首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Creatine and phosphocreatine are substrates for creatine kinase which is a key enzyme involved in energy transfer within the cell. Analogues of creatine have been fed to animals to determine the role this enzyme plays in energy metabolism, but progress in interpretation has been hampered by the lack of quantitative techniques to determine tissue content of these compounds. We describe the separation and quantitation of substituted guanidino compounds and their phosphorylated forms by high-performance liquid chromatography. First, a cation-exchange column is used to assay free creatine and its unphosphorylated analogues, and then phosphocreatine and its phosphorylated analogues as well as adenylate content (AMP, ADP, ATP) are assayed on an anion-exchange column. These methods have proven successful in measuring the chemical contents of these compounds in neutralized perchloric acid extracts of mammalian skeletal muscles. The sensitivity of this method ranges from 50 to 200 pmol, which is adequate to provide information from tissue extracts of 5- to 10-mg samples.  相似文献   

2.
The isolated perfused rat pancreas was used to test the hypothesis that total cellular ATP or the ratio of ATP/free ADP plays the primary role in coupling intermediary metabolism to the biophysical events that are the basis of glucose-stimulated insulin release. The pancreas was preperfused for 20 min with 4.0 mM of a physiological mixture of 20 amino acids plus 4.2 mM glucose, and insulin release was then stimulated for 150 s by suddenly increasing the glucose to 8.3 mM. The pancreas was sampled at 24, 48, 72, and 150 s after the switch. The content of total ATP, ADP, AMP, Pi, phosphocreatine, and creatine were measured in beta-cell enriched cores of pancreatic islets microdissected from freeze-dried pancreas cryostat sections. Metabolites were measured by quantitative histochemical enzymatic cycling techniques. Modeling studies were carried out to assess the impact of biochemical analytical results on the membrane potential of the beta-cells. The level of free ADP was calculated using the creatine kinase equilibrium reaction and an intracellular pH of 7.2. First phase insulin release was stimulated at least 10-fold with the maximum reached 45 s after adding high glucose. The biochemical analytical data demonstrate that the total cellular level of the putative coupling factor ATP and of the ratios ATP/free ADP and ATP/free ADP x Pi are not significantly influenced by a glucose level change that causes a more than 10-fold surge of insulin release. The strength and limitations of the present experimental strategy and the implications of the results for our understanding of metabolic coupling in glucose-stimulated insulin release are discussed.  相似文献   

3.
An automated enzymatic procedure suitable for determination of ATP, ADP, AMP, phosphocreatine, creatine, and lactate in needle biopsies of human skeletal muscle (ca. 30 mg dry wt) using a fast centrifugal analyzer (Multistat III, Instrumentation Laboratory Inc.) is presented. Coefficients of variation ranged from 0.7 to 4.2% for multiple determinations of ATP, ADP, phosphocreatine, and creatine; from 6 to 24% for lactate; and from 9 to 20% for AMP. The procedure should be usable, with appropriate modification, with other tissues and with other fast centrifugal analyzers. Muscle samples are collected into liquid freon, lyophilized, and extracted with 600 microliter of 0.65 M perchloric acid. Neutralized supernatants can be stored for up to 3 years at -80 degrees C with no significant deterioration. The procedure takes much less time than similar manual procedures and gives better reproducibility, particularly for ADP and AMP.  相似文献   

4.
Changes in the energy state of tissues in spontaneously hypertensive rats]   总被引:1,自引:0,他引:1  
The contents of adenine nucleotides (ATP, ADP, AMP), phosphocreatine (PCr) and creatine (Cr) in the heart, skeletal muscle, liver and spleen in spontaneously hypertensive (SHR) and normotensive (WKY) rats. The ATP/ADP ratio in cardiac tissue was lower in SHR compared with WKY, while myocardial contents of adenine nucleotides, PCr and Cr did not differ significantly between the groups. A lower ATP/ADP ratio in the skeletal muscle SHR of was accompanied by a reduction of PCr content comparing with these indices in WKY rats. The liver and spleen of SHR exhibited lower ATP contents and higher ADP and AMP levels compared with those ones in WKY rats, despite of the close values of adenine nucleotide pools (sigma AN = ATP + ADP + AMP). This redistribution of tissue adenine nucleotides was corresponded to lower energy charges (EC = (ATP + 0.5 ADP)/sigma AN) and ATP/ADP ratios in SHR group. The reduction of the energy state of tissues in SHR rats increased in the following rank: heart > skeletal muscle > liver > spleen, thus, reflecting progressive decrease of intensity of oxidative metabolism. The results suggest changes in the balance of rates of ATP formation and hydrolysis occur at the system level in primary hypertension. Probably, consequences of such rearrangement in energy metabolism are functional disturbances of plasma membrane and sacroplasmic reticulum well-documented in a number of experimental and clinical studies.  相似文献   

5.
To measure free creatine in the isolated perfused rat heart, the concentration of phosphocreatine, and phosphocreatine plus creatine (sigma Cr) were measured by 31P- and 1H-NMR, respectively. Quantification was performed in the presence and absence of an intraventricular balloon filled with a known amount of PCr, which acted as an external standard. Total (free plus bound) phosphocreatine and creatine were measured by HPLC analysis of extracts from the same hearts, freeze-clamped at the end of the perfusions. A greater concentration of creatine (mumol/g dry wt.) in the perfused rat heart was measured by HPLC analysis (40.3 +/- 2.38 (11)) as compared to NMR (34.6 +/- 1.95 (11)), whilst no significant difference was observed in the measurement of phosphocreatine between the two assay methods. Consequently, a greater sigma Cr was measured by HPLC. This work suggests that the majority of Cr in the heart is NMR visible and unbound, so available to interact with creatine kinase. The lower free ADP concentration calculated from NMR measurements (53.3 +/- 3.80 microM (9)) was not significantly different from that determined by HPLC analysis (56.9 +/- 5.90 microM (9)). This suggests that the concentration of free ADP in the heart is higher than values where it can regulate oxidative phosphorylation most effectively.  相似文献   

6.
To evaluate the energy-shuttle hypothesis of the phosphocreatine/creatine kinase system, diffusion rates for ATP, phosphocreatine and flux through the creatine kinase reaction were determined by 31P-NMR in resting bullfrog biceps muscle. The diffusion coefficient of phosphocreatine measured by 31P-pulsed gradient NMR was 1.4-times larger than ATP in the muscle, indicating the advantage of phosphocreatine molecules for the intracellular energy transport. The flux of the creatine kinase reaction measured by 31P-saturation transfer NMR was 3.6 mmol/kg wet wt. per s in the resting muscle. The flux is equal to the turnover rate of ATP, ADP, phosphocreatine and creatine molecules, therefore, the life-times of these substrates and the average distance traversed after the life-times by the diffusing molecules were calculated using the diffusion coefficients obtained by 31P-NMR. The mean square length of one-dimensional diffusion was 22 microns in ATP molecules and the minimum diffusion length was 1.8 microns in ADP molecules. The latter was calculated using free ADP concentration, 30 mumol/kg wet wt., obtained from the equilibrium constant of the creatine kinase reaction and the diffusion coefficient assumed to be the same of ATP in muscle. Similar diffusion lengths of ADP were calculated using the reported values for the flux of the creatine kinase reaction in heart and smooth-muscle. The diffusion lengths of all substrates involved in the creatine kinase reaction were larger than the radii of myofibrils. Therefore, in the muscles with an alternating arrangement of mitochondria and myofibrils, such as heart and certain skeletal muscles, ATP and ADP molecules can move freely between myofibrils and mitochondria without the aid of the creatine kinase reaction; thus, we conclude that the energy-shuttle hypothesis is not obligatory for energy transport between the mitochondria and the myofibrils.  相似文献   

7.
The review contains the analysis of present-day concepts on the physiological role of the creatine kinase system. A hypothesis on the buffering functions of the creatine kinase system which ensures a constant ATP level in cells and a hypothesis according to which phosphocreatine is a macroergic phosphate carrier from mitochondria to the sites of their utilization are considered. In connection with the creatine phosphate carrier hypothesis according to which the transport function of the creatine kinase system is provided for by an effective function of mitochondrial creatine kinase, feasible mechanisms of mitochondrial creatine kinase activity regulation are considered: as a result of creation of local concentration of nucleotide substrates as well as changes in the properties of creatine kinase itself which may result from the enzyme conversion from the membrane-bound to the free form or from the interconversion of oligomeric forms of the enzyme.  相似文献   

8.
Stimulation of insulin secretion in the pancreatic beta-cell by a fuel such as glucose requires the metabolism of the fuel and is accompanied by increases in oxygen consumption and intracellular free Ca2+. A very early signal for these events could be a decrease in the cytosolic ATP/ADP ratio due to fuel phosphorylation. To test this hypothesis the regulation of free Ca2+ was evaluated in permeabilized RINm5F insulinoma cells that sequester Ca2+ and maintain a low medium free Ca2+ concentration (set point), between 100 and 200 nM, in the presence of Mg2+ and ATP. ATP, creatine, creatine phosphate, and creatine phosphokinase were added to the media to achieve various constant ratios of ATP/ADP. Free Ca2 was monitored using fura-2. The results demonstrated that the steady-state free Ca2+ concentration varied inversely with the ATP/ADP ratio and orthophosphate (Pi) levels. In contrast, no correlation between free Ca2+ and the phosphorylation potential (ATP/ADP.Pi) was found. Regulation of the Ca2+ set point by the ATP/ADP ratio was observed at ratios between 5 and 50 and at Pi concentrations between 1 and 7 mM, irrespective of whether mitochondria were participating in Ca2+ sequestration or were inhibited. Increasing the ATP/ADP ratio stimulated Ca2+ uptake by the nonmitochondrial pool but did not modify Ca2+ efflux. Glucose 6-phosphate (1 mM) had no effect on the Ca2+ set point. The data suggest that variations in the cytosolic ATP/ADP ratio induced by fuel stimuli may regulate Ca2+ cycling across nonmitochondrial compartments and the plasma membrane by modulating the activity of Ca2+ -ATPases. A mechanism linking fuel metabolism and cytosolic ATP/ADP ratio to activation of the Ca2+ messenger system in pancreatic beta-cells is proposed.  相似文献   

9.
K Brindle  P Braddock  S Fulton 《Biochemistry》1990,29(13):3295-3302
Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creatine kinase activities similar to those found in mammalian heart muscle. 31P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts.  相似文献   

10.
ATP-dependent calcium sequestration was previously localized in vesicles of mitotic apparatus isolated from sea urchins. We now demonstrate that the mitotic apparatus contains an ATP-regenerative system characterized as creatine kinase (EC 2.7.3.2). Mitotic apparatus isolated with vesicles intact converted ADP to ATP if phosphocreatine was present. Omission of ADP or phosphocreatine gave negligible ATP. When mitotic apparatus were washed with detergent-containing buffer to remove vesicles, their ability to produce ATP from ADP and phosphocreatine was reduced. Assays of creatine kinase activity using NADP+:glucose-6-phosphate dehydrogenase indicated that 70% of the creatine kinase activity was extractable with 0.5% Triton X-100. The insoluble residue containing the skeleton of the mitotic apparatus had the rest of the activity. Experiments with a luciferin/luciferase assay showed that Triton removed above 82% of the activity. Preparations of intact mitotic apparatus were free of cytochrome c oxidase (EC 1.9.3.1) activity and therefore free of mitochondria. About 10(8) mitotic apparatus (total volume about 1 liter) could produce 17 mmol of ATP/min when substrates were not limiting. The creatine kinase enzyme activity described herein and the previously described membrane vesicular calcium sequestration system are nonmitochondrial, integral constituents of the sea urchin mitotic apparatus.  相似文献   

11.
We compared the response of rat PC12 cells and a derivative PC18 cell line to the effects of adenosine receptor agonists, antagonists, and adenine nucleotide metabolizing enzymes. We found that theophylline (an adenosine receptor antagonist), adenosine deaminase, and AMP deaminase all decreased basal cyclic AMP content and tyrosine hydroxylase activity in the PC12 cells, but not in PC18 cells. Both cell lines responded to the addition of 2-chloroadenosine and 5'-N-ethylcarboxamidoadenosine, adenosine receptor agonists, by exhibiting an increase in tyrosine hydroxylase activity and cyclic AMP content. The latter finding indicates that both cell lines contained an adenosine receptor linked to adenylate cyclase. We found that the addition of dipyridamole, an inhibitor of adenosine uptake, produced an elevation of cyclic AMP and tyrosine hydroxylase activity in both cell lines. Deoxycoformycin, an inhibitor of adenosine deaminase, failed to alter the levels of cyclic AMP or tyrosine hydroxylase activity. This suggests that uptake was the primary inactivating mechanism of adenosine action in these cells. We conclude that both cell types generated adenine nucleotides which activate the adenosine receptor in an autocrine or paracrine fashion. We found that PC12 cells released ATP in a calcium-dependent process in response to activation of the nicotinic receptor. We also measured the rates of degradation of exogenous ATP, ADP, and AMP by PC12 cells. We found that the rates of metabolism of the former two were at least an order of magnitude greater than that of AMP. Any released ATP would be rapidly metabolized to AMP and then more slowly degraded to adenosine.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
(1) 31P nuclear magnetic resonance was used to measure the creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts consuming oxygen at different rates and using either of two exogenous substrates (11 mM glucose or 5 mM acetate). (2) Fluxes in the direction of ATP synthesis were between 3.5–12-times the steady-state rates of ATP utilization (estimated from rates of O2-consumption), demonstrating that the reaction is sufficiently rapid to maintain the cytosolic reactants near their equilibrium concentrations. (3) Under all conditions studied, the cytosolic free [ADP] was primarily responsible for regulating the creatine kinase fluxes. The enzyme displayed a Km for cytosolic ADP of 35 μM and an apparent Vmax of 5.5 mM/s in the intact tissue. (4) Although the reaction is maintained in an overall steady-state, the measured ratio of the forward flux (ATP synthesis) to the reverse flux (phosphocreatine synthesis) was significantly greater than unity under some conditions. It is proposed that this discrepancy may be a consequence of participation of ATP in reactions other than the PCr /ag ATP or ATP /ag ADP + Pi interconversions specifically considered in the analysis. (5) The results support the view that creatine kinase functions primarily to maintain low cytosolic concentrations of ADP during transient periods in which energy utilization exceeds production.  相似文献   

13.
(1) 31P nuclear magnetic resonance was used to measure the creatine kinase-catalysed fluxes in Langendorff-perfused rat hearts consuming oxygen at different rates and using either of two exogenous substrates (11 mM glucose or 5 mM acetate). (2) Fluxes in the direction of ATP synthesis were between 3.5–12-times the steady-state rates of ATP utilization (estimated from rates of O2-consumption), demonstrating that the reaction is sufficiently rapid to maintain the cytosolic reactants near their equilibrium concentrations. (3) Under all conditions studied, the cytosolic free [ADP] was primarily responsible for regulating the creatine kinase fluxes. The enzyme displayed a Km for cytosolic ADP of 35 μM and an apparent Vmax of 5.5 mM/s in the intact tissue. (4) Although the reaction is maintained in an overall steady-state, the measured ratio of the forward flux (ATP synthesis) to the reverse flux (phosphocreatine synthesis) was significantly greater than unity under some conditions. It is proposed that this discrepancy may be a consequence of participation of ATP in reactions other than the PCr /ag ATP or ATP /ag ADP + Pi interconversions specifically considered in the analysis. (5) The results support the view that creatine kinase functions primarily to maintain low cytosolic concentrations of ADP during transient periods in which energy utilization exceeds production.  相似文献   

14.
We show in the accompanying paper that the steady-state level of free Ca2+ maintained by the organelles of permeabilized RINm5F insulinoma cells varies inversely with the ATP/ADP ratio when this ratio is set by addition of creatine phosphokinase and fixed ratios of creatine to creatine phosphate. We, therefore, asked whether acute cyclic alterations in the cytosolic ATP/ADP ratio in the range known to modulate O2 consumption might be involved in regulating the physiological activity of Ca2+ -ATPases and the cytosolic free Ca2+ level. To explore this hypothesis we combined two experimental systems: 1) permeabilized RINm5F insulinoma cells that can maintain a low medium Ca2+ concentration and 2) a cell-free extract of rat skeletal muscle that spontaneously exhibits oscillatory behavior of glycolysis and linked oscillations in the ATP/ADP ratio, when provided with glucose. The free Ca2+ level maintained by the permeabilized cells oscillated in phase with the glycolytic oscillations and correlated closely with the ATP/ADP ratio but not with glucose 6-phosphate, fructose 6-phosphate, orthophosphate, or pH. When glucokinase replaced hexokinase as the glucose phosphorylating enzyme, Ca2+ oscillations were induced by increasing the glucose concentration from 2 to 8 mM. The results demonstrate a link between metabolite changes and free Ca2+ levels in a reconstituted physiological system. They support a model in which oscillations in glycolysis and the ATP/ADP ratio may cause oscillations in cytosolic free Ca2+, beta-cell electrical activity, and insulin release.  相似文献   

15.
Free cytosolic adenylates were examined in relation to adenosine plus inosine released from perfused working guinea-pig hearts. Whole-tissue adenylate data from freeze-clamped hearts were quantitatively compared with corresponding values obtained by subcellular fractionation of homogenized myocardium in non-aqueous media. Adenosine and inosine in venous cardiac effluents were measured by high-performance liquid chromatography. Hearts, perfused at their natural flows, were subjected to various workloads, substrates and catecholamines to alter myocardial energy metabolism and respiration over a wide physiological range. Non-aqueous cytosolic ATP and creatine phosphate (CrP) accounted for more than 80% of the respective total myocardium content. The cytosolic CrP/Pi ratio was in near-quantitative agreement with the overall tissue CrP/Pi ratio when the latter parameter was corrected for extracellular Pi. This was conclusive evidence that ATP, CrP and Pi were predominantly located in the cytosol of the well-oxygenated cardiomyocyte. Measured myocardial oxygen uptake (MVO2) was reciprocally related to the phosphorylation state of CrP [( CrP]/[Cr] X [Pi]) and hence that of ATP [( ATP]/[ADP] X [Pi]) assuming the creatine kinase at near-equilibrium at a near-constant pH of 7.2. On the other hand, calculated mean free cytosolic ADP concentrations increased essentially linearly up to threefold with increasing MVO2 in the presence of virtually unchanged or only slightly decreased ATP levels; this was found both according to the whole tissue and the special subcellular fractionation data. Employing the myokinase mass-action ratio and substituting total cardiac ADP by the mean free cytosolic ADP concentrations, the mean free cytosolic AMP concentrations proved to be in the nanomolar range, i.e. up to three orders of magnitude lower than the overall tissue AMP content. We propose, therefore, that in the normoxic heart, AMP is located predominantly in the mitochondrial compartment. Nevertheless, both free cytosolic AMP concentration and release of adenosine plus inosine were apparently square or even higher-power functions of the rate of cardiac respiration. On the other hand, the mean purine nucleoside release seemed linearly correlated (r = 0.920) with the calculated free cytosolic AMP concentration. Our observations seem to suggest that the concentrations of free ADP and AMP in the cytosol are major determinants of the production of inosine and coronary vasodilator adenosine.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The objective of the investigation was to explore the notion that chondrocytes in the growth plate secrete nucleotides and that these compounds are used to regulate cell maturation and matrix mineralization. Chondrocytes were isolated from the cephalic region of chick embryo sterna and maintained in culture until confluent. To promote expression of the mature phenotype, cultures were then treated with retinoic acid. During the culture period, medium was removed and analyzed for nucleotides using a modified reverse-phase high-performance liquid chromatography (HPLC) procedure. We found that culture medium, conditioned by the chondrocytes, contained significant quantities of nucleotides. Moreover, the nucleotide concentrations were similar in magnitude to levels reported for media conditioned by other cell types. In terms of species, adenosine diphosphate (ADP) was the major nucleotide present in the conditioned medium; adenosine monophosphate (AMP) was present, but at a lower concentration than ADP. To examine the possibility that adenosine triphosphate (ATP) was released by the cultured chondrocytes, but was rapidly degraded into ADP and AMP, we examined the kinetics of ATP breakdown by chondrocytes. We found that chondrocytes degraded over 70% of exogenous ATP within 15 minutes. Similar experiments performed with ADP and AMP indicated that these nucleotides were also degraded by the cells, but at a slower rate than ATP. To determine whether the extracellular nucleotides modulate cartilage development, we examined the effect of exogenous ATP on four major determinants of chondrocyte function: alkaline phosphatase activity, cell proliferation rate, anaerobic metabolism, and mineral deposition. We found that ATP caused only minimum alterations in cell number and alkaline phosphatase activity; however, it increased the lactate content of the medium probably by stimulating anaerobic glycolysis. We noted that ATP had a significant effect on the amount and type of mineral deposited into chondrocyte cultures. Compared with untreated controls, ATP stimulated formation of a small amount of poorly crystallized calcium phosphate. The results of the study show for the first time that chondrocytes release nucleotides into the extracellular milieu. Although they are rapidly degraded, they serve to regulate both mineral formation and energy metabolism. © 1995 Wiley-Liss Inc.  相似文献   

17.
The creatine/phosphocreatine circuit provides an efficient energy buffering and transport system in a variety of cells with high and fluctuating energy requirements. It connects sites of energy production (mitochondria, glycolysis) with sites of energy consumption (various cellular ATPases). The cellular creatine/phosphocreatine pool is linked to the ATP/ADP pool by the action of different isoforms of creatine kinase located at distinct subcellular compartments. Octameric mitochondrial creatine kinase (MtCK), together with porin and adenine nucleotide translocase, forms a microcompartment at contact sites between inner and outer mitochondrial membranes and facilitates the production and export into the cytosol of phosphocreatine. MtCK is probably in direct protein-protein contact with outer membrane porin, whereas interaction with inner membrane adenine nucleotide translocase is rather mediated by acidic phopholipids (like cardiolipin) present in significant amounts in the inner membrane. Octamer-dimer transitions of MtCK as well as different creatine kinase substrates have a profound influence on controlling mitochondrial permeability transition (MPT). Inactivation by reactive oxygen species of MtCK and destabilization of its octameric structure are factors that contribute to impairment of energy homeostasis and facilitated opening of the MPT pore, which eventually lead to tissue damage during periods of ischemia/reperfusion.  相似文献   

18.
In order to study the effect of phenobarbitone anaesthesia upon the energy metabolism of the brain, organic phosphates, glycolytic metabolites and citric acid cycle intermediates were measured in rats anaesthetized with 175-200 mg/kg of phenobarbitone, and the results were compared to those obtained in rats anaesthetized with halo-thane or with nitrous oxide. An attempt was made to separate the effects of the phenobarbitone anaesthesia from those caused by the accompanying intracellular alkalosis by exposing one group of animals to hypercapnia of such a degree that normalization of the intracellular pH was achieved. Phenobarbitone anaesthesia did not alter the tissue concentrations of ATP, ADP or AMP, but led to a moderate increase in the phosphocreatine concentration. However, since this increase was reversed in the hypercapnic group it is concluded that it may be due partly to a pH-dependent shift in the creatine phosphokinase equilibrium. There was a decrease in the tissue concentrations of all measured substrates from pyruvate and onwards. The results indicate that phenobarbitone leads to a primary inhibition of glycolysis, which cannot be related to detectable changes in ATP, ADP or AMP. The resulting lowering of the tissue concentrations of a number of metabolic acids may be part of the explanation why barbiturate anaesthesia is associated with an intracellular alkalosis.  相似文献   

19.
Flux rates for phosphate metabolites were calculated using the equation for radial diffusion, assuming heart intracellular conditions and a 5% concentration gradient. The data show that while the flux of phosphocreatine is about 3 times faster than ATP, both are more than two orders of magnitude greater than the known maximum rate of ATP utilization. In contrast, since the concentration of free ADP is very low, its flux is below the maximum rate of ATP turnover, while the flux of creatine is almost 3 orders of magnitude greater than ADP. The data suggest that the rate of high-energy phosphate production could be limited by ADP diffusion, with creatine thus substituting as the primary cytoplasmic-mitochondrial phosphate acceptor.  相似文献   

20.
Phosphocreatine production catalyzed by a cytosolic fraction from cardiac muscle containing all glycolytic enzymes and creatine kinase in a soluble form has been studied in the presence of creatine, adenine nucleotides and different glycolytic intermediates as substrates. Glycolytic depletion of glucose, fructose 1,6-bis(phosphate) and phosphoenolpyruvate to lactate was coupled to efficient phosphocreatine production. The molar ratio of phosphocreatine to lactate produced was close to 2.0 when fructose 1,6-bis(phosphate) was used as substrate and 1.0 with phosphoenolpyruvate. In these processes the creatine kinase reaction was not the rate-limiting step: the mass action ratio of the creatine kinase reaction was very close to its equilibrium value and the maximal rate of the forward creatine kinase reaction exceeded that of glycolytic flux by about 6-fold when fructose 1,6-bis(phosphate) was used as a substrate. Therefore, the creatine kinase raction was continuously in the state of quasiequilibrium and the efficient synthesis of phosphocreatine observed is a result of constant removal of ADP by the glycolytic system at an almost unchanged level of ATP ([ATP] ? [ADP]), this leading to a continuous shift of the creatine kinase equilibrium position.When phosphocreatine was added initially at concentrations of 5–15 mM the rate of the coupled creatine kinase and glycolytic reactions was very significantly inhibited due to a sharp decrease in the steady-state concentration of ADP. Therefore, under conditions of effective phosphocreatine production in heart mitochondria, which maintain a high phosphocreatine: creatine ratio in the myoplasm in vivo, the glycolytic flux may be suppressed due to limited availability of ADP restricted by the creatine kinase system. The possible physiological role of the control of the glycolytic flux by the creatine kinase system is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号