首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative analysis of the effects of anoxia on growth, fresh weight gain, and phytohormones in wheat (Triticum aestivum L.) and rice (Oryza sativa L.) seedlings was performed. In both plant species, a total cessation of root growth occurred during the initial hours of anoxia. In an anaerobic environment, the fresh weight of wheat seedlings decreased. An increase in the shoot length and weight under the stress conditions was found only in rice seedlings. During the initial hours of anoxia, the level of free ABA in wheat and rice tissues increased manifold, and the accumulation of a free ABA form occurred at the expense of the hydrolysis of its bound forms. The IAA content in plant tissues also increased. In wheat, the accumulation of IAA was short, but in rice, a high hormone level was retained during the entire experiment, and, as a result, its concentration exceeded that of ABA. A level of cytokinins in the tissues of both plant species was affected by anoxia to a lesser extent than that of other phytohormones. This level somewhat decreased under anoxia similarly to the level in darkness under aeration. It is suggested that IAA accumulation in hypoxia-tolerant rice seedlings under anoxia favors maintenance of shoot growth and simultaneous inhibition of root growth. At the same time, in the hypoxia-sensitive wheat, an increase in the ABA level resulted in growth cessation.  相似文献   

2.
As described previously, the sensitivity of rice (Oryza sativa L.) coleoptiles to auxin is modulated by oxygen. Under anoxia, coleoptile elongation is insensitive to exogenously applied indole-3-acetic acid (IAA), whereas its sensitivity increases in air in the presence of the exogenous stimulus. Here we report the presence of two independent classes of membrane-bound IAA-binding sites in air-grown coleoptiles. Their binding activity is strictly correlated with the system's sensitivity to IAA. We designate them as site A (high affinity) and site B (low affinity). Site A shows a relatively fast response to anoxia, and is highly specific for auxins. Regulation of site-A binding activity through ATP, whose availability decreases under anoxia, is postulated. A role as auxin carrier is suggested for site B.Abbreviations ABS(s) auxin-binding site(s) - IAA indole-3-acctic acid - NAA 2-naphthaleneacetic acid - ION3 valinomycin, nigericin, carbonylcyanide p-trifluoromethoxyphenyl hydrazone Dedicated to the memory of Professor G. Torti, who passed away on 2 May, 1988  相似文献   

3.
Comparative effects of indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) on lateral root (LR) formation were studied using 2-day-old seedlings of IR8 rice (Oryza sativa L.). Results showed that IBA at all concentrations (0.8–500 nmol/L) increased the number of LRs in the seminal root. However exogenous IAA, failed to increase the number of LRs. On the other hand, both IBA and IAA caused inhibition of seminal root elongation and promotion of LR elongation, but IAA can only reach to the same degree of that of IBA at a more than 20-fold concentration. Exogenous IBA had no effect on endogenous IAA content. We conclude from the results that IBA could act directly as a distinct auxin, promoting LR formation in rice, and that the signal transduction pathway for IBA is at least partially different from that for IAA.  相似文献   

4.
A method for quantifying indole-3-acetic acid (IAA) and its conjugates with the six amino acids, Ala, -Asp, -Ile, -Glu, -Phe and -Val, in rice (Oryza sativa) by using high-performance liquid chromatography coupled with electrospray ionization and tandem mass spectrometry (HPLC-ESI-MS/MS) is described. Samples from the rice plant or callus were treated with 80% acetone in water containing 2.5 mM diethyl dithiocarbamate. Each extract was partially purified in C18 cartridge column for solid-phase extraction (SPE) and subjected to HPLC-ESI-MS/MS without converting the product. The detection limit was 3.8 fmol for IAA, and 0.4-2.9 fmol for the IAA amino acid conjugates. The method was applied to the analysis of IAA and its conjugates in rice seedlings, dehulled rice and calli, using 20-100 mg tissue samples.  相似文献   

5.
Rice (Oryza sativa) and wheat (Triticum aestivum) are the most important starch crops in world agriculture. While both germinate with an anatomically similar coleoptile, this tissue defines the early anoxia tolerance of rice and the anoxia intolerance of wheat seedlings. We combined protein and metabolite profiling analysis to compare the differences in response to anoxia between the rice and wheat coleoptiles. Rice coleoptiles responded to anoxia dramatically, not only at the level of protein synthesis but also at the level of altered metabolite pools, while the wheat response to anoxia was slight in comparison. We found significant increases in the abundance of proteins in rice coleoptiles related to protein translation and antioxidant defense and an accumulation of a set of enzymes involved in serine, glycine, and alanine biosynthesis from glyceraldehyde-3-phosphate or pyruvate, which correlates with an observed accumulation of these amino acids in anoxic rice. We show a positive effect on wheat root anoxia tolerance by exogenous addition of these amino acids, indicating that their synthesis could be linked to rice anoxia tolerance. The potential role of amino acid biosynthesis contributing to anoxia tolerance in cells is discussed.  相似文献   

6.
Anoxia tolerance and ethanol sensitivity of rice (Oryza sativa L.) and oat (Avena sativa L.) seedlings were evaluated to clarify their growth habit in anoxia. Anoxic stress inhibited elongation and dry weight gain of coleoptiles of the oat and rice seedlings; however, the inhibition of the oat coleoptiles was much greater than that of the rice coleoptiles. Anoxic stress increased endogenous ethanol concentration and alcohol dehydrogenase activity in oat and rice coleoptiles and their increases in the rice coleoptiles were much greater than those in the oat coleoptiles. At concentrations greater than 30 mM and 300 mM, exogenously applied ethanol inhibited the elongation and weight gain for the oat and the rice coleoptiles, respectively, and the inhibition was increased with increasing ethanol concentrations with marked inhibition being achieved on the oat coleoptiles. These results suggest that anoxia tolerance and induction of ethanolic fermentation in anoxia may be greater in rice than oat, and ethanol sensitivity of rice may be lower than that of oat.  相似文献   

7.
Two monoamine oxidase inhibitors of the hydrazine-type, safrazineand nialamide, inhibited growth in seedlings of rice and pea.We demonstrated histochemically that monoamine oxidase is locatedchiefly in sieve tubes and in the epidermis of pea seedling.Activity of this enzyme was high in the apical part of the epicotyl,decreasing toward the base. Inhibition of pea monoamine oxidaseby safrazine and nialamide was observed histochemically andwith an extract from the epicotyl. This supports the hypothesisthat indole-3-acetic acid (IAA) is formed from tryptamine byamine oxidase and that inhibition of this enzyme causes loweringof the auxin level, resulting in growth inhibition. Inhibitionof growth in rice seedlings by safrazine was reversed by theaddition of IAA to the culture medium. (Received May 6, 1970; )  相似文献   

8.
Activities of tricarboxylic acid (TCA) cycle enzymes in seedlings of barnyard grass (Echinochloa phyllopogon (Stapf.) Koss) and rice (Oryza sativa L.) germinated under aerobic and anaerobic conditions were investigated. In E. phyllopogon, development of TCA-cycle enzyme activities during 10 d of anoxia generally paralleled those in air, although at lower rates. After 5 d, E. phyllopogon seedlings germinating under N2 exhibited 50–80% of the activity of seedlings grown in air, except for 2-oxoglutarate dehydrogenase (EC 1.2.4.2) and fumarate reductase (EC 1.3.1.6) which exhibited only 25–35% of aerobic activity. In anaerobically germinated rice, development of TCA-cycle enzyme activities also paralleled those in air except for aconitase (EC 4.2.1.3), isocitrate dehydrogenase (EC 1.1.1.41), and 2-oxoglutarate dehydrogenase. Those enzymes did not increase in activity under anoxia. Development of maximum enzyme activities generally occurred more rapidly and persisted longer in E. phyllopogon compared to rice. The data indicate that mitochondria of E. phyllopogon function better during anaerobiosis than those of rice and this factor may contribute to the successful biochemical strategy of this weed in rice paddies throughout the world.Abbreviation TCA tricarboxylic acid This work was supported by U.S. Department of Agriculture Competitive Research grant No. 87-CRCR1-2595 and a Herman Frasch Foundation grant in Agricultural Chemistry to R.A.K.  相似文献   

9.
A viridicatin derivative having anti-auxin action, i.e. 3-(4-phenylcarbostyriloxy)acetic acid (V-OCH2COOH) was found to increase the formation of both IAA (indole-3-acetic acid)-oxidase and -synthetase in rice and pea seedlings. With the IAA synthetase, the activity on indolepyruvic acid was markedly increased. V-OCH2COOH stimulated the induction ofIAA oxidase in the excised segments from pea epicotyl, but did not IAA synthetase. The effect of V-OCH2COOH on the former was inhibited by cycloheximide. Activity of the IAA oxidase extracted from pea epicotyl and dialyzed was also stimulated by V-OCH2COOH in the presence of a cofactor such as 2,4-dichlorophenol. Effect of IAA per se on enzyme regulation was tested in parallel and discussed.  相似文献   

10.
The filamentous cyanobacterium Arthrospira platensis strain MMG-9 was isolated from a rice field. The ability of this strain to synthesize the bioactive compound indole-3-acetic acid (IAA) was demonstrated. IAA was extracted from the culture A. platensis strain MMG-9 and its identity was confirmed by thin layer chromatography (TLC) as well as by high performance liquid chromatography (HPLC). The IAA precursor L-tryptophan was required for IAA biosynthesis. Released IAA increased with the increase of the initial concentration of L-tryptophan in the medium and with the incubation time. A. platensis strain MMG-9 accumulates more IAA than it released it into the medium. The bioactivity of the secreted IAA was shown by its effect on the formation of roots by Pisum sativum. There was a significant positive effect of the supernatant of cultures of A. platensis strain MMG-9 on the number of lateral roots of P. sativum while a negative effect on root length was observed.  相似文献   

11.
Increasing its root to shoot ratio is a plant strategy for restoring water homeostasis in response to the long-term imposition of mild water stress. In addition to its important role in diverse fundamental processes, indole-3-acetic acid (IAA) is involved in root growth and development. Recent extensive characterizations of the YUCCA gene family in Arabidopsis and rice have elucidated that member’s function in a tryptophan-dependent IAA biosynthetic pathway. Through forward- and reverse-genetics screening, we have isolated Tos17 and T-DNA insertional rice mutants in a CONSTITUTIVELY WILTED1 (COW1) gene, which encodes a new member of the YUCCA protein family. Homozygous plants with either a Tos17 or T-DNA-inserted allele of OsCOW1 exhibit phenotypes of rolled leaves, reduced leaf widths, and lower root to shoot ratios. These phenotypes are evident in seedlings as early as 7–10 d after germination, and remain until maturity. When oscow1 seedlings are grown under low-intensity light and high relative humidity, the rolled-leaf phenotype is greatly alleviated. For comparison, in such conditions, the transpiration rate for WT leaves decreases approx. 5- to 10-fold, implying that this mutant trait results from wilting rather than being a morphogenic defect. Furthermore, a lower turgor potential and transpiration rate in their mature leaves indicates that oscow1 plants are water-deficient, due to insufficient water uptake that possibly stems from that diminished root to shoot ratio. Thus, our observations suggest that OsCOW1-mediated IAA biosynthesis plays an important role in maintaining root to shoot ratios and, in turn, affects water homeostasis in rice.  相似文献   

12.
Anaerobic production of succinate, a common feature in animals able to sustain anoxia, has seldom been reported in plants. By the use of 1H-nuclear magnetic resonance spectroscopy we show here that succinate is produced by rice seedlings (Oryza sativa L. cv. Arborio) subjected to anoxic conditions. Starting from levels below I μmol (g fresh weight)−1 in air, after 48 h of anoxia the levels of alanine, succinate and lactate had increased to 23.8, 5.2 and 1.0 μmol (g fresh weight) −1, respectively, in shoot tissues. Succinate was accumulated in shoots, notably in the coleoptiles, but not in roots of the rice seedlings, suggesting its involvement in rice coleoptile elongation under anoxia. Other possible functions of succinate production in rice seedling, an organism highly tolerant to anoxia, are discussed.  相似文献   

13.
The occurrence of growth regulators active in the Avena coleoptile straight-growth test in sprouting buds and seedlings of Norway spruce (Picea abies Karst.) was investigated. The acid ether fraction contained a growth stimulator, the Rf of which in isopropanol: ammonia: water was 0.2–0.4. This substance behaved as indole-3-acetic acid (IAA) in elec-trophoresis, in chromatography in various solvent systems on paper and on a Sephadex column. It gave the colour typical of IAA when sprayed with Ehrlich reagent and its fluorescence characteristics corresponded to IAA. Acid ether-soluble inhibitors showed most activity at Rf 0.4–0.7, but due to tailing they interfered with the determination of the stimulator at the Rf of IAA in the bioassay. They also masked the activity of other stimulators. Colour reactions were obtained with Ehrlich reagent in the inhibiting chromatogram zone. When eluates from this zone were tested in high dilutions or after gel filtration growth stimulation was obtained. The acid fraction of seedling shoots also contained a stimulator with Rf 0.7–0.8. In the neutral-basic ether-soluble fraction growth stimulation was obtained at Rf 0.5–0.7. The extracts also contained stimulatory substances insoluble in ether but soluble in n-butanol and partly in ethyl acetate. When the butanol fraction was hydrolyzed in 1 M NaOH a substance behaving as IAA when chromatographed was released.  相似文献   

14.
In this study, bacteria were isolated from the rhizosphere and inside the roots and nodules of berseem clover plants grown in the field in Iran. Two hundred isolates were obtained from the rhizosphere (120 isolates), interior roots (57 isolates), and nodules (23 isolates) of clover plants grown in rotation with rice plants. Production of chitinase, pectinase, cellulase, siderophore, salicylic acid, hydrogen cyanide, indole acetic acid (IAA), 1-aminocyclopropane-1-carboxylate (ACC) deaminase, solubilization of phosphate, antifungal activity against various rice plant pathogen fungi, N2 fixation, and colonization assay on rice seedlings by these strains was evaluated and compared (endophytic isolates vs. rhizosphere bacteria). The results showed both the number and the ability of plant growth-promoting (PGP) traits were different between endophytic and rhizosphere isolates. A higher percentage of endophytic isolates were positive for production of IAA, ACC deaminase, and siderophore than rhizosphere isolates. Therefore, it is suggested that clover plant may shape its own associated microbial community and act as filters for endophyte communities, and rhizosphere isolates with different (PGP) traits. We also studied the PGP effect of the most promising endophytic and rhizosphere isolates on rice seedlings. A significant relationship among IAA and ACC deaminase production, the size of root colonization, and plant growth (root elongation) in comparison with siderophore production and phosphate solubilization for the isolates was observed. The best bacterial isolates (one endophytic isolate and one rhizosphere isolate), based on their ability to promote rice growth and colonize rice roots, were identified. Based on 16S rDNA sequence analysis, the endophytic isolate CEN7 and the rhizosphere isolate CEN8 were closely related to Pseudomonas putida and Pseudomonas fluorescens, respectively. It seems that PGP trait production (such as IAA, ACC deaminase) may be required for endophytic and rhizosphere competence as compared to other PGP traits in rice seedlings under constant flooded conditions. The study also shows that the presence of diverse rhizobacteria with effective growth-promoting traits associated with clover plants may be used for sustainable crop management under field conditions.  相似文献   

15.
Anoxia tolerance of rice (Oryza sativa L.) seedlings was investigated using wild type (WT) and root hair defective mutant RH2. The elongation of both RH2 and WT roots was suppressed by anoxia, but this suppression was less in RH2 than in WT roots. The anoxic treatment increased the activity of alcohol dehydrogenase in both RH2 and WT roots, but the induction was greater in RH2 roots. These results suggest that anoxia tolerance of RH2 roots is greater than that of WT roots, indicating that root hairs may interfere with the anoxia tolerance of rice roots.  相似文献   

16.
This study was conducted to investigate the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase in Pseudomonas fluorescens strain REN1 and its ability to reduce ethylene levels produced during stress, endophytically colonize and promote the elongation of the roots of rice seedlings under gnotobiotic conditions. We isolated 80 bacteria from inside roots of rice plants grown in the farmers’ fields in Guilan, Iran. All of the isolates were characterized for plant growth promoting (PGP) traits. In addition, the colonization assay of these isolates on rice seedlings was carried out to screen for competent endophytes. The best bacterial isolate, based on ACC deaminase production, was identified and used for further study. 16S rDNA sequence analysis revealed that the endophyte was closely related to Pseudomonas fluorescens. The results of this study showed ACC deaminase containing P. fluorescens REN1 increased in vitro root elongation and endophytically colonized the root of rice seedlings significantly, as compared to control under constant flooded conditions. The trait of low amount of indole-3-acetic acid (IAA) production (<15 μg mL−1) and the high production of ACC deaminase by bacteria may be main factors in colonizing rice seedling roots compared to other PGP traits (siderophore production and phosphate solubilization) in this study. Endophytic IAA and ACC deaminase-producing bacteria may be preferential selections by rice seedlings. Therefore, it may be suggested that the utilization of ACC as a nutrient gives the isolates advantages in more endophytic colonization and increase of root length of rice seedlings.  相似文献   

17.
Li L  Hou X  Tsuge T  Ding M  Aoyama T  Oka A  Gu H  Zhao Y  Qu LJ 《Plant cell reports》2008,27(3):575-584
We previously reported that Arabidopsis indole-3-acetic acid (IAA)-methyltransferase-1 (IAMT1) catalyzes the conversion of IAA, an essential phytohormone, to methyl-IAA (MeIAA) and that IAMT1 plays an important role in leaf development. Here, we present the possible mechanisms of action of MeIAA in Arabidopsis. We showed that MeIAA was more potent than IAA in the inhibition of hypocotyl elongation and that MeIAA and naphthalene-acetic acid (NAA), but not IAA, rescued the hypocotyl gravitropic defects in dark-grown aux1. However, MeIAA was less potent than IAA in the inhibition of primary root elongation in light-grown seedlings, and could not rescue the agravitropic root phenotype of aux1. MeIAA had a stronger capacity to induce lateral roots than both IAA and NAA and rescued the defective lateral root phenotype of aux1 seedlings. However, its capacity to induce root hairs was weaker than IAA and NAA and did not rescue the defective root hair phenotype of aux1 seedlings. These data indicate that MeIAA is an inactive form of IAA. The different sensitivities to MeIAA among different organs probably resulted from different expression localization and capacities of a putative MeIAA esterase to convert MeIAA to IAA.  相似文献   

18.
The saprophytic bacterium Burkholderia cepacia has been shown to play an active role as plant growth promoting bacteria (PGPB). In this study, the ability of cell-free culture medium (CFCM) of B. cepacia to improve early developmental stages of plants has been assessed on two agronomically important crops, maize (Zea mays) and rice (Oryza sativa). Treating maize and rice seeds for 45 min before germination significantly improved seed germination and consequent seedling growth. The effect of CFCM was confirmed by the increased biomass of the shoot and, mainly, the root systems of treated seedlings. Chromatographic characterization of the CFCM revealed that the spent culture medium of B. cepacia is a complex mix of different classes of metabolites including, among others, salicylic acid, indole-3-acetic acid (IAA) and several unidentified phenolic compounds. Fractionation of the CFCM components revealed that the impressive development of the root system of CFCM-treated seedlings is due to the synergistic action of several groups of components rather than IAA alone. The data presented here suggest that a CFCM of B. cepacia can be used to improve crop germination.  相似文献   

19.
Indol-3yl-acetic acid (IAA) was identified in Phaseolus vulgaris L. Shoot tissue of seedlings, exposed to light for 5 days, had a higher level of IAA than etiolated seedlings of the same age. The content of IAA increased in green seedlings during light treatment for 5–12 days. No increase could be measured in dark-grown seedlings. Inhibitory substances appeared at different Rf-values. The main part was identical to the inhibitor-β complex and occurred in a higher amount in light-grown seedlings than in etiolated taller ones. One part of the inhibitor-complex appeared to be abscisic acid (ABA). It is suggested that both IAA and acid inhibitors may play an important role in the control of stem growth and differentiation, although light effects on other hormones and regulatory systems cannot be ignored.  相似文献   

20.
Effect of indole acetic acid (IAA)-overproducing mutants of Burkholderia cepacia (RRE25), a member of β-subclass of Proteobacteria and naturally occurring rice endophyte, was observed on the growth of rice (Oryza sativa L.) plants grown under greenhouse conditions. Nine mutants were characterized for altered biosynthesis of IAA after nitrous acid mutagenesis. These mutants were grouped into two classes: class I mutants have reduced production of IAA as compared to the wild type, while class II mutants showed overproduction of IAA. Mutants of both classes and RRE25, the parent (wild type), were inoculated on rice seedlings of two cultivars (Sarjoo-52 and NDR-97). Uptake of nitrogen, phosphorous, and potassium was estimated in these plants. Significant increase in the amount of uptake of all three elements was observed when inoculated with the IAA-overproducing mutants over control as well as in the plants inoculated with the wild type (RRE25). Effect of inoculation of IAA-overproducing mutants was more pronounced on the uptake of phosphorous in cultivar NDR-97 than Sarjoo-52, while it was opposite with respect to potassium uptake. Any significant difference was not observed in nitrogen uptake among the two cultivars. It shows that the host also plays an important role in the beneficial endophytic association. It was concluded from these results that one of the possible mechanisms of growth promotion of rice plants inoculated with bacterial endophytes is their effects on an increase in the capability of nutritional uptake possible through the effect of IAA production which results in proliferation of root system that could mine more nutrients from the soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号