首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the potential of bacteria from river epilithon to mobilize a recombinant catabolic plasmid, pD10, encoding 3-chlorobenzoate degradation and kanamycin resistance. Fifty-four mobilizing plasmids were exogenously isolated by triparental matings between strains of Pseudomonas putida and epilithic bacteria from the River Taff (South Wales, United Kingdom). Frequencies for mobilization ranged from 1.7 x 10(-8) to 4.5 x 10(-3) per recipient at 20 degrees C. The sizes of the mobilizing plasmids isolated ranged from 40 kb to over 200 kb, and 19 of 54 were found to encode mercury resistance. Plasmid-encoded resistance to tetracycline and streptomycin was also found but not resistance to UV light or various heavy metals. Eight plasmids of epilithic bacteria, analyzed by comparing restriction fragmentation patterns, showed significant differences between those isolated from different independent matings. Optimal temperatures for mobilization of pD10 were between 15 and 25 degrees C. Four mercury resistance plasmids were found to be broad host range, transferring mercury resistance and mobilizing pD10 readily to representative species of beta- and gamma-purple bacteria. In general, frequencies of pD10 mobilization by plasmids of epilithic bacteria were 2 to 3 orders of magnitude lower than conjugal transfer frequencies. Thus, there is a high potential for exchange of recombinant genes introduced into the epilithon by mobilization between a variety of bacterial species.  相似文献   

2.
A 7.8 kb plasmid (pQM17) encoding mercury resistance was isolated from two epilithic strains of Acinetobacter calcoaceticus. The plasmid had a broad host range when mobilized by RP1, transferring into Pseudomonas aeruginosa, P. putida, P. fluorescens, Escherichia coli, Proteus vulgaris and Chromobacterium sp. with frequencies ranging from 5.3 x 10(-9) to 4.6 x 10(-4) per recipient. The plasmid could be transferred into A. calcoaceticus BD413 using intact cells of donor and recipient bacteria (i.e. natural transformation) and there was a broad temperature optimum (14-37 degrees C) for transformation. Transformation was as efficient in liquid matings as on plates but there was no effect of pH in the range 5.6-7.9. Maximum transformation frequencies were obtained after 24 h on agar plates containing 3.5-10 g C 1-1 with donor to recipient ratios ranging from 6 to 415.  相似文献   

3.
In situ mating experiments were done in the River Taff, South Wales, United Kingdom, by using a natural mercury resistance plasmid (pQM1) isolated from a mixture of epilithic bacteria in vitro. The river temperature from March to November was found to influence transfer frequencies strongly (6.8 × 10−9 to 1.5 × 10−2 per recipient). A linear relationship existed between log10 transfer frequency and river temperature (6 to 21°C), a 2.6°C change in temperature giving a 10-fold change in transfer frequency. In vitro experiments showed that pQM1 transferred most efficiently between fluorescent pseudomonads and that one epilithic isolate (Pseudomonas fluorescens) was an efficient donor in situ. Experiments with a P. putida recipient showed that intact epilithic bacterial communities could transfer mercury resistance plasmids in situ at frequencies of up to 3.75 × 10−6 per recipient. Nineteen of the large (>250-kilobase) plasmids isolated by transfer into P. putida were studied in detail and grouped into seven types by restriction digests. Mercury resistance and UV resistance were found to be common linked phenotypes in 19 of the 23 plasmids tested.  相似文献   

4.
The genetic accessibility of selected acidophilic bacteria was investigated to evaluate their applicability to degrading pollutants in acidic environments. The IncP1 antibiotic resistance plasmids RP4 and pVK101 and the phenol degradation-encoding plasmid pPGH11 were transferred from neutrophilic bacteria into the extreme acidophilic eubacterium Acidiphilium cryptum at frequencies of 1.8 x 10(-2) to 9.8 x 10(-4) transconjugants per recipient cell. The IncQ antibiotic resistance plasmid pSUP106 was mobilizable to A. cryptum by triparental matings at a frequency of 10(-5) transconjugants per recipient cell. In the transconjugants, antibiotic resistances and the ability to degrade phenol were expressed. A. cryptum AC6 (pPGH11) grew with 2.5 mM phenol at a doubling time of 12 h and a yield of 0.52 g (dry cell weight) per g of phenol. A. cryptum harbored five native plasmids of 255 to 6.3 kb in size. Plasmids RP4 and pVK101 were transferred from Escherichia coli into Acidobacterium capsulatum at frequencies of 10(-3) and 2.3 x 10(-4) and to the facultative autotroph Thiobacillus acidophilus at frequencies of 1.1 x 10(-5) and 2.9 x 10(-6) transconjugants per recipient cell, respectively. Plasmid pPGH11 could not be transferred into the latter strains. T. acidophilus wild type contained six so far cryptic plasmids of 220 to 5 kb.  相似文献   

5.
The self-transmissible plasmid pXO12 (112.5 kilobases [kb]), originally isolated from strain 4042A of Bacillus thuringiensis subsp. thuringiensis, codes for production of the insecticidal crystal protein (Cry+). The mechanism of pXO12-mediated plasmid transfer was investigated by monitoring the cotransfer of the tetracycline resistance plasmid pBC16 (4.2 kb) and the Bacillus anthracis toxin and capsule plasmids, pXO1 (168 kb) and pXO2 (85.6 kb), respectively. In matings of B. anthracis donors with B. anthracis and Bacillus cereus recipients, the number of Tcr transcipients ranged from 4.8 x 10(4) to 3.9 x 10(6)/ml (frequencies ranged from 1.6 x 10(-4) to 7.1 x 10(-2), and 0.3 to 0.4% of them simultaneously inherited pXO1 or pXO2. Physical analysis of the transferred plasmids suggested that pBC16 was transferred by the process of donation and that the large B. anthracis plasmids were transferred by the process of conduction. The transfer of pXO1 and pXO2 involved the transposition of Tn4430 from pXO12 onto these plasmids. DNA-DNA hybridization experiments demonstrated that Tn4430 was located on a 16.0-kb AvaI fragment of pXO12. Examination of Tra- and Cry- derivatives of pXO12 showed that this fragment also harbored information involved in crystal formation and was adjacent to a restriction fragment containing DNA sequences carrying information required for conjugal transfer.  相似文献   

6.
Abstract A microcosm using rotating slate discs in a chemostat was used to study bacterial population dynamics and genetic interactions in river epilithon. Populations of all introduced donor and recipient Pseudomonas spp. decreased with time but all the bacteria survived better on the slate discs than in the liquid phase. Conjugal transfer of an epilithic plasmid encoding mercury resistance (pQM1) occured with transfer frequencies of 1.4 × 10−6 to 3.6 × 10−3 per recipient, which were about 100-fold lower than in standard membrane filter mating experiments.  相似文献   

7.
Abstract Bacteria isolated from the River Mersey were analysed for their tolerance to mercury (HgCl2). About 40% of the population was tolerant to mercury and in 13 of 52 mercury-tolerant isolates tested the mercury resistance (Hg®) was transferred to Escherichia coli in conjugal matings. These 13 isolates represented a range of gram-negative genera and in each case mercury resistance was coded by a conjugative plasmid. These plasmids (75 kb to > 250 kb in size) all expressed mercury resistance of the narrow spectrum variety, volatilised HgCl2 to elemental Hg° vapour and showed some degree of temperature sensitivity of transfer. None expressed resistance to nine different antibiotics. These 13 HgR plasmids were classified by restriction mapping into three distinct groups typified by pMER11, pMER327 and pMER610. The eight pMER610 group plasmids are identical and belong to the IncHI-2 group. Two of the four pMER327 group plasmids are closely related while the other two contain some common restriction fragments. pMER11 is quite distinct from the other groups. These results imply that within this aquatic environment plasmids play an important role in the response of bacteria to contaminating mercury and that there is widespread plasmid transfer and considerable genetic rearrangement.  相似文献   

8.
The interspecific transfer of two giant linear plasmids was investigated in sterile soil microcosms. Plasmids pRJ3L (322 kb) and pRJ28 (330 kb), both encoding mercury resistance, were successfully transferred in amended soil microcosms from their streptomycete hosts, the isolates CHR3 and CHR28, respectively, to a plasmidless and mercury-sensitive strain, Streptomyces lividans TK24. Transconjugants of S. lividans TK24 were first observed after 2 to 3 days of incubation at 30 degrees C, which corresponded to the time taken for the formation of mycelia in soil. Transfer frequencies were 4.8 x 10(-4) and 3.6 x 10(-5) CFU/donor genome for pRJ3L and pRJ28, respectively. Transconjugants were analyzed by pulsed-field gel electrophoresis for the presence of plasmids, and plasmid identity was confirmed by restriction digests. Total genomic DNA digests confirmed that transconjugants were S. lividans TK24. The mercury resistance genes were shown to be on the plasmid in the transconjugants by hybridization analysis and were still functional. This is the first demonstration of transfer of giant linear plasmids in sterile soil microcosms. Giant linear plasmids were detected in many Streptomyces spp. isolated from mercury-contaminated sediments from Boston Harbor (United States), Townsville Harbor (Australia), and the Sali River (Tucuman, Argentina). Mercury resistance genes were shown to be present on some of these plasmids. Our findings that giant linear plasmids can be transferred between Streptomyces spp. and are common in environmental Streptomyces isolates suggest that these plasmids are important in gene transfer between streptomycetes in the environment.  相似文献   

9.
The possibility of the accidental or deliberate release of genetically engineered microorganisms into the environment has accentuated the need to study their survival in, and effect on, natural habitats. In this study, Pseudomonas putida UWC1 harboring a non-self-transmissible plasmid, pD10, encoding the breakdown of 3-chlorobenzoate was shown to survive in a fully functioning laboratory-scale activated-sludge unit (ASU) for more than 8 weeks. The ASU maintained a healthy, diverse protozoal population throughout the experiment, and the introduced strain did not adversely affect the functioning of the unit. Although plasmid pD10 was stably maintained in the host bacterium, the introduced strain did not enhance the degradation of 3-chlorobenzoate in the ASU. When reisolated from the ASU, derivatives of strain UWC1 (pD10) were identified which were able to transfer plasmid pD10 to a recipient strain, P. putida PaW340, indicating the in situ transfer of mobilizing plasmids from the indigenous population to the introduced strain. Results from plate filter matings showed that bacteria present in the activated-sludge population could act as recipients for plasmid pD10 and actively expressed genes carried on the plasmid. Some of these activated-sludge transconjugants gave higher rates of 3-chlorobenzoate breakdown than did strain UWC1(pD10) in batch culture.  相似文献   

10.
The possibility of the accidental or deliberate release of genetically engineered microorganisms into the environment has accentuated the need to study their survival in, and effect on, natural habitats. In this study, Pseudomonas putida UWC1 harboring a non-self-transmissible plasmid, pD10, encoding the breakdown of 3-chlorobenzoate was shown to survive in a fully functioning laboratory-scale activated-sludge unit (ASU) for more than 8 weeks. The ASU maintained a healthy, diverse protozoal population throughout the experiment, and the introduced strain did not adversely affect the functioning of the unit. Although plasmid pD10 was stably maintained in the host bacterium, the introduced strain did not enhance the degradation of 3-chlorobenzoate in the ASU. When reisolated from the ASU, derivatives of strain UWC1 (pD10) were identified which were able to transfer plasmid pD10 to a recipient strain, P. putida PaW340, indicating the in situ transfer of mobilizing plasmids from the indigenous population to the introduced strain. Results from plate filter matings showed that bacteria present in the activated-sludge population could act as recipients for plasmid pD10 and actively expressed genes carried on the plasmid. Some of these activated-sludge transconjugants gave higher rates of 3-chlorobenzoate breakdown than did strain UWC1(pD10) in batch culture.  相似文献   

11.
Atypical psychrophilic Aeromonas salmonicida isolates were obtained from farmed and wild fish in Northeastern North America. These bacteria were isolated between 1992 and 2001 and carried tetracycline resistance (Tc(r)) plasmids of approximately 58 kb. The nine isolates had plasmids which could be divided into four groups based on the specific tetracycline resistance (tet) gene carried [tet(A) or tet(B)], incompatibility of the plasmid [IncU or other], whether the plasmid carried the IS6100 sequences, the sul1 gene, coding for sulfonamide resistance, the dfrA16 gene, coding for trimethoprim resistance, and/or carried a complete Tn1721, and their ability to transfer their Tc(r) plasmids to an Escherichia coli recipient at 15 degrees C. Five of the isolates, with genetically related Tc(r) plasmids, were able to transfer their plasmids to an E. coli recipient at frequencies ranging from 5.7x10(-4) to 2.8x10(-6) per recipient. The 1992 isolate carried a genetically distinct plasmid, which transferred at a slightly higher rate. The three remaining isolates carried one of two genetically different plasmids, which were unable to transfer to an E. coli recipient. Conjugal transfer at 15 degrees C is the lowest temperature that has been documented in bacteria.  相似文献   

12.
Abstract The presence of transfer proficient plasmids in bacteria isolated from the leaves of sugar beet ( Beta vulgaris L.) was studied. Of 435 bacteria sampled 79 (18%) contained plasmids. Pseudomonads (30%), Erwinia (12%) and Klebsiella (9%) were the largest populations sampled of which 22%, 33% and 29%, respectively, contained plasmids. The ability of these plasmids to self-transfer or mediate the mobilization of the tra mob+ broad host range IncQ plasmid R300B was determined. R300B was maintained in 61/79 natural plasmid containing isolates, the Gram positive isolates could not support R300B. Pseudomonas aureofaciens SBW25, isolated from sugar beet leaves, was chromosomally marked with a tetracycline resistance gene and used as a recipient (SBW25ETc). Five isolates of Erwinia herbicola and one of Erwinia salicis containing natural plasmids were able to mobilize R300B into the recombinant, SBW25ETc. These mobolizing ( tra+ ) plasmids were not maintained in transconjugant SBW25 cells. Analysis of the fragment patterns of Pst I digested plasmid DNA demonstrated that four (pSB139, pSB140, pSB142, pSB146; 110 kb) were identical, one (pSB153; 65 kb) was common to a subset of fragments in these four and another (pSB169; 100 kb) was unique. Other natural isolates were able to transfer copper resistance ( Erwinia rhapontici , 2 strains) or mercury resistance ( Pseudomonas fluorescens SBW340) to a rifampicin resistant recipient Pseudomonas putida UWC1 but not to SBW25ETc. These self-transferable plasmids were not able to mobilize R300B. These data demonstrate that the phyllosphere supports indigenous microbial populations which have the capacity to transfer genetic material between bacteria of different genera.  相似文献   

13.
As part of an effort to develop systems for genetic analysis of strains of Bacillus pumilus which are being used as a microbial hay preservative, we introduced the conjugative Enterococcus faecalis transposon Tn916 into B. pumilus ATCC 1 and two naturally occurring hay isolates of B. pumilus. B. pumilus transconjugants resistant to tetracycline were detected at a frequency of approximately 6.5 x 10(-7) per recipient after filter mating with E. faecalis CG110. Southern hybridization confirmed the insertion of Tn916 into several different sites in the B. pumilus chromosome. Transfer of Tn916 also was observed between strains of B. pumilus in filter matings, and one donor strain transferred tetracycline resistance to recipients in broth matings at high frequency (up to 3.4 x 10(-5) per recipient). Transfer from this donor strain in broth matings was DNase-resistant and was not mediated by culture filtrates. Transconjugants from these broth matings contained derivatives of a cryptic plasmid (pMGD302, approx 60 kb) from the donor strain with Tn916 inserted at various sites. The plasmids containing Tn916 insertions transferred to a B. pumilus recipient strain at frequencies of approx 5 x 10(-6) per recipient. This evidence suggests that pMGD302 can transfer by a process resembling conjugation between strains of B. pumilus.  相似文献   

14.
We have used triparental matings to demonstrate transfer (mobilization) of the nonconjugative genetically engineered plasmid pHSV106, which contains the thymidine kinase gene of herpes simplex virus cloned into pBR322, from Escherichia coli HB101 to an environmental isolate of Enterobacter cloacae in sterile drinking water. This is the first demonstration of a two-step mobilization of a genetically engineered plasmid in any type of fresh water, including drinking water. Transfer was mediated by R plasmid R100-1 of E. coli ED2149(R100-1). Matings in drinking water at 15, 25, and 35 degrees C yielded recombinants, the number of which increased with increasing temperature. Numbers of recombinants obtained were 2 orders of magnitude lower than those obtained from matings in Trypticase soy broth. High concentrations of parental organisms (2.6 x 10(8) to 2.0 x 10(9) CFU/ml) were required. During 1 week of incubation in drinking water, number of parental organisms and recombinants resulting from mobilization remained constant in the absence of indigenous organisms and declined in their presence. Using oligonucleotide probes for the cloned foreign DNA (thymidine kinase gene) and plasmid vector DNA (ampicillin resistance gene), we demonstrated that both genes were transferred to E. cloacae in the mobilization process. In one recombinant selected for detailed study, the plasmids containing these genes differed in size from all forms of pHSV106 present in E. coli HB101(pHSV106), indicating that DNA rearrangement had occurred. This recombinant maintained its plasmids in unchanged form for 15 days in drinking water. A second rearrangement occurred during serial passage of this recombinant on selective media.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We have used triparental matings to demonstrate transfer (mobilization) of the nonconjugative genetically engineered plasmid pHSV106, which contains the thymidine kinase gene of herpes simplex virus cloned into pBR322, from Escherichia coli HB101 to an environmental isolate of Enterobacter cloacae in sterile drinking water. This is the first demonstration of a two-step mobilization of a genetically engineered plasmid in any type of fresh water, including drinking water. Transfer was mediated by R plasmid R100-1 of E. coli ED2149(R100-1). Matings in drinking water at 15, 25, and 35 degrees C yielded recombinants, the number of which increased with increasing temperature. Numbers of recombinants obtained were 2 orders of magnitude lower than those obtained from matings in Trypticase soy broth. High concentrations of parental organisms (2.6 x 10(8) to 2.0 x 10(9) CFU/ml) were required. During 1 week of incubation in drinking water, number of parental organisms and recombinants resulting from mobilization remained constant in the absence of indigenous organisms and declined in their presence. Using oligonucleotide probes for the cloned foreign DNA (thymidine kinase gene) and plasmid vector DNA (ampicillin resistance gene), we demonstrated that both genes were transferred to E. cloacae in the mobilization process. In one recombinant selected for detailed study, the plasmids containing these genes differed in size from all forms of pHSV106 present in E. coli HB101(pHSV106), indicating that DNA rearrangement had occurred. This recombinant maintained its plasmids in unchanged form for 15 days in drinking water. A second rearrangement occurred during serial passage of this recombinant on selective media.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Exogenous plasmid isolation was used to assess the presence of mobilizing plasmids in several soils and activated sludges. Triparental matings were performed with Escherichia coli (a member of the γ subgroup of the Proteobacteria) as the donor of an IncQ plasmid (pMOL155, containing the heavy metal resistance genes czc: Cor, Znr, and Cdr), Alcaligenes eutrophus (a member of the β subgroup of the Proteobacteria) as the recipient, and indigenous microorganisms from soil and sludge samples as helper strains. We developed an assay to assess the plasmid mobilization potential of a soil ecosystem on the basis of the number of transconjugants obtained after exogenous isolations. After inoculation into soil of several concentrations of a helper strain (E. coli CM120 harboring IncP [IncP1] mobilizing plasmid RP4), the log numbers of transconjugants obtained from exogenous isolations with different soil samples were a linear function of the log numbers of helper strain CM120(RP4) present in the soils. Four soils were analyzed for the presence of mobilizing elements, and mobilizing plasmids were isolated from two of these soils. Several sludge samples from different wastewater treatment plants yielded much higher numbers of transconjugants than the soil samples, indicating that higher numbers of mobilizing strains were present. The mobilizing plasmids isolated from Gent-O sludge and one plasmid isolated from Eislingen soil hybridized to the repP probe, whereas the plasmids isolated from Essen soil did not hybridize to a large number of rep probes (repFIC, repHI1, repH12, repL/M, repN, repP, repT, repU, repW, repX). This indicates that in Essen soil, broad-host-range mobilizing plasmids belonging to other incompatibility groups may be present.  相似文献   

17.
Antibiotic resistance plasmids were exogenously isolated in biparental matings with piggery manure bacteria as plasmid donors in Escherichia coli CV601 and Pseudomonas putida UWC1 recipients. Surprisingly, IncQ-like plasmids were detected by dot blot hybridization with an IncQ oriV probe in several P. putida UWC1 transconjugants. The capture of IncQ-like plasmids in biparental matings indicates not only their high prevalence in manure slurries but also the presence of efficiently mobilizing plasmids. In order to elucidate unusual hybridization data (weak or no hybridization with IncQ repB or IncQ oriT probes) four IncQ-like plasmids (pIE1107, pIE1115, pIE1120, and pIE1130), each representing a different EcoRV restriction pattern, were selected for a more thorough plasmid characterization after transfer into E. coli K-12 strain DH5alpha by transformation. The characterization of the IncQ-like plasmids revealed an astonishingly high diversity with regard to phenotypic and genotypic properties. Four different multiple antibiotic resistance patterns were found to be conferred by the IncQ-like plasmids. The plasmids could be mobilized by the RP4 derivative pTH10 into Acinetobacter sp., Ralstonia eutropha, Agrobacterium tumefaciens, and P. putida, but they showed diverse patterns of stability under nonselective growth conditions in different host backgrounds. Incompatibility testing and PCR analysis clearly revealed at least two different types of IncQ-like plasmids. PCR amplification of total DNA extracted directly from different manure samples and other environments indicated the prevalence of both types of IncQ plasmids in manure, sewage, and farm soil. These findings suggest that IncQ plasmids play an important role in disseminating antibiotic resistance genes.  相似文献   

18.
pLE2451, a 24.5 megadalton conjugative plasmid from Neisseria gonorrhoeae, was capable of efficiently mobilizing gonococcal beta-lactamase plasmids between gonococci and from gonococci to Haemophilus influenzae and restriction-deficient Escherichia coli. Donor strains of N. gonorrhoeae carrying pLE2451 were also found to be capable of mobilizing a variety of non-conjugative plasmids originally derived from enteric bacteria or Haemophilus species when such plasmids were resident in E. coli. Nevertheless, pLE2451 was not detected physically in E. coli or H. influenzae transconjugants. This suggests that the plasmid is unstable in these hosts but survives transiently to provide transfer functions for mobilization. The proficiency of pLE2451 in promoting intraspecific and intergeneric mobilization was not paralleled by pUB701, pRI234 and pFR16017, a series of conjugative plasmids derived originally from Haemophilus species. These plasmids were incapable of mobilizing even Haemophilus beta-lactamase plasmids, such as RSF0885, between Haemophilus species.  相似文献   

19.
Conjugal transfer from Escherichia coli to Alcaligenes eutrophus of the A. eutrophus genes coding for plasmid-borne resistance to cadmium, cobalt, and zinc (czc genes) was investigated on agar plates and in soil samples. This czc fragment is not expressed in the donor strain, E. coli, but it is expressed in the recipient strain, A. eutrophus. Hence, expression of heavy metal resistance by cells plated on a medium containing heavy metals represents escape of the czc genes. The two plasmids into which this DNA fragment has been cloned previously and which were used in these experiments are the nonconjugative, mobilizable plasmid pDN705 and the nonconjugative, nonmobilizable plasmid pMOL149. In plate matings at 28 to 30 degrees C, the direct mobilization of pDN705 occurred at a frequency of 2.4 x 10(-2) per recipient, and the mobilization of the same plasmid by means of the IncP1 conjugative plasmids RP4 or pULB113 (present either in a third cell [triparental cross] or in the recipient strain itself [retromobilization]) occurred at average frequencies of 8 x 10(-4) and 2 x 10(-5) per recipient, respectively. The czc genes cloned into the Tra- Mob- plasmid pMOL149 were transferred at a frequency of 10(-7) to 10(-8) and only by means of plasmid pULB113. The direct mobilization of pDN705 was further investigated in sandy, sandy-loam, and clay soils. In sterile soils, transfer frequencies at 20 degrees C were highest in the sandy-loam soil (10(-5) per recipient) and were enhanced in all soils by the addition of easily metabolizable nutrients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Conjugal transfer from Escherichia coli to Alcaligenes eutrophus of the A. eutrophus genes coding for plasmid-borne resistance to cadmium, cobalt, and zinc (czc genes) was investigated on agar plates and in soil samples. This czc fragment is not expressed in the donor strain, E. coli, but it is expressed in the recipient strain, A. eutrophus. Hence, expression of heavy metal resistance by cells plated on a medium containing heavy metals represents escape of the czc genes. The two plasmids into which this DNA fragment has been cloned previously and which were used in these experiments are the nonconjugative, mobilizable plasmid pDN705 and the nonconjugative, nonmobilizable plasmid pMOL149. In plate matings at 28 to 30 degrees C, the direct mobilization of pDN705 occurred at a frequency of 2.4 x 10(-2) per recipient, and the mobilization of the same plasmid by means of the IncP1 conjugative plasmids RP4 or pULB113 (present either in a third cell [triparental cross] or in the recipient strain itself [retromobilization]) occurred at average frequencies of 8 x 10(-4) and 2 x 10(-5) per recipient, respectively. The czc genes cloned into the Tra- Mob- plasmid pMOL149 were transferred at a frequency of 10(-7) to 10(-8) and only by means of plasmid pULB113. The direct mobilization of pDN705 was further investigated in sandy, sandy-loam, and clay soils. In sterile soils, transfer frequencies at 20 degrees C were highest in the sandy-loam soil (10(-5) per recipient) and were enhanced in all soils by the addition of easily metabolizable nutrients.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号