首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intracellular signaling mediated by phosphatidylinositol 3-kinase (PI3K) is important for a number of cellular processes and is stimulated by a variety of hormones, including insulin and leptin. A histochemical method for assessment of PI3K signaling would be an important advance in identifying specific cells in histologically complex organs that are regulated by growth factors and peptide hormones. However, current methods for detecting PI3K activity require either homogenization of the tissue or cells or the ability to transfect probes that bind to phosphatidylinositol 3,4,5 trisphosphate (PIP3), the reaction product of PI3K catalysis. Here we report the validation of an immunocytochemical method to detect changes in PI3K activity, using a recently developed monoclonal antibody to PIP3, in paraformaldehyde-fixed bovine aortic endothelial cells (BAECs) in culture and in hepatocytes of intact rat liver. Treatment with either insulin or leptin increased BAEC PIP3 immunoreactivity, and these effects were blocked by pretreatment with PI3K inhibitors. Furthermore, infusion of insulin into the hepatic portal vein of fasted rats caused an increase of PIP3 immunostaining in hepatocytes that was associated with increased serine phosphorylation of the downstream signaling molecule protein kinase B/Akt (PKB/Akt). We conclude that immunocytochemical PIP3 staining can detect changes in PI3K activation induced by insulin and leptin in cell culture and intact liver.  相似文献   

2.
Interleukin-2 (IL-2) stimulates proliferation of T lymphocytes and is involved in the activation of both natural killer and lymphokine-activated killer precursor cells. The intracellular messengers which mediate IL-2-dependent events have not yet been identified. IL-2 receptor is not a protein-tyrosine kinase. Activation of a cellular protein-tyrosine kinase and direct association of a protein-tyrosine kinase activity with the IL-2 receptor occurs within minutes of IL-2 stimulation. We investigated the activation of phosphatidylinositol 3-kinase (PI 3-kinase) in IL-2-mediated signal transduction using the IL-2-dependent murine T-cell line, CTLL-2, and human phytohemagglutinin-stimulated peripheral blood lymphocytes (phytohemagglutinin blasts). Within a minute following stimulation of these cells with IL-2, PI 3-kinase activity could be detected in antiphosphotyrosine (anti-P-Tyr) antibody immunoprecipitates. IL-2 triggered a direct association of PI 3-kinase with the IL-2 receptor as detected in immunoprecipitates using anti-IL-2 receptor beta chain antibody. In vivo labeled CTLL-2 cells have a time-dependent increase in D-3-phosphorylated polyphosphoinositides following stimulation with IL-2. This is the first group of second messengers identified in IL-2-mediated signal transduction.  相似文献   

3.
Phosphatidylinositol 3-kinase mediates several actions of insulin including its antilipolytic effect. This effect is elicited by the insulin-stimulated serine phosphorylation and activation of cGMP-inhibited phosphodiesterase (PDE3B). In human adipocytes, we found that insulin differentially stimulated phosphatidylinositol 3-kinase activity; the lipid kinase activity was associated with IRS-1, whereas the serine kinase activity was associated with the insulin receptor and phosphorylated a number of proteins including p85, p110, and a 135-kDa protein identified as PDE3B. PDE3B phosphorylation was associated with enzyme activation, thus initiating the antilipolytic effect of insulin. These results show a novel pathway for intracellular signaling through the insulin receptor leading to the serine phosphorylation of key proteins involved in insulin action.  相似文献   

4.
In accordance with our recent results obtained with cultured rat hepatocytes [Fujioka, T. & Ui, M. (2001) Eur. J. Biochem. 268, 25-34], epidermal growth factor (EGF) gave rise to transient tyrosine phosphorylation of insulin receptor substrates (IRS-1 and IRS-2), thereby activating the bound phosphatidylinositol 3-kinase in human epidermoid carcinoma A431 cells normally abundant in EGF receptors (EGFR) and Chinese hamster ovary (CHO) cells transfected with full-length EGFR. These actions of EGF, although much smaller in magnitude than those of insulin or IGF-I in the same cells, were accompanied by tyrosine phosphorylation of EGFR rather than insulin or IGF-I receptors, never observed in wild-type CHO cells expressing no EGFR, and totally inhibited by an inhibitor of EGFR kinase, AG1478, that was without effect on insulin or IGF-I actions. Recombinant IRS-1 was phosphorylated on tyrosines upon incubation with purified EGFR from A431 cells and 32P-labeled ATP. When CHO cells were transfected with C-terminal truncated EGFR lacking three NPXY motifs responsible for direct binding to phosphotyrosine-binding domains of IRSs, no effect of EGF could be observed. We suggest that tyrosine phosphorylation of IRS-1 or IRS-2 could mediate EGFR-induced activation of phosphatidylinositol 3-kinase in mammalian cells.  相似文献   

5.
Short-term incubation of adult rat hepatocytes with epidermal growth factor (EGF) caused tyrosine phosphorylation of insulin receptor substrate (IRS)-1 and IRS-2 when the cells had been submitted to primary culture from 1-18 h. Tyrosine-phosphorylated IRS-1 and IRS-2 bound to the regulatory subunit (p85) of phosphatidylinositol (PtdIns) 3-kinase, thereby activating the enzymic activity. Tyrosine phosphorylation of the IRSs and activation of PtdIns 3-kinase in 3 h cultured hepatocytes both proceeded similarly to the same actions of insulin; the activation was rapid and transient, with peak values at 15-30 s and with similar EC(50)s in the nM range in both cases. A possible involvement of insulin receptors in these insulin-like actions of EGF was excluded by the following three lines of evidence. Insulin caused tyrosine phosphorylation of the insulin receptor beta-subunit but EGF did not. In contrast, the EGF receptor was phosphorylated by EGF, but the insulin receptor was not. The actions of EGF, but not those of insulin, were inhibited by AG1478, a selective inhibitor of EGF receptor tyrosine kinase. Cultured hepatocytes exposed to insulin or insulin-like growth factor-I (IGF-I) for a short period responded to the subsequent addition of EGF, whereas EGF-treated cells responded to insulin. The cells, however, displayed receptor desensitization under the same conditions, that is, no response was observed upon repeated addition of the same agonist, EGF, insulin or IGF-I. Thus, the EGF receptor-initiated signalling was mediated by PtdIns 3-kinase associated with tyrosine-phosphorylated IRSs in short-term cultured rat hepatocytes.  相似文献   

6.
7.
Phosphatidylinositol 3-kinase (PI 3-kinase) plays an important role in a variety of hormone and growth factor-mediated intracellular signaling cascades and has been implicated in the regulation of a number of metabolic effects of insulin, including glucose transport and glycogen synthase activation. In the present study we have examined 1) the association of PI 3-kinase with the insulin receptor kinase (IRK) in rat liver and 2) the subcellular distribution of PI 3-kinase-IRK interaction. Insulin treatment promoted a rapid and pronounced recruitment of PI 3-kinase to IRKs located at the plasma membrane, whereas no increase in association with endosomal IRKs was observed. In contrast to IRS-1-associated PI 3-kinase activity, association of PI 3-kinase with the plasma membrane IRK did not augment the specific activity of the lipid kinase. With use of the selective PI 3-kinase inhibitor wortmannin, our data suggest that the cell surface IRK beta-subunit is not a substrate for the serine kinase activity of PI 3-kinase. The functional significance for the insulin-stimulated selective recruitment of PI 3-kinase to cell surface IRKs remains to be elucidated.  相似文献   

8.
Recent studies have demonstrated that fatty acids induce insulin resistance in skeletal muscle by blocking insulin activation of insulin receptor substrate-1 (IRS-1)-associated phosphatidylinositol 3-kinase (PI3-kinase). To examine the mechanism by which fatty acids mediate this effect, rats were infused with either a lipid emulsion (consisting mostly of 18:2 fatty acids) or glycerol. Intracellular C18:2 CoA increased in a time-dependent fashion, reaching an approximately 6-fold elevation by 5 h, whereas there was no change in the concentration of any other fatty acyl-CoAs. Diacylglycerol (DAG) also increased transiently after 3-4 h of lipid infusion. In contrast there was no increase in intracellular ceramide or triglyceride concentrations during the lipid infusion. Increases in intracellular C18:2 CoA and DAG concentration were associated with protein kinase C (PKC)-theta activation and a reduction in both insulin-stimulated IRS-1 tyrosine phosphorylation and IRS-1 associated PI3-kinase activity, which were associated with an increase in IRS-1 Ser(307) phosphorylation. These data support the hypothesis that an increase in plasma fatty acid concentration results in an increase in intracellular fatty acyl-CoA and DAG concentrations, which results in activation of PKC-theta leading to increased IRS-1 Ser(307) phosphorylation. This in turn leads to decreased IRS-1 tyrosine phosphorylation and decreased activation of IRS-1-associated PI3-kinase activity resulting in decreased insulin-stimulated glucose transport activity.  相似文献   

9.
We previously have shown that insulin treatment of cells greatly increases the activity of phosphatidylinositol (PI) 3-kinase in immunoprecipitates made with an antibody to phosphotyrosine. However, the association of PI 3-kinase activity with the activated insulin receptor is not significant under these conditions. In the present study, we have attempted to reconstitute the association of PI 3-kinase activity with the activated insulin receptor in vitro. PI 3-kinase activity does indeed associate with the autophosphorylated insulin receptor in our in vitro system. The autophosphorylation of the insulin receptor and/or its associated conformational change appear to be necessary for the association of PI 3-kinase activity with the receptor, since kinase negative receptor failed to bind PI 3-kinase activity. After binding, PI 3-kinase or its associated protein seems to be released from the activated receptor after the completion of its tyrosine phosphorylation by the receptor. Tyr960 in the juxtamembrane region of the insulin receptor beta-subunit seems to be involved in the association of PI 3-kinase activity with the receptor, but not C terminus region of the beta-subunit including two tyrosine autophosphorylation sites (Tyr1316 and Tyr1322). The in vitro assay system for the association of PI 3-kinase activity with the insulin receptor can be utilized to study the mechanism of interaction of these molecules and will be an useful method to detect other associated molecules with the insulin receptor.  相似文献   

10.
Conflicting results concerning the ability of the epidermal growth factor (EGF) receptor to associate with and/or activate phosphatidylinositol (PtdIns) 3-kinase have been published. Despite the ability of EGF to stimulate the production of PtdIns 3-kinase products and to cause the appearance of PtdIns 3-kinase activity in antiphosphotyrosine immunoprecipitates in several cell lines, we did not detect EGF-stimulated PtdIns 3-kinase activity in anti-EGF receptor immunoprecipitates. This result is consistent with the lack of a phosphorylated Tyr-X-X-Met motif, the p85 Src homology 2 (SH2) domain recognition sequence, in this receptor sequence. The EGF receptor homolog, ErbB2 protein, also lacks this motif. However, the ErbB3 protein has seven repeats of the Tyr-X-X-Met motif in the carboxy-terminal unique domain. Here we show that in A431 cells, which express both the EGF receptor and ErbB3, PtdIns 3-kinase coprecipitates with the ErbB3 protein (p180erbB3) in response to EGF. p180erbB3 is also shown to be tyrosine phosphorylated in response to EGF. In contrast, a different mechanism for the activation of PtdIns 3-kinase in response to EGF occurs in certain cells (PC12 and A549 cells). Thus, we show for the first time that ErbB3 can mediate EGF responses in cells expressing both ErbB3 and the EGF receptor.  相似文献   

11.
Serine/threonine phosphorylation of insulin receptor substrate 1 (IRS-1) has been implicated as a negative regulator of insulin signaling. Prior studies have indicated that this negative regulation by protein kinase C involves the mitogen-activated protein kinase and phosphorylation of serine 612 in IRS-1. In the present studies, the negative regulation by platelet-derived growth factor (PDGF) was compared with that induced by endothelin-1, an activator of protein kinase C. In contrast to endothelin-1, the inhibitory effects of PDGF did not require mitogen-activated protein kinase or the phosphorylation of serine 612. Instead, three other serines in the phosphorylation domain of IRS-1 (serines 632, 662, and 731) were required for the negative regulation by PDGF. In addition, the PDGF-activated serine/threonine kinase called Akt was found to inhibit insulin signaling. Moreover, this inhibition required the same IRS-1 serine residues as the inhibition by PDGF. Finally, the negative regulatory effects of PDGF and Akt were inhibited by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), one of the downstream targets of Akt. These studies implicate the phosphatidylinositol 3-kinase/Akt kinase cascade as an additional negative regulatory pathway for the insulin signaling cascade.  相似文献   

12.
A soybean phospholipid mixture produced a concentration-dependent enhancement of beta subunit autophosphorylation of the detergent-soluble, purified human placental insulin receptor. Although phosphatidylcholine, phosphatidylethanolamine, or phosphatidylserine also increased insulin receptor autophosphorylation, only phosphatidylinositol (PtdIns) stimulated to a similar extent as the phospholipid mixture. The effect of PtdIns was biphasic, stimulating at low concentrations (75 microM), but having no stimulatory effect at high concentrations (1.0 mM). Phospholipids also stimulated the exogenous protein kinase activity of the insulin receptor toward histone H2B. Phosphorylation of PtdIns occurred with these purified insulin receptor preparations, but this activity was insulin-independent, and the turnover number for PtdIns phosphorylation in the presence of soybean phospholipid was 1/220th as small as the turnover number for the autophosphorylating activity. These results suggest that although PtdIns can modulate the activity of the insulin receptor kinase, PtdIns phosphorylation itself is not directly involved in this regulation.  相似文献   

13.
W Ai  J Gong  L Yu 《FEBS letters》1999,456(1):196-200
The involvement of protein kinases was studied in mu opioid receptor activation of mitogen-activated protein (MAP) kinase using cells transfected with the receptor clone. The cAMP/protein kinase A (PKA) pathway is known to be the major biochemical pathway for mu opioid receptor signaling. However, our data showed that stimulating adenylyl cyclase or activating PKA had no effect on mu receptor enhancement of MAP kinase activity, suggesting that the cAMP/PKA pathway is not involved in mediating the mu receptor activation of MAP kinase. Inhibition of phosphatidylinositol (PI) 3-kinase reduced mu receptor enhancement of MAP kinase activity, suggesting PI 3-kinase involvement. Together, these results show that cross-talk between the mu opioid receptor and the MAP kinase cascade is not mediated by the cAMP/PKA pathway, but involves PI 3-kinase.  相似文献   

14.
15.
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that regulates physiological processes including Ca(2+) metabolism, Na(+), Cl(-), K(+), and H(2)0 balance, and the growth of some epithelial cells through diverse signaling pathways. Although many effects of CaR are mediated by the heterotrimeric G proteins Galpha(q) and Galpha(i), not all signaling pathways regulated by CaR have been identified. We used human embryonic kidney (HEK)-293 cells that stably express human CaR to study the regulation of inositol lipid metabolism by CaR. The nonfunctional mutant CaR(R796W) was used as a negative control. We found that CaR regulates phosphatidylinositol (PI) 4-kinase, the first step in inositol lipid biosynthesis. In cells pretreated with to inhibit phospholipase C activation and to block the degradation of PI 4,5-bisphosphate to form [(3)H]inositol trisphosphate (IP(3)), CaR stimulated the accumulation of [(3)H]PI monophosphate (PIP). Additionally, wortmannin, an inhibitor of both PI 3-kinase and type III PI 4-kinase, blocked CaR-stimulated accumulation of [(3)H]PIP and inhibited [(3)H]IP(3) production. CaR-stimulated inositol lipid synthesis was attributable to PI 4-kinase and not PI 3-kinase because CaR did not activate Akt, a downstream target of PI 3-kinase. CaR associates with PI 4-kinase based on the findings that CaR and the 110-kDa PI 4-kinase beta can be co-immunoprecipitated with antibodies against either CaR or PI 4-kinase. The PI-4 kinase in co-immunoprecipitates with anti-CaR antibody was activated in Ca(2+)-stimulated HEK-293 cells, which stably express the wild type CaR. Pertussis toxin did not affect the formation of [(3)H]IP(3) or the rise in intracellular Ca(2+) (Handlogten, M. E., Huang, C. F., Shiraishi, N., Awata, H., and Miller, R. T. (2001) J. Biol. Chem. 276, 13941-13948). RGS4, an accelerator of GTPase activity of members of the Galpha(i) and Galpha(q) families, attenuated the CaR-stimulated PLC activation and IP(3) accumulation, which is mediated by Galpha(q), but did not inhibit CaR-stimulated [(3)H]PIP formation. In HEK-293 cells, which express wild type CaR, Rho was enriched in immune complexes co-immunoprecipitated with the anti-CaR antibody. C(3) toxin, an inhibitor of Rho, also inhibited the CaR-stimulated [(3)H]IP(3) production but did not lead to CaR-stimulated [(3)H]PIP formation, reflecting inhibition of PI 4-kinase. Taken together, our data demonstrate that CaR stimulates PI 4-kinase, the first step in inositol lipid biosynthesis conversion of PI to PI 4-P by Rho-dependent and Galpha(q)- and Galpha(i)-independent pathways.  相似文献   

16.
We have studied the phosphatidylinositol 3-kinase (PtdIns 3-kinase) in insulin-stimulated Chinese hamster ovary (CHO) cells expressing normal (CHO/IR) and mutant human insulin receptors. Insulin stimulation of CHO/IR cells results in an increase in PtdIns 3-kinase activity associated with anti-phosphotyrosine (alpha PY) immunoprecipitates, which has been previously shown to correlate with the in vivo production of PtdIns(3,4)P2, and PtdIns(3,4,5)P3 (Ruderman, N., Kapeller, R., White, M.F., and Cantley, L.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1411-1415). Stimulation was maximal within 1 min and showed a dose response identical to that of insulin receptor autophosphorylation. The PtdIns 3-kinase also associated with the insulin receptor in an insulin-stimulated manner, as approximately 50% of the total alpha PY-precipitable activity could be specifically immunoprecipitated with anti-insulin receptor antibody. Mutant insulin receptors displayed variable ability to stimulate the PtdIns 3-kinase, but in all cases the presence of PtdIns 3-kinase in alpha PY immunoprecipitates correlated closely with the tyrosyl phosphorylation of the endogenous substrate pp185. In CHO cells expressing a kinase-deficient mutant (IRA1018), there was no observable insulin stimulation of PtdIns 3-kinase activity in alpha PY immunoprecipitates and no tyrosyl phosphorylation of pp185. Substitution of Tyr1146 in the insulin receptor regulatory region with phenylalanine partially impaired receptor autophosphorylation, pp185 phosphorylation, and insulin-stimulated increases in alpha PY-precipitable PtdIns 3-kinase activity. In contrast, a deletion mutant lacking 12 amino acids from the juxtamembrane region (IR delta 960) displayed normal in vivo autophosphorylation but failed to stimulate the PtdIns 3-kinase or phosphorylate pp185. Finally, a mutant receptor from which the C-terminal 43 amino acids had been deleted (IR delta CT) exhibited normal insulin-stimulated autophosphorylation, pp185 phosphorylation, and stimulation of the PtdIns 3-kinase activity in alpha PY immunoprecipitates. These data suggest that the PtdIns 3-kinase is itself a substrate of the insulin receptor kinase or associates preferentially with a substrate. A comparison of the biological activities of the mutant receptors with their activation of the PtdIns 3-kinase furthermore suggests that the PtdIns 3-kinase may be linked to insulin's ability to regulate DNA synthesis and cell growth.  相似文献   

17.
SIP (signaling inositol phosphatase) or SHIP (SH2-containing inositol phosphatase) is a recently identified SH2 domain-containing protein which has been implicated as an important signaling molecule. SIP/SHIP becomes tyrosine phosphorylated and binds the phosphotyrosine-binding domain of SHC in response to activation of hematopoietic cells. The signaling pathways and biological responses that may be regulated by SIP have not been demonstrated. SIP is a phosphatidylinositol- and inositol-polyphosphate 5-phosphatase with specificity in vitro for substrates phosphorylated at the 3' position. Phosphatidylinositol 3'-kinase (PI 3-kinase) is an enzyme which is involved in mitogenic signaling and whose phosphorylated lipid products are predicted to be substrates for SIP. We tested the hypothesis that SIP can modulate signaling by PI 3-kinase in vivo by injecting SIP cRNAs into Xenopus oocytes. SIP inhibited germinal vesicle breakdown (GVBD) induced by expression of a constitutively activated form of PI 3-kinase (p110*) and blocked GVBD induced by insulin. SIP had no effect on progesterone-induced GVBD. Catalytically inactive SIP had little effect on insulin- or PI 3-kinase-induced GVBD. Expression of SIP, but not catalytically inactive SIP, also blocked insulin-induced mitogen-activated protein kinase phosphorylation in oocytes. SIP specifically and markedly reduced the level of phosphatidylinositol (3,4,5) triphosphate [PtdIns(3,4,5)P3] generated in oocytes in response to insulin. These results demonstrate that a member of the phosphatidylinositol polyphosphate 5-phosphatase family can inhibit signaling in vivo. Further, our data suggest that the generation of PtdIns(3,4,5)P3 by PI 3-kinase is necessary for insulin-induced GVBD in Xenopus oocytes.  相似文献   

18.
The concept of "selective insulin resistance" has emerged as a unifying hypothesis in attempts to reconcile the influence of insulin resistance with that of hyperinsulinemia in the pathogenesis of macrovascular complications of diabetes. To explore this hypothesis in endothelial cells, we designed a set of experiments to mimic the "typical metabolic insulin resistance" by blocking the phosphatidylinositol 3-kinase pathway and exposing the cells to increasing concentrations of insulin ("compensatory hyperinsulinemia"). Inhibition of phosphatidylinositol 3-kinase with wortmannin blocked the ability of insulin to stimulate increased expression of endothelial nitric-oxide synthase, did not affect insulin-induced activation of MAP kinase, and increased the effects of insulin on prenylation of Ras and Rho proteins. At the same time, this experimental paradigm resulted in increased expression of vascular cellular adhesion molecules-1 and E-selectin, as well as increased rolling interactions of monocytes with endothelial cells. We conclude that inhibition of the metabolic branch of insulin signaling leads to an enhanced mitogenic action of insulin in endothelial cells.  相似文献   

19.
Estrogen actions are mediated by a complex interface of direct control of gene expression (the so-called "genomic action") and by regulation of cell signaling/phosphorylation cascades, referred to as the "nongenomic," or extranuclear, action. We have previously described the identification of MNAR (modulator of nongenomic action of estrogen receptor) as a novel scaffold protein that regulates estrogen receptor alpha (ERalpha) activation of cSrc. In this study, we have investigated the role of MNAR in 17beta-estradiol (E2)-induced activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. Consistent with our previous results, a direct correlation was established between MNAR expression levels and E2-induced activation of PI3 and Akt kinases. Endogenous MNAR, ERalpha, cSrc, and p85, the regulatory subunit of PI3 kinase, interacted in MCF7 cells treated with E2. The interaction between p85 and MNAR required activation of cSrc and MNAR phosphorylation on Tyr 920. Consequently, the mutation of this tyrosine to alanine (Y920A) abrogated the interaction between MNAR and p85 and the E2-induced activation of the PI3K/Akt pathway, which was required for the E2-induced protection of MCF7 cells from apoptosis. Nonetheless, the Y920A mutant potentiated the E2-induced activation of the Src/MAPK pathway and MCF7 cell proliferation, as observed with the wild-type MNAR. These results provide new and important insights into the molecular mechanisms of E2-induced regulation of cell proliferation and apoptosis.  相似文献   

20.
T-cell activation involves two distinct signal transduction pathways. Antigen-specific signaling events are initiated by T-cell receptor recognition of cognate peptide presented by major histocompatibility complex molecules. Costimulatory signals, which are required for optimal T-cell activation and for overcoming the induction of anergy, can be provided by the homodimeric T-cell glycoprotein CD28 through its interaction with the counterreceptors B7-1 and B7-2 on antigen-presenting cells. Ligation of CD28 results in its phosphorylation on tyrosines and the subsequent recruitment and activation of phosphatidylinositol 3-kinase (PI 3-kinase). It has been suggested that the induced association of CD28 and PI 3-kinase is required for costimulation. We report here that ligation of CD19, a heterologous B-cell receptor that also associates with and activates PI 3-kinase upon ligation, failed to costimulate interleukin-2 production. Moreover, pharmacological inhibition of PI 3-kinase activity failed to block costimulation mediated by CD28. By mutational analysis, we demonstrate that disruption of PI 3-kinase association with CD28 also did not abrogate costimulation. These results argue that PI 3-kinase association with CD28 is neither necessary nor sufficient for costimulation of interleukin-2 production. Finally, we identify specific amino acid residues required for CD28-mediated costimulatory activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号