based on the docked conformation of the most active compound 32. The robustness of these models was tested using various validation techniques and found to be predictive. The results of CoMFA and CoMSIA contour maps exposed the regions favorable to enhance the activity. Based on this information, 27 novel c-Met inhibitors were designed. These designed compounds exhibited potent activity than the most active compound of the existing dataset. Communicated by Ramaswamy H. Sarma 相似文献
8.
Transforming growth factor type 1 receptor (ALK5) is kinase associated with a wide variety of pathological processes, and inhibition of ALK5 is a good strategy to treat many kinds of cancer and fibrotic diseases. Recently, a series of compounds have been synthesized as ALK5 inhibitors. However, the study of their selectivity against other potential targets remains elusive. In this research, a data-set of ALK5 inhibitors were collected and studied based on the combination of 2D-QSAR, molecular docking and molecular dynamics simulation. The quality of QSAR models were assessed statistically by F, R2, and R2ADJ, proved to be credible. The cross-validations for the models ( q2LOO = 0.571 and 0.629, respectively) showed their robustness, while the external validations ( r2test = 0.703 and 0.764, respectively) showed their predictive power. Besides, the predicted binding free energy results calculated by MM/GBSA method were in accordance with the experimental data, and the van der Waals energy term was the factor that had the most significant impact on ligand binding. What is more, several important residues were found to significantly affect the binding affinity. Finally, based on our analyses above, a proposed series of molecules were designed. 相似文献
9.
The interactions of imidazolium bashed ionic liquid-type cationic gemini surfactant ([C 12-4-C 12im]Br 2) with HSA were studied by fluorescence, time-resolved fluorescence, UV-visible, circular dichroism, molecular docking and molecular dynamic simulation methods. The results showed that the [C 12-4-C 12im]Br 2 quenched the fluorescence of HSA through dynamic quenching mechanism as confirmed by time-resolved spectroscopy. The Stern–Volmer quenching constant ( Ksv) and relevant thermodynamic parameters such as enthalpy change (Δ H), Gibbs free energy change (Δ G) and entropy change (Δ S) for interaction system were calculated at different temperatures. The results revealed that hydrophobic forces played a major role in the interactions process. The results of synchronous fluorescence, UV-visible and CD spectra demonstrated that the binding of [C 12-4-C 12im]Br 2 with HSA induces conformational changes in HSA. Inquisitively, the molecular dynamics study contribute towards understanding the effect of binding of [C 12-4-C 12im]Br 2 on HSA to interpret the conformational change in HSA upon binding in aqueous solution. Moreover, the molecular modelling results show the possible binding sites in the interaction system. 相似文献
10.
Schizophrenia is a mental illness; most affected people live in developing countries, and neither appropriate treatment nor commercial drugs are currently available. One possibility is to inhibit human- d-amino acid oxidase (h-DAAO). In this study, molecular dynamic simulations of the monomer, dimer and tetramer forms of h-DAAO complexed with the inhibitor 3-hydroxyquinolin-2(1 H)-one(2) were performed. Seven residues, Leu51, Gln53, Leu215, Tyr228, Ile230, Arg283 and Gly313, were identified as essential for interacting with the inhibitor. Molecular docking of h-DAAO with pyrrole, quinoline and kojic acid derivatives, representing 69 known or potential h-DAAO inhibitors, was also performed. The results indicated that the activity of the inhibitor can be improved by modifying the compounds to have a substituent group capable of interacting with the side chain of Tyr228. Van der Waals interactions of the inhibitor with the hydrophobic pocket of h-DAAO and electrostatic interactions or H-bonds with Arg283 and Gly313 were important elements in determining the efficiency of the inhibitor. These results provide information on the interaction between h-DAAO and its inhibitors at the molecular level and can aid in the design of novel inhibitors against h-DAAO for new drug development in the treatment of schizophrenia. 相似文献
11.
In this study, the binding of the enzyme chitinase A1 ( afChiA1) from the plant-type Aspergillus fumigatus with four potent inhibitors, allosamidin (ASM), acetazolamide (AZM), 8-chloro-theophylline (CTP) and kinetin (KIT) is investigated by molecular docking, molecular dynamics simulation and binding free energy calculation. The results reveal that the electrostatic interactions play an important role in the stabilisation of the binding of afChiA1 with inhibitors. Based on the binding energy of afChiA1-ligands, the key residues (Gln37 and Trp312) in the active binding pocket of the complex systems are confirmed by molecular mechanics/Poisson–Boltzmann surface area method, and the active inhibitors, ASM and AZM, both could form strong interaction with Gln37 and Trp312, and the non-active ligands, CTP and KIT, could not interact with these two residues, which is consistent with the result of experimental report. Then, it is identified that Gln37 and Trp312 should be one of the important active site residues of afChiA1. 相似文献
12.
Fasciola gigantica is the causative organism of fascioliasis and is responsible for major economic losses in livestock production globally. F. gigantica thioredoxin1 (FgTrx1) is an important redox-active enzyme involved in maintaining the redox homeostasis in the cell. To identify a potential anti-fasciolid compound, we conducted a structure-based virtual screening of natural compounds from the ZINC database ( n = 1,67,740) against the FgTrx1 structure. The ligands were docked against FgTrx1 and 309 ligands were found to have better docking score. These compounds were evaluated for Lipinski and ADMET prediction, and 30 compounds were found to fit well for re-docking studies. After refinement by molecular docking and drug-likeness analysis, three potential inhibitors (ZINC15970091, ZINC9312362, and ZINC9312661) were identified. These three ligands were further subjected to molecular dynamics simulation (MDS) to compare the dynamics and stability of the protein structure after binding of the ligands. The binding free energy analyses were calculated to determine the intermolecular interactions. The results suggested that the two compounds had a binding free energy of –82.237, and –109.52 kJ.mol ?1 for compounds with IDs ZINC9312362 and ZINC9312661, respectively. These predicted compounds displayed considerable pharmacological and structural properties to be drug candidates. We concluded that these two compounds could be potential drug candidates to fight against F. gigantica parasites. 相似文献
13.
Tankyrases (TNKSs), a member of human poly (ADP-ribose) polymerase (PARP) protein superfamily, plays a key role in regulation of cell proliferation. Among the representative proteins of the PARPs family, it is found that the inhibitors have high selectivity for Tankyrase1 (TNKS1). The specific binding modes are investigated between the TNKS1 protein and nicotinamide isostere (ISX) which functions as an inhibitor of TNKS1. The stabilities of ISX-TNKS1 and AVA939-TNKS1 complexes are estimated by molecular dynamics (MD) simulations and free energy calculations; a good agreement with experimental results is reached. On the basis of the calculated results of MD simulations, we found that the inhibitors influence the conformational flexibility of TNKS1 and the XAV939 binding drive the peptide Ile1228-Gly1229-Gly1230 to form a helical structure while the ISX binding drive the peptide to form a turn structure. Moreover, the formed important hydrogen bonds of Tyr1203 residue with XVA939 and WAT1551 with ISX enhance stabilities of the complexes, and the electrostatic interactions in XAV939-TNKS1 and van der Waals interactions in ISX-TNKS1 system are main driving forces for affinity. According to the results of the decomposition of binding free energy, it is obvious that the residues Try1224 and Lys1220 make the most favorable contributions to the binding in, respectively, ISX and XAV939 complexes. Taken together, the obtained results are useful for studying the binding mechanisms of TNKSs and inhibitors and for designing potent inhibitors. 相似文献
14.
Self-diffusion of methanol, ethanol, 1-propanol and 2-propanol has been studied by molecular dynamics simulation in the temperature range between the melting pressure curve and 478 K at pressures up to 300 MPa. The simulation results on self-diffusion of methanol, ethanol and 2-propanol (for 2-propanol, at high temperatures) agree well with experiment, which suggests that the simulation method is a powerful tool to obtain self-diffusion coefficients over wide range of temperature and pressure, under which it is rather difficult for experiments. The local structures of methanol, ethanol and 2-propanol are investigated by calculating the radial distribution functions, H-bond numbers, coordination numbers and the ratios of H-bond number divided by coordination number. The correlation between self-diffusion and structural properties, and the influence of temperature and pressure on them are discussed. The degree of forming H-bond space network in methanol, ethanol and water is higher than that in 2-propanol, and they are all higher than those in ammonia and methylamine. The simulation results demonstrate that the effect of hydrogen bonding on the translational dynamics in methanol and ethanol is more pronounced than that in 2-propanol. 相似文献
15.
Protein kinase C (PKC) isozymes are important regulatory enzymes that have been implicated in many diseases, including cancer, Alzheimer’s disease, and in the eradication of HIV/AIDS. Given their potential clinical ramifications, PKC modulators, e.g. phorbol esters and bryostatin, are also of great interest in the drug development. However, structural details on the binding between PKC and its modulators, especially bryostatin – the highly potent and non-tumor promoting activator for PKCs, are still lacking. Here, we report the first comparative molecular dynamics study aimed at gaining structural insight into the mechanisms by which the PKC delta cys2 activator domain is used in its binding to phorbol ester and bryostatin-1. As anticipated in the phorbol ester binding, hydrogen bonds are formed through the backbone atoms of Thr242, Leu251, and Gly253 of PKC. However, the opposition of H-bond formation between Thr242 and Gly253 may cause the phorbol ester complex to become less stable when compared with the bryostatin binding. For the PKC delta-bryostatin complex, hydrogen bonds are formed between the Gly253 backbone carbonyl and the C30 carbomethoxy substituent of the ligand. Additionally, the indole Nε1 of the highly homologous Trp252 also forms an H-bond to the C20 ester group on bryostatin. Backbone fluctuations also suggest that this latter H-bond formation may abrogate the transient interaction between Trp252 and His269, thus dampening the fluctuations observed on the nearby Zn 2+-coordinating residues. This new dynamic fluctuation dampening model can potentially benefit future design of new PKC modulators. 相似文献
16.
AbstractDengue virus (DENV) is one of the most dangerous mosquito-borne human pathogens known to the mankind. Currently, no vaccines or standard therapy is avaliable to treate DENV infection. This makes the drug development against DENV more significant and challenging. The MTase domain of DENV RNA RdRp NS5 is a promising drug target, because this domain hosts the RNA capping process of DENV RNA to escape from human immune system. In the present study, we have analysed the RNA intervention mechanism exerted by flavoniod molecules against NS5 MTase RNA capping site by using molecular docking, molecular dynamics simulation and the binding free energy calculations. The results from the docking analysis confirmed that the RNA intervention mecanism is exerted by the quercetagetin (QGN) molecule with all necessary intermolecular interactions and high binding affinity. Notably, QGN forms strong hydrogen bonding interactions with Asn18, Leu20 and Ser150 residues and π???π stacking interaction with Phe25 residue. The apo and QGN bound NS5 MTase and QGN-NS5 MTase complex were used for MD simulation. The results of MD simulation reveal that the RMSD and RMSF values of QGN-MTase complex have increased on comparing the apo protein due to the effect of ligand binding. The binding free energy calulation includes prediction of total binding free energy of ligand-protein complex and per-residue free energy decomposition. The QGN binding to NS5 MTase affects it’s native motion, this result is found from Principal component analysis.Communicated by Ramaswamy H. Sarma 相似文献
17.
AbstractIntegrin linked kinase (ILK) is a Ser/Thr kinase, which regulates various integrin mediated signaling pathways, and is involved in cell adhesion, migration and differentiation. Alteration in the ILK is responsible for abnormal functioning of the cell system, which may lead to the cancer progression and metastasis. Caffeic acid (CA) and simvastatin are used as antioxidant and possess anticancer properties. Thus, inhibiting the kinase activity of ILK by CA and simvastatin may be implicated in the cancer therapy. In this study, we have performed molecular docking followed by 100? ns MD simulations to understand the interaction mechanism of ILK protein with the CA and simvastatin. Average potential energy was found to be highest in case of ILK–CA complex (?770,949?kJ/mol). Binding free energy was found to be higher in case of simvastatin than CA. Our results indicate that simvastatin binds more effectively to the active pocket of ILK. We further performed MTT assay to understand its anticancer potential. Simvastatin shows the IC 50 values for HepG2 and MCF-7 as 19.18?±?0.12 and 13.84?±?0.22?µM, respectively. However, the IC 50 value of CA on HepG2 and MCF-7 was reported as 175.50?±?1.44 and 144.90?±?1.53?µM, respectively. Our study provides a deeper insight into the binding mechanism of simvastatin and CA to ILK, which further opens a promising channel for their implications in cancer therapy. 相似文献
18.
Angiotensin-converting enzyme (ACE), a membrane-bound zinc metallopeptidase, catalyzes the formation of Angiotensin-II (AngII) and the deactivation of bradykinin in the renin–angiotensin-aldosterone and kallikrein–kinin systems. As a hydrolysis product of ACE, AngII is regarded as an inhibitor and displays stronger competitive inhibition in the C-domain than the N-domain of ACE. However, the AngII binding differences between the two domains and the mechanisms behind AngII dissociation from the C-domain are rarely explored. In this work, molecular docking, Molecular Mechanics/Poisson–Boltzmann Surface Area calculation, and steered molecular dynamics (SMD) are applied to explore the structures and interactions in the binding or unbinding of AngII with the two domains of human somatic ACE. Calculated free energy values suggest that the C-domain–AngII complex is more stable than the N-domain–AngII complex, consistent with available experimental data. SMD simulation results imply that electrostatic interaction is dominant in the dissociation of AngII from the C-domain. Moreover, Gln106, Asp121, Glu123, and Tyr213 may be the key residues in the unbinding pathway of AngII. The simulation results in our work provide insights into the interactions between the two domains of ACE and its natural peptide inhibitor AngII at a molecular level. Moreover, the results provide theoretical clues for the design of new inhibitors. 相似文献
19.
目的:研究丹参单体IH764—3对H2O2刺激的肝星状细胞(HSC)基质金属蛋白酶-13(MMP-13)、基质金属蛋白酶组织抑制因子-1(TIMP-1)表达的影响以及此过程中粘着斑激酶(FAK)的变化。方法:应用RT-PCR方法检测MMP-13及FAKmRNA表达,原位杂交方法检测TIMP-1mRNA水平,Western blotting技术检测FAK及TIMP-1蛋白表达。结果:IH764—3干预组的MMP-13mRNA在2h的表达强度明显上调,而TIMP-1mRNA表达明显受抑,FAKmRNA表达强度明显下调;IH764—3干预24h组FAK及TIMP-1蛋白表达受抑制。结论:丹参单体IH764—3可以诱导MMP-13表达,抑制TIMP-1表达,下调FAK表达是其中的机制之一。 相似文献
20.
AbstractThe mitochondrial calcium uniporter (MCU) is the critical protein of the inner mitochondrial membrane that is the primary mediator for calcium uptake into the mitochondrial matrix. Herein we built the optimal homology model of human MCU which was refined through all-atom molecular dynamics simulation. Then, the binding mode of known inhibitor was predicted through molecular docking method, along with molecular dynamics simulation and binding free energy calculation to verify the docking result and stability of the protein-inhibitor complex. Finally, density functional theory (DFT) calculation enhanced our understanding of the molecular interaction of MCU inhibitor. Our research would provide a deeper insight into the interactions between human MCU and its inhibitor, which boosts to develop novel therapy against MCU related disease.Communicated by Ramaswamy H. Sarma 相似文献
|