共查询到20条相似文献,搜索用时 0 毫秒
1.
Ritt JF Guilloux-Benatier M Guzzo J Alexandre H Remize F 《Journal of applied microbiology》2008,104(2):573-580
Aims: Oenococcus oeni is a slow‐growing wine bacterium with a low growth yield. It thrives better on complex nitrogen sources than on free amino‐acid medium. We aimed to characterize the oligopeptide use of this micro‐organism. Methods and Results: Several peptides of two to eight amino‐acid residues were able to provide essential amino acids. The disappearance of various peptides from extracellular medium was assessed with whole cells. Initial rates of utilization varied with the peptide, and free amino acids were released into the medium. Conclusions: Oenococcus oeni was able to transport the oligopeptides with two to five amino‐acid residues tested and to hydrolyse them further. Significance and Impact of the Study: This study has clear implications for the relationship between wine nitrogen composition and the ability of O. oeni to cope with its environment. 相似文献
2.
Plasmid curing of Oenococcus oeni 总被引:3,自引:0,他引:3
Two strains of Oenococcus oeni, RS1 (which carries the plasmid pRS1) and RS2 (which carries the plasmids pRS2 and pRS3), were grown in the presence of different curing agents and at different temperatures. Sublethal temperature together with acriflavine generated all possible types of cured strains, i.e., lacking pRS1 (from strain RS1), and lacking pRS2, pRS3, or both (from strain RS2). Sublethal temperature together with acridine orange only generated cured strains lacking pRS3. These results suggest that acriflavine is a better curing agent than acridine orange for O. oeni, and that pRS3 is the most sensitive to these curing agents. We also observed spontaneous loss of pRS2 or both pRS2 and pRS3 by electroporation. The ability to cure O. oeni strains of plasmids provides a critical new tool for the genetic analysis and engineering of this commercially important bacterium. 相似文献
3.
M Guilloux-Benatier O Pageault A Man M Feuillat 《Journal of industrial microbiology & biotechnology》2000,25(4):193-197
Oenococcus oeni exhibited extracellular β (1→3) glucanase activity. This activity increased when cells were cultivated with glycosidic cell-wall macromolecules. In addition, the culture supernatant of the organism effectively lysed viable or dead cells of Saccharomyces cerevisiae. This lytic activity appeared in the early stationary phase of bacterial growth. Yeast cells at the end of the log phase of growth were the most sensitive. The optimum temperature for lysis of viable yeast cells was 40°C, which is very different from the temperatures observed in enological conditions (15–20°C). Moreover, the rate of the lytic activity was significantly lower in comparison with yeast cell wall-degrading activities previously measured in various other microorganisms. Therefore, yeast cell death that is sometimes observed during the alcoholic fermentation could hardly be attributed to the lytic activity of O. oeni. Journal of Industrial Microbiology & Biotechnology (2000) 25, 193–197. Received 27 December 1999/ Accepted in revised form 14 July 2000 相似文献
4.
The exoprotease from Oenococcus oeni produced in stress conditions was purified to homogeneity in two steps, a 14-fold increase of specific activity and a 44% recovery of proteinase activity. The molecular mass was estimated to be 33.1 kDa by gel filtration and 17 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). These results suggest that the enzyme is a dimer consisting of two identical subunits. Optimal conditions for activity on grape juice were 25 degrees C and a pH of 4.5. Incubation at 70 degrees C, 15 min, destroyed proteolytic activity. The SDS-PAGE profile shows that the enzyme was able to degrade the grape juice proteins at a significantly high rate. The activity at low pH and pepstatin A inhibition indicate that this enzyme is an aspartic protease. The protease activity increases at acidic pH suggesting that it could be involved in the wine elaboration. 相似文献
5.
Da Silveira MG Golovina EA Hoekstra FA Rombouts FM Abee T 《Applied and environmental microbiology》2003,69(10):5826-5832
The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells. To probe the fluidity of the cytoplasmic membrane, intact cells were labeled with doxyl-stearic acids and analyzed by electron spin resonance spectroscopy. Although the effect of ethanol was noticeable across the width of the membrane, we focused on fluidity changes at the lipid-water interface. Fluidity increased with increasing concentrations of ethanol. Cells responded to growth in the presence of 8% (vol/vol) ethanol by decreasing fluidity. Upon exposure to a range of ethanol concentrations, these adapted cells had reduced fluidity and cF leakage compared with cells grown in the absence of ethanol. Analysis of the membrane composition revealed an increase in the degree of fatty acid unsaturation and a decrease in the total amount of lipids in the cells grown in the presence of 8% (vol/vol) ethanol. Preexposure for 2 h to 12% (vol/vol) ethanol also reduced membrane fluidity and cF leakage. This short-term adaptation was not prevented in the presence of chloramphenicol, suggesting that de novo protein synthesis was not involved. We found a strong correlation between fluidity and cF leakage for all treatments and alcohol concentrations tested. We propose that the protective effect of growth in the presence of ethanol is, to a large extent, based on modification of the physicochemical state of the membrane, i.e., cells adjust their membrane permeability by decreasing fluidity at the lipid-water interface. 相似文献
6.
以Oenococcus oeni苹果酸-乳酸酶基因(mleA)为目标基因,设计了1对特异性引物PmleaL/PmleaR进行酒酒球菌的快速鉴定研究。结果表明,直接以O.oeni的菌落为模板,通过引物对PmleaL/PmleaR的PCR扩增,可得到mleA基因的特异性条带;用此特异性引物进行供试乳酸菌的PCR鉴定,所有O.oeni菌系均得到特异性条带,而供试的其它种类乳酸菌未扩增出目标带。PmleaL/PmleaR可用于O.oeni的快速PCR鉴定。 相似文献
7.
8.
M. Graa Da Silveira Elena A. Golovina Folkert A. Hoekstra Frank M. Rombouts Tjakko Abee 《Applied microbiology》2003,69(10):5826-5832
The effect of ethanol on the cytoplasmic membrane of Oenococcus oeni cells and the role of membrane changes in the acquired tolerance to ethanol were investigated. Membrane tolerance to ethanol was defined as the resistance to ethanol-induced leakage of preloaded carboxyfluorescein (cF) from cells. To probe the fluidity of the cytoplasmic membrane, intact cells were labeled with doxyl-stearic acids and analyzed by electron spin resonance spectroscopy. Although the effect of ethanol was noticeable across the width of the membrane, we focused on fluidity changes at the lipid-water interface. Fluidity increased with increasing concentrations of ethanol. Cells responded to growth in the presence of 8% (vol/vol) ethanol by decreasing fluidity. Upon exposure to a range of ethanol concentrations, these adapted cells had reduced fluidity and cF leakage compared with cells grown in the absence of ethanol. Analysis of the membrane composition revealed an increase in the degree of fatty acid unsaturation and a decrease in the total amount of lipids in the cells grown in the presence of 8% (vol/vol) ethanol. Preexposure for 2 h to 12% (vol/vol) ethanol also reduced membrane fluidity and cF leakage. This short-term adaptation was not prevented in the presence of chloramphenicol, suggesting that de novo protein synthesis was not involved. We found a strong correlation between fluidity and cF leakage for all treatments and alcohol concentrations tested. We propose that the protective effect of growth in the presence of ethanol is, to a large extent, based on modification of the physicochemical state of the membrane, i.e., cells adjust their membrane permeability by decreasing fluidity at the lipid-water interface. 相似文献
9.
10.
Maria Anna Sico Maria Grazia Bonomo Giovanni Salzano 《World journal of microbiology & biotechnology》2008,24(9):1829-1835
A technological characterization of Oenococcus oeni strains isolated from Aglianico wines was performed to select starter cultures for malolactic fermentation (MLF). One hundred
and fifty six O. oeni isolates were extracted from Aglianico wines, and identified by using species-specific PCR. Malolactic activity (MLA), sulphur
dioxide (SO2) resistance, acetaldehyde metabolism and other technological characteristics were tested. Differences in the technologically
relevant characteristics were observed. All O. oeni strains were able to grow at low temperature and none in presence of 14% of ethanol. About 80% of O. oeni degraded more than 80% of acetaldehyde, producing ethanol and acetic acid as final products. Among nine O. oeni chosen, four isolates were sensitive to 60 mg of SO2 l−1, while the other five had high resistance. Considering their technological characteristics, five O. oeni strains could be selected starter cultures for MLF in Aglianico. 相似文献
11.
Production of Oenococcus oeni biomass to induce malolactic fermentation in wine by control of pH and substrate addition 总被引:1,自引:0,他引:1
Sergi Maicas Pilar González-cabo Sergi Ferrer Isabel Pardo 《Biotechnology letters》1999,21(4):349-353
To increase the commercial production of Oenococcus oeni strains to be used for biological deacidification of wines, substrates addition and pH control have been optimized. The highest biomass yield of Oenococcus oeni (Y=6.9 mg mmol–1 sugar) was obtained when 55 mmol glucose l–1 and 30 mmol fructose l–1 were added both to the culture medium, and the pH was controlled at 4.8. Fructose was used as carbon and energy source, but also as electron acceptor improving the ability to reoxidize NAD(P)H. 相似文献
12.
Putrescine, the most abundant biogenic amine in wine, was proved to be produced by Oenococcus oeni strains in wine not only from ornithine but also from arginine. In this case, putrescine may originate from strains possessing the complete enzyme system to convert arginine to putrescine or by a metabiotic association, with an exchange of ornithine, between strains capable of metabolizing arginine to ornithine but unable to produce putrescine and strains capable of producing putrescine from ornithine but unable to degrade arginine. Putrescine production by this metabiotic association occurred once the malolactic fermentation was completed, whereas conversion of ornithine to putrescine by a single culture of the ornithine decarboxylating strain concurred with the degradation of malic acid. Moreover, in the former case, putrescine formation proceeded more slowly than in the latter. Metabiosis may play an important role in the accumulation of putrescine in wine, arginine being one of the major amino acids found in wine. 相似文献
13.
14.
An aqueous-organic biphasic system was established and used with whole cells of Oenococcus oeni to reduce 2-octanone to (R)-2-octanol. The conversion reached 99% when the Tris/borate buffer was increased from 50 mM to 300 mM in the aqueous phase. In addition, the conversion increased as the log P value of the organic solvent changed from 0.5 to 6.6. Under optimized conditions, the conversion of (R)-2-octanol reached 99% from 0.5 M 2-octanone with an optical purity of 99% e.e. The biphasic system allows the anti-Prelog reduction of aliphatic and aromatic ketones to furnish (R)-configurated alcohols in high optical purity as well. 相似文献
15.
Glucose uptake by the heterofermentative lactic acid bacterium Oenococcus oeni B1 was studied at the physiological and gene expression levels. Glucose- or fructose-grown bacteria catalyzed uptake of [(14)C]glucose over a pH range from pH 4 to 9, with maxima at pHs 5.5 and 7. Uptake occurred in two-step kinetics in a high- and low-affinity reaction. The high-affinity uptake followed Michaelis-Menten kinetics and required energization. It accumulated the radioactivity of glucose by a factor of 55 within the bacteria. A large portion (about 80%) of the uptake of glucose was inhibited by protonophores and ionophores. Uptake of the glucose at neutral pH was not sensitive to degradation of the proton potential, Δp. Expression of the genes OEOE_0819 and OEOE_1574 (here referred to as 0819 and 1574), coding for secondary transporters, was induced by glucose as identified by quantitative real-time (RT)-PCR. The genes 1574 and 0819 were able to complement growth of a Bacillus subtilis hexose transport-deficient mutant on glucose but not on fructose. The genes 1574 and 0819 therefore encode secondary transporters for glucose, and the transports are presumably Δp dependent. O. oeni codes, in addition, for a phosphotransferase transport system (PTS) (gene OEOE_0464 [0464] for the permease) with similarity to the fructose- and mannose-specific PTS of lactic acid bacteria. Quantitative RT-PCR showed induction of the gene 0464 by glucose and by fructose. The data suggest that the PTS is responsible for Δp-independent hexose transport at neutral pH and for the residual Δp-independent transport of hexoses at acidic pH. 相似文献
16.
Delaherche A Bon E Dupé A Lucas M Arveiler B De Daruvar A Lonvaud-Funel A 《Applied microbiology and biotechnology》2006,73(2):394-403
Using molecular techniques and sequencing, we studied the intraspecific diversity of Oenococcus oeni, a lactic acid bacterium involved in red winemaking. A relationship between the phenotypic and genotypic characterization of 16 O. oeni strains isolated from wine with different levels of enological potential was shown. The study was based on the comparative genomic analysis by subtractive hybridization between two strains of O. oeni with opposite enological potential. The genomic sequences obtained from subtractive hybridization were amplified by polymerase chain reaction and sequenced for the 16 strains. A considerable diversity among strains of O. oeni was observed. 相似文献
17.
Maicas Sergi Pardo Isabel Ferrer Sergi 《World journal of microbiology & biotechnology》1999,15(6):737-739
Malolactic fermentation (MLF) of wine in continuous culture was obtained by using Oenococcus oeni (formerly Leuconostoc oenos). The maximum malic acid degradation in our bioreactor system was reached at a dilution rate of 0.016h–1, and 92–95% of the malic acid (3.9–4.0g/l) was converted to lactic acid and CO2. 相似文献
18.
酒酒球菌苹果酸-乳酸酶基因的测序及分析 总被引:2,自引:1,他引:2
苹果酸乳酸酶是乳酸菌进行苹果酸乳酸发酵(MLF)的关键酶。以携带酒酒球菌(Oenococcusoeni)优良菌系OenococcusoeniSD2a的苹果酸乳酸酶基因mleA的重组质粒pLmleA作为测序质粒,进行测序分析。测序结果表明,克隆到的mleA基因序列与已报道的序列同源性为99%。mleA基因序列中有2个碱基与报道不同,其中1614碱基的改变导致错意突变,编码的氨基酸由报道的Asp变为Glu,这一改变使得原有的BamHI位点不再存在。 相似文献
19.
20.
Control of Flavor Development in Wine during and after Malolactic Fermentation by Oenococcus oeni 总被引:1,自引:0,他引:1
下载免费PDF全文

During malolactic fermentation in wine by Oenococcus oeni, the degradation of citric acid was delayed compared to the degradation of malic acid. The maximum concentration of diacetyl, an intermediary compound in the citric acid metabolism with a buttery or nutty flavor, coincided with the exhaustion of malic acid in the wine. The maximum concentration of diacetyl obtained during malolactic fermentation was strongly dependent on the oxygen concentration and the redox potential of the wine and, to a lesser extent, on the initial citric acid concentration. The final diacetyl concentration in the wine was also dependent on the concentration of SO2. Diacetyl combines rather strongly with SO2 (Kf = 7.2 × 103 M−1 in 0.1 M malate buffer [pH 3.5] at 30°C). The reaction is exothermic and reversible. If the concentration of SO2 decreases during storage of the wine, the diacetyl concentration increases again. 相似文献